xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision 22f01029)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25 
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/mutex.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/workqueue.h>
32 #include <linux/spinlock.h>
33 #include <linux/kfd_ioctl.h>
34 #include <linux/idr.h>
35 #include <linux/kfifo.h>
36 #include <linux/seq_file.h>
37 #include <linux/kref.h>
38 #include <linux/sysfs.h>
39 #include <linux/device_cgroup.h>
40 #include <drm/drm_file.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_device.h>
43 #include <drm/drm_ioctl.h>
44 #include <kgd_kfd_interface.h>
45 #include <linux/swap.h>
46 
47 #include "amd_shared.h"
48 #include "amdgpu.h"
49 
50 #define KFD_MAX_RING_ENTRY_SIZE	8
51 
52 #define KFD_SYSFS_FILE_MODE 0444
53 
54 /* GPU ID hash width in bits */
55 #define KFD_GPU_ID_HASH_WIDTH 16
56 
57 /* Use upper bits of mmap offset to store KFD driver specific information.
58  * BITS[63:62] - Encode MMAP type
59  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
60  * BITS[45:0]  - MMAP offset value
61  *
62  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
63  *  defines are w.r.t to PAGE_SIZE
64  */
65 #define KFD_MMAP_TYPE_SHIFT	62
66 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
67 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
68 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
70 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
71 
72 #define KFD_MMAP_GPU_ID_SHIFT 46
73 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
74 				<< KFD_MMAP_GPU_ID_SHIFT)
75 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
76 				& KFD_MMAP_GPU_ID_MASK)
77 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
78 				>> KFD_MMAP_GPU_ID_SHIFT)
79 
80 /*
81  * When working with cp scheduler we should assign the HIQ manually or via
82  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
83  * definitions for Kaveri. In Kaveri only the first ME queues participates
84  * in the cp scheduling taking that in mind we set the HIQ slot in the
85  * second ME.
86  */
87 #define KFD_CIK_HIQ_PIPE 4
88 #define KFD_CIK_HIQ_QUEUE 0
89 
90 /* Macro for allocating structures */
91 #define kfd_alloc_struct(ptr_to_struct)	\
92 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
93 
94 #define KFD_MAX_NUM_OF_PROCESSES 512
95 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
96 
97 /*
98  * Size of the per-process TBA+TMA buffer: 2 pages
99  *
100  * The first page is the TBA used for the CWSR ISA code. The second
101  * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
102  */
103 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
104 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
105 
106 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
107 	(KFD_MAX_NUM_OF_PROCESSES *			\
108 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
109 
110 #define KFD_KERNEL_QUEUE_SIZE 2048
111 
112 #define KFD_UNMAP_LATENCY_MS	(4000)
113 
114 /*
115  * 512 = 0x200
116  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
117  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
118  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
119  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
120  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
121  */
122 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
123 
124 
125 /*
126  * Kernel module parameter to specify maximum number of supported queues per
127  * device
128  */
129 extern int max_num_of_queues_per_device;
130 
131 
132 /* Kernel module parameter to specify the scheduling policy */
133 extern int sched_policy;
134 
135 /*
136  * Kernel module parameter to specify the maximum process
137  * number per HW scheduler
138  */
139 extern int hws_max_conc_proc;
140 
141 extern int cwsr_enable;
142 
143 /*
144  * Kernel module parameter to specify whether to send sigterm to HSA process on
145  * unhandled exception
146  */
147 extern int send_sigterm;
148 
149 /*
150  * This kernel module is used to simulate large bar machine on non-large bar
151  * enabled machines.
152  */
153 extern int debug_largebar;
154 
155 /*
156  * Ignore CRAT table during KFD initialization, can be used to work around
157  * broken CRAT tables on some AMD systems
158  */
159 extern int ignore_crat;
160 
161 /* Set sh_mem_config.retry_disable on GFX v9 */
162 extern int amdgpu_noretry;
163 
164 /* Halt if HWS hang is detected */
165 extern int halt_if_hws_hang;
166 
167 /* Whether MEC FW support GWS barriers */
168 extern bool hws_gws_support;
169 
170 /* Queue preemption timeout in ms */
171 extern int queue_preemption_timeout_ms;
172 
173 /*
174  * Don't evict process queues on vm fault
175  */
176 extern int amdgpu_no_queue_eviction_on_vm_fault;
177 
178 /* Enable eviction debug messages */
179 extern bool debug_evictions;
180 
181 enum cache_policy {
182 	cache_policy_coherent,
183 	cache_policy_noncoherent
184 };
185 
186 #define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0])
187 #define KFD_IS_SOC15(dev)   ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1)))
188 
189 struct kfd_event_interrupt_class {
190 	bool (*interrupt_isr)(struct kfd_dev *dev,
191 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
192 			bool *patched_flag);
193 	void (*interrupt_wq)(struct kfd_dev *dev,
194 			const uint32_t *ih_ring_entry);
195 };
196 
197 struct kfd_device_info {
198 	uint32_t gfx_target_version;
199 	const struct kfd_event_interrupt_class *event_interrupt_class;
200 	unsigned int max_pasid_bits;
201 	unsigned int max_no_of_hqd;
202 	unsigned int doorbell_size;
203 	size_t ih_ring_entry_size;
204 	uint8_t num_of_watch_points;
205 	uint16_t mqd_size_aligned;
206 	bool supports_cwsr;
207 	bool needs_iommu_device;
208 	bool needs_pci_atomics;
209 	uint32_t no_atomic_fw_version;
210 	unsigned int num_sdma_queues_per_engine;
211 };
212 
213 unsigned int kfd_get_num_sdma_engines(struct kfd_dev *kdev);
214 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_dev *kdev);
215 
216 struct kfd_mem_obj {
217 	uint32_t range_start;
218 	uint32_t range_end;
219 	uint64_t gpu_addr;
220 	uint32_t *cpu_ptr;
221 	void *gtt_mem;
222 };
223 
224 struct kfd_vmid_info {
225 	uint32_t first_vmid_kfd;
226 	uint32_t last_vmid_kfd;
227 	uint32_t vmid_num_kfd;
228 };
229 
230 struct kfd_dev {
231 	struct amdgpu_device *adev;
232 
233 	struct kfd_device_info device_info;
234 	struct pci_dev *pdev;
235 	struct drm_device *ddev;
236 
237 	unsigned int id;		/* topology stub index */
238 
239 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
240 					 * KFD. It is aligned for mapping
241 					 * into user mode
242 					 */
243 	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
244 					 * doorbell BAR to the first KFD
245 					 * doorbell in dwords. GFX reserves
246 					 * the segment before this offset.
247 					 */
248 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
249 					   * page used by kernel queue
250 					   */
251 
252 	struct kgd2kfd_shared_resources shared_resources;
253 	struct kfd_vmid_info vm_info;
254 
255 	const struct kfd2kgd_calls *kfd2kgd;
256 	struct mutex doorbell_mutex;
257 	DECLARE_BITMAP(doorbell_available_index,
258 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
259 
260 	void *gtt_mem;
261 	uint64_t gtt_start_gpu_addr;
262 	void *gtt_start_cpu_ptr;
263 	void *gtt_sa_bitmap;
264 	struct mutex gtt_sa_lock;
265 	unsigned int gtt_sa_chunk_size;
266 	unsigned int gtt_sa_num_of_chunks;
267 
268 	/* Interrupts */
269 	struct kfifo ih_fifo;
270 	struct workqueue_struct *ih_wq;
271 	struct work_struct interrupt_work;
272 	spinlock_t interrupt_lock;
273 
274 	/* QCM Device instance */
275 	struct device_queue_manager *dqm;
276 
277 	bool init_complete;
278 	/*
279 	 * Interrupts of interest to KFD are copied
280 	 * from the HW ring into a SW ring.
281 	 */
282 	bool interrupts_active;
283 
284 	/* Debug manager */
285 	struct kfd_dbgmgr *dbgmgr;
286 
287 	/* Firmware versions */
288 	uint16_t mec_fw_version;
289 	uint16_t mec2_fw_version;
290 	uint16_t sdma_fw_version;
291 
292 	/* Maximum process number mapped to HW scheduler */
293 	unsigned int max_proc_per_quantum;
294 
295 	/* CWSR */
296 	bool cwsr_enabled;
297 	const void *cwsr_isa;
298 	unsigned int cwsr_isa_size;
299 
300 	/* xGMI */
301 	uint64_t hive_id;
302 
303 	bool pci_atomic_requested;
304 
305 	/* Use IOMMU v2 flag */
306 	bool use_iommu_v2;
307 
308 	/* SRAM ECC flag */
309 	atomic_t sram_ecc_flag;
310 
311 	/* Compute Profile ref. count */
312 	atomic_t compute_profile;
313 
314 	/* Global GWS resource shared between processes */
315 	void *gws;
316 
317 	/* Clients watching SMI events */
318 	struct list_head smi_clients;
319 	spinlock_t smi_lock;
320 
321 	uint32_t reset_seq_num;
322 
323 	struct ida doorbell_ida;
324 	unsigned int max_doorbell_slices;
325 
326 	int noretry;
327 
328 	/* HMM page migration MEMORY_DEVICE_PRIVATE mapping */
329 	struct dev_pagemap pgmap;
330 };
331 
332 enum kfd_mempool {
333 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
334 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
335 	KFD_MEMPOOL_FRAMEBUFFER = 3,
336 };
337 
338 /* Character device interface */
339 int kfd_chardev_init(void);
340 void kfd_chardev_exit(void);
341 struct device *kfd_chardev(void);
342 
343 /**
344  * enum kfd_unmap_queues_filter - Enum for queue filters.
345  *
346  * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
347  *
348  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
349  *						running queues list.
350  *
351  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
352  *						specific process.
353  *
354  */
355 enum kfd_unmap_queues_filter {
356 	KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
357 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
358 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
359 	KFD_UNMAP_QUEUES_FILTER_BY_PASID
360 };
361 
362 /**
363  * enum kfd_queue_type - Enum for various queue types.
364  *
365  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
366  *
367  * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
368  *
369  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
370  *
371  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
372  *
373  * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
374  */
375 enum kfd_queue_type  {
376 	KFD_QUEUE_TYPE_COMPUTE,
377 	KFD_QUEUE_TYPE_SDMA,
378 	KFD_QUEUE_TYPE_HIQ,
379 	KFD_QUEUE_TYPE_DIQ,
380 	KFD_QUEUE_TYPE_SDMA_XGMI
381 };
382 
383 enum kfd_queue_format {
384 	KFD_QUEUE_FORMAT_PM4,
385 	KFD_QUEUE_FORMAT_AQL
386 };
387 
388 enum KFD_QUEUE_PRIORITY {
389 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
390 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
391 };
392 
393 /**
394  * struct queue_properties
395  *
396  * @type: The queue type.
397  *
398  * @queue_id: Queue identifier.
399  *
400  * @queue_address: Queue ring buffer address.
401  *
402  * @queue_size: Queue ring buffer size.
403  *
404  * @priority: Defines the queue priority relative to other queues in the
405  * process.
406  * This is just an indication and HW scheduling may override the priority as
407  * necessary while keeping the relative prioritization.
408  * the priority granularity is from 0 to f which f is the highest priority.
409  * currently all queues are initialized with the highest priority.
410  *
411  * @queue_percent: This field is partially implemented and currently a zero in
412  * this field defines that the queue is non active.
413  *
414  * @read_ptr: User space address which points to the number of dwords the
415  * cp read from the ring buffer. This field updates automatically by the H/W.
416  *
417  * @write_ptr: Defines the number of dwords written to the ring buffer.
418  *
419  * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
420  * buffer. This field should be similar to write_ptr and the user should
421  * update this field after updating the write_ptr.
422  *
423  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
424  *
425  * @is_interop: Defines if this is a interop queue. Interop queue means that
426  * the queue can access both graphics and compute resources.
427  *
428  * @is_evicted: Defines if the queue is evicted. Only active queues
429  * are evicted, rendering them inactive.
430  *
431  * @is_active: Defines if the queue is active or not. @is_active and
432  * @is_evicted are protected by the DQM lock.
433  *
434  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
435  * @is_gws should be protected by the DQM lock, since changing it can yield the
436  * possibility of updating DQM state on number of GWS queues.
437  *
438  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
439  * of the queue.
440  *
441  * This structure represents the queue properties for each queue no matter if
442  * it's user mode or kernel mode queue.
443  *
444  */
445 struct queue_properties {
446 	enum kfd_queue_type type;
447 	enum kfd_queue_format format;
448 	unsigned int queue_id;
449 	uint64_t queue_address;
450 	uint64_t  queue_size;
451 	uint32_t priority;
452 	uint32_t queue_percent;
453 	uint32_t *read_ptr;
454 	uint32_t *write_ptr;
455 	void __iomem *doorbell_ptr;
456 	uint32_t doorbell_off;
457 	bool is_interop;
458 	bool is_evicted;
459 	bool is_active;
460 	bool is_gws;
461 	/* Not relevant for user mode queues in cp scheduling */
462 	unsigned int vmid;
463 	/* Relevant only for sdma queues*/
464 	uint32_t sdma_engine_id;
465 	uint32_t sdma_queue_id;
466 	uint32_t sdma_vm_addr;
467 	/* Relevant only for VI */
468 	uint64_t eop_ring_buffer_address;
469 	uint32_t eop_ring_buffer_size;
470 	uint64_t ctx_save_restore_area_address;
471 	uint32_t ctx_save_restore_area_size;
472 	uint32_t ctl_stack_size;
473 	uint64_t tba_addr;
474 	uint64_t tma_addr;
475 };
476 
477 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
478 			    (q).queue_address != 0 &&	\
479 			    (q).queue_percent > 0 &&	\
480 			    !(q).is_evicted)
481 
482 enum mqd_update_flag {
483 	UPDATE_FLAG_CU_MASK = 0,
484 };
485 
486 struct mqd_update_info {
487 	union {
488 		struct {
489 			uint32_t count; /* Must be a multiple of 32 */
490 			uint32_t *ptr;
491 		} cu_mask;
492 	};
493 	enum mqd_update_flag update_flag;
494 };
495 
496 /**
497  * struct queue
498  *
499  * @list: Queue linked list.
500  *
501  * @mqd: The queue MQD (memory queue descriptor).
502  *
503  * @mqd_mem_obj: The MQD local gpu memory object.
504  *
505  * @gart_mqd_addr: The MQD gart mc address.
506  *
507  * @properties: The queue properties.
508  *
509  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
510  *	 that the queue should be executed on.
511  *
512  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
513  *	  id.
514  *
515  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
516  *
517  * @process: The kfd process that created this queue.
518  *
519  * @device: The kfd device that created this queue.
520  *
521  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
522  * otherwise.
523  *
524  * This structure represents user mode compute queues.
525  * It contains all the necessary data to handle such queues.
526  *
527  */
528 
529 struct queue {
530 	struct list_head list;
531 	void *mqd;
532 	struct kfd_mem_obj *mqd_mem_obj;
533 	uint64_t gart_mqd_addr;
534 	struct queue_properties properties;
535 
536 	uint32_t mec;
537 	uint32_t pipe;
538 	uint32_t queue;
539 
540 	unsigned int sdma_id;
541 	unsigned int doorbell_id;
542 
543 	struct kfd_process	*process;
544 	struct kfd_dev		*device;
545 	void *gws;
546 
547 	/* procfs */
548 	struct kobject kobj;
549 };
550 
551 enum KFD_MQD_TYPE {
552 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
553 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
554 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
555 	KFD_MQD_TYPE_DIQ,		/* for diq */
556 	KFD_MQD_TYPE_MAX
557 };
558 
559 enum KFD_PIPE_PRIORITY {
560 	KFD_PIPE_PRIORITY_CS_LOW = 0,
561 	KFD_PIPE_PRIORITY_CS_MEDIUM,
562 	KFD_PIPE_PRIORITY_CS_HIGH
563 };
564 
565 struct scheduling_resources {
566 	unsigned int vmid_mask;
567 	enum kfd_queue_type type;
568 	uint64_t queue_mask;
569 	uint64_t gws_mask;
570 	uint32_t oac_mask;
571 	uint32_t gds_heap_base;
572 	uint32_t gds_heap_size;
573 };
574 
575 struct process_queue_manager {
576 	/* data */
577 	struct kfd_process	*process;
578 	struct list_head	queues;
579 	unsigned long		*queue_slot_bitmap;
580 };
581 
582 struct qcm_process_device {
583 	/* The Device Queue Manager that owns this data */
584 	struct device_queue_manager *dqm;
585 	struct process_queue_manager *pqm;
586 	/* Queues list */
587 	struct list_head queues_list;
588 	struct list_head priv_queue_list;
589 
590 	unsigned int queue_count;
591 	unsigned int vmid;
592 	bool is_debug;
593 	unsigned int evicted; /* eviction counter, 0=active */
594 
595 	/* This flag tells if we should reset all wavefronts on
596 	 * process termination
597 	 */
598 	bool reset_wavefronts;
599 
600 	/* This flag tells us if this process has a GWS-capable
601 	 * queue that will be mapped into the runlist. It's
602 	 * possible to request a GWS BO, but not have the queue
603 	 * currently mapped, and this changes how the MAP_PROCESS
604 	 * PM4 packet is configured.
605 	 */
606 	bool mapped_gws_queue;
607 
608 	/* All the memory management data should be here too */
609 	uint64_t gds_context_area;
610 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
611 	uint64_t page_table_base;
612 	uint32_t sh_mem_config;
613 	uint32_t sh_mem_bases;
614 	uint32_t sh_mem_ape1_base;
615 	uint32_t sh_mem_ape1_limit;
616 	uint32_t gds_size;
617 	uint32_t num_gws;
618 	uint32_t num_oac;
619 	uint32_t sh_hidden_private_base;
620 
621 	/* CWSR memory */
622 	struct kgd_mem *cwsr_mem;
623 	void *cwsr_kaddr;
624 	uint64_t cwsr_base;
625 	uint64_t tba_addr;
626 	uint64_t tma_addr;
627 
628 	/* IB memory */
629 	struct kgd_mem *ib_mem;
630 	uint64_t ib_base;
631 	void *ib_kaddr;
632 
633 	/* doorbell resources per process per device */
634 	unsigned long *doorbell_bitmap;
635 };
636 
637 /* KFD Memory Eviction */
638 
639 /* Approx. wait time before attempting to restore evicted BOs */
640 #define PROCESS_RESTORE_TIME_MS 100
641 /* Approx. back off time if restore fails due to lack of memory */
642 #define PROCESS_BACK_OFF_TIME_MS 100
643 /* Approx. time before evicting the process again */
644 #define PROCESS_ACTIVE_TIME_MS 10
645 
646 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
647  * idr_handle in the least significant 4 bytes
648  */
649 #define MAKE_HANDLE(gpu_id, idr_handle) \
650 	(((uint64_t)(gpu_id) << 32) + idr_handle)
651 #define GET_GPU_ID(handle) (handle >> 32)
652 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
653 
654 enum kfd_pdd_bound {
655 	PDD_UNBOUND = 0,
656 	PDD_BOUND,
657 	PDD_BOUND_SUSPENDED,
658 };
659 
660 #define MAX_SYSFS_FILENAME_LEN 15
661 
662 /*
663  * SDMA counter runs at 100MHz frequency.
664  * We display SDMA activity in microsecond granularity in sysfs.
665  * As a result, the divisor is 100.
666  */
667 #define SDMA_ACTIVITY_DIVISOR  100
668 
669 /* Data that is per-process-per device. */
670 struct kfd_process_device {
671 	/* The device that owns this data. */
672 	struct kfd_dev *dev;
673 
674 	/* The process that owns this kfd_process_device. */
675 	struct kfd_process *process;
676 
677 	/* per-process-per device QCM data structure */
678 	struct qcm_process_device qpd;
679 
680 	/*Apertures*/
681 	uint64_t lds_base;
682 	uint64_t lds_limit;
683 	uint64_t gpuvm_base;
684 	uint64_t gpuvm_limit;
685 	uint64_t scratch_base;
686 	uint64_t scratch_limit;
687 
688 	/* VM context for GPUVM allocations */
689 	struct file *drm_file;
690 	void *drm_priv;
691 
692 	/* GPUVM allocations storage */
693 	struct idr alloc_idr;
694 
695 	/* Flag used to tell the pdd has dequeued from the dqm.
696 	 * This is used to prevent dev->dqm->ops.process_termination() from
697 	 * being called twice when it is already called in IOMMU callback
698 	 * function.
699 	 */
700 	bool already_dequeued;
701 	bool runtime_inuse;
702 
703 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
704 	enum kfd_pdd_bound bound;
705 
706 	/* VRAM usage */
707 	uint64_t vram_usage;
708 	struct attribute attr_vram;
709 	char vram_filename[MAX_SYSFS_FILENAME_LEN];
710 
711 	/* SDMA activity tracking */
712 	uint64_t sdma_past_activity_counter;
713 	struct attribute attr_sdma;
714 	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
715 
716 	/* Eviction activity tracking */
717 	uint64_t last_evict_timestamp;
718 	atomic64_t evict_duration_counter;
719 	struct attribute attr_evict;
720 
721 	struct kobject *kobj_stats;
722 	unsigned int doorbell_index;
723 
724 	/*
725 	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
726 	 * that is associated with device encoded by "this" struct instance. The
727 	 * value reflects CU usage by all of the waves launched by this process
728 	 * on this device. A very important property of occupancy parameter is
729 	 * that its value is a snapshot of current use.
730 	 *
731 	 * Following is to be noted regarding how this parameter is reported:
732 	 *
733 	 *  The number of waves that a CU can launch is limited by couple of
734 	 *  parameters. These are encoded by struct amdgpu_cu_info instance
735 	 *  that is part of every device definition. For GFX9 devices this
736 	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
737 	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
738 	 *  when they do use scratch memory. This could change for future
739 	 *  devices and therefore this example should be considered as a guide.
740 	 *
741 	 *  All CU's of a device are available for the process. This may not be true
742 	 *  under certain conditions - e.g. CU masking.
743 	 *
744 	 *  Finally number of CU's that are occupied by a process is affected by both
745 	 *  number of CU's a device has along with number of other competing processes
746 	 */
747 	struct attribute attr_cu_occupancy;
748 
749 	/* sysfs counters for GPU retry fault and page migration tracking */
750 	struct kobject *kobj_counters;
751 	struct attribute attr_faults;
752 	struct attribute attr_page_in;
753 	struct attribute attr_page_out;
754 	uint64_t faults;
755 	uint64_t page_in;
756 	uint64_t page_out;
757 };
758 
759 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
760 
761 struct svm_range_list {
762 	struct mutex			lock;
763 	struct rb_root_cached		objects;
764 	struct list_head		list;
765 	struct work_struct		deferred_list_work;
766 	struct list_head		deferred_range_list;
767 	spinlock_t			deferred_list_lock;
768 	atomic_t			evicted_ranges;
769 	atomic_t			drain_pagefaults;
770 	struct delayed_work		restore_work;
771 	DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
772 	struct task_struct 		*faulting_task;
773 };
774 
775 /* Process data */
776 struct kfd_process {
777 	/*
778 	 * kfd_process are stored in an mm_struct*->kfd_process*
779 	 * hash table (kfd_processes in kfd_process.c)
780 	 */
781 	struct hlist_node kfd_processes;
782 
783 	/*
784 	 * Opaque pointer to mm_struct. We don't hold a reference to
785 	 * it so it should never be dereferenced from here. This is
786 	 * only used for looking up processes by their mm.
787 	 */
788 	void *mm;
789 
790 	struct kref ref;
791 	struct work_struct release_work;
792 
793 	struct mutex mutex;
794 
795 	/*
796 	 * In any process, the thread that started main() is the lead
797 	 * thread and outlives the rest.
798 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
799 	 * It can also be used for safely getting a reference to the
800 	 * mm_struct of the process.
801 	 */
802 	struct task_struct *lead_thread;
803 
804 	/* We want to receive a notification when the mm_struct is destroyed */
805 	struct mmu_notifier mmu_notifier;
806 
807 	u32 pasid;
808 
809 	/*
810 	 * Array of kfd_process_device pointers,
811 	 * one for each device the process is using.
812 	 */
813 	struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
814 	uint32_t n_pdds;
815 
816 	struct process_queue_manager pqm;
817 
818 	/*Is the user space process 32 bit?*/
819 	bool is_32bit_user_mode;
820 
821 	/* Event-related data */
822 	struct mutex event_mutex;
823 	/* Event ID allocator and lookup */
824 	struct idr event_idr;
825 	/* Event page */
826 	u64 signal_handle;
827 	struct kfd_signal_page *signal_page;
828 	size_t signal_mapped_size;
829 	size_t signal_event_count;
830 	bool signal_event_limit_reached;
831 
832 	/* Information used for memory eviction */
833 	void *kgd_process_info;
834 	/* Eviction fence that is attached to all the BOs of this process. The
835 	 * fence will be triggered during eviction and new one will be created
836 	 * during restore
837 	 */
838 	struct dma_fence *ef;
839 
840 	/* Work items for evicting and restoring BOs */
841 	struct delayed_work eviction_work;
842 	struct delayed_work restore_work;
843 	/* seqno of the last scheduled eviction */
844 	unsigned int last_eviction_seqno;
845 	/* Approx. the last timestamp (in jiffies) when the process was
846 	 * restored after an eviction
847 	 */
848 	unsigned long last_restore_timestamp;
849 
850 	/* Kobj for our procfs */
851 	struct kobject *kobj;
852 	struct kobject *kobj_queues;
853 	struct attribute attr_pasid;
854 
855 	/* shared virtual memory registered by this process */
856 	struct svm_range_list svms;
857 
858 	bool xnack_enabled;
859 
860 	atomic_t poison;
861 };
862 
863 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
864 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
865 extern struct srcu_struct kfd_processes_srcu;
866 
867 /**
868  * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
869  *
870  * @filep: pointer to file structure.
871  * @p: amdkfd process pointer.
872  * @data: pointer to arg that was copied from user.
873  *
874  * Return: returns ioctl completion code.
875  */
876 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
877 				void *data);
878 
879 struct amdkfd_ioctl_desc {
880 	unsigned int cmd;
881 	int flags;
882 	amdkfd_ioctl_t *func;
883 	unsigned int cmd_drv;
884 	const char *name;
885 };
886 bool kfd_dev_is_large_bar(struct kfd_dev *dev);
887 
888 int kfd_process_create_wq(void);
889 void kfd_process_destroy_wq(void);
890 struct kfd_process *kfd_create_process(struct file *filep);
891 struct kfd_process *kfd_get_process(const struct task_struct *);
892 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
893 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
894 
895 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
896 int kfd_process_gpuid_from_adev(struct kfd_process *p,
897 			       struct amdgpu_device *adev, uint32_t *gpuid,
898 			       uint32_t *gpuidx);
899 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
900 				uint32_t gpuidx, uint32_t *gpuid) {
901 	return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
902 }
903 static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
904 				struct kfd_process *p, uint32_t gpuidx) {
905 	return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
906 }
907 
908 void kfd_unref_process(struct kfd_process *p);
909 int kfd_process_evict_queues(struct kfd_process *p);
910 int kfd_process_restore_queues(struct kfd_process *p);
911 void kfd_suspend_all_processes(void);
912 int kfd_resume_all_processes(void);
913 
914 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
915 			       struct file *drm_file);
916 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
917 						struct kfd_process *p);
918 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
919 							struct kfd_process *p);
920 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
921 							struct kfd_process *p);
922 
923 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
924 
925 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
926 			  struct vm_area_struct *vma);
927 
928 /* KFD process API for creating and translating handles */
929 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
930 					void *mem);
931 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
932 					int handle);
933 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
934 					int handle);
935 
936 /* PASIDs */
937 int kfd_pasid_init(void);
938 void kfd_pasid_exit(void);
939 bool kfd_set_pasid_limit(unsigned int new_limit);
940 unsigned int kfd_get_pasid_limit(void);
941 u32 kfd_pasid_alloc(void);
942 void kfd_pasid_free(u32 pasid);
943 
944 /* Doorbells */
945 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
946 int kfd_doorbell_init(struct kfd_dev *kfd);
947 void kfd_doorbell_fini(struct kfd_dev *kfd);
948 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
949 		      struct vm_area_struct *vma);
950 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
951 					unsigned int *doorbell_off);
952 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
953 u32 read_kernel_doorbell(u32 __iomem *db);
954 void write_kernel_doorbell(void __iomem *db, u32 value);
955 void write_kernel_doorbell64(void __iomem *db, u64 value);
956 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
957 					struct kfd_process_device *pdd,
958 					unsigned int doorbell_id);
959 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
960 int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
961 				unsigned int *doorbell_index);
962 void kfd_free_process_doorbells(struct kfd_dev *kfd,
963 				unsigned int doorbell_index);
964 /* GTT Sub-Allocator */
965 
966 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
967 			struct kfd_mem_obj **mem_obj);
968 
969 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
970 
971 extern struct device *kfd_device;
972 
973 /* KFD's procfs */
974 void kfd_procfs_init(void);
975 void kfd_procfs_shutdown(void);
976 int kfd_procfs_add_queue(struct queue *q);
977 void kfd_procfs_del_queue(struct queue *q);
978 
979 /* Topology */
980 int kfd_topology_init(void);
981 void kfd_topology_shutdown(void);
982 int kfd_topology_add_device(struct kfd_dev *gpu);
983 int kfd_topology_remove_device(struct kfd_dev *gpu);
984 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
985 						uint32_t proximity_domain);
986 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
987 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
988 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
989 struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev);
990 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
991 int kfd_numa_node_to_apic_id(int numa_node_id);
992 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
993 
994 /* Interrupts */
995 int kfd_interrupt_init(struct kfd_dev *dev);
996 void kfd_interrupt_exit(struct kfd_dev *dev);
997 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
998 bool interrupt_is_wanted(struct kfd_dev *dev,
999 				const uint32_t *ih_ring_entry,
1000 				uint32_t *patched_ihre, bool *flag);
1001 
1002 /* amdkfd Apertures */
1003 int kfd_init_apertures(struct kfd_process *process);
1004 
1005 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1006 				  uint64_t tba_addr,
1007 				  uint64_t tma_addr);
1008 
1009 /* Queue Context Management */
1010 int init_queue(struct queue **q, const struct queue_properties *properties);
1011 void uninit_queue(struct queue *q);
1012 void print_queue_properties(struct queue_properties *q);
1013 void print_queue(struct queue *q);
1014 
1015 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
1016 		struct kfd_dev *dev);
1017 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
1018 		struct kfd_dev *dev);
1019 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1020 		struct kfd_dev *dev);
1021 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
1022 		struct kfd_dev *dev);
1023 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1024 		struct kfd_dev *dev);
1025 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1026 		struct kfd_dev *dev);
1027 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
1028 void device_queue_manager_uninit(struct device_queue_manager *dqm);
1029 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
1030 					enum kfd_queue_type type);
1031 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
1032 int kfd_process_vm_fault(struct device_queue_manager *dqm, u32 pasid);
1033 
1034 /* Process Queue Manager */
1035 struct process_queue_node {
1036 	struct queue *q;
1037 	struct kernel_queue *kq;
1038 	struct list_head process_queue_list;
1039 };
1040 
1041 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1042 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1043 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1044 void pqm_uninit(struct process_queue_manager *pqm);
1045 int pqm_create_queue(struct process_queue_manager *pqm,
1046 			    struct kfd_dev *dev,
1047 			    struct file *f,
1048 			    struct queue_properties *properties,
1049 			    unsigned int *qid,
1050 			    uint32_t *p_doorbell_offset_in_process);
1051 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1052 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid,
1053 			struct queue_properties *p);
1054 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid,
1055 			struct mqd_update_info *minfo);
1056 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1057 			void *gws);
1058 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1059 						unsigned int qid);
1060 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1061 						unsigned int qid);
1062 int pqm_get_wave_state(struct process_queue_manager *pqm,
1063 		       unsigned int qid,
1064 		       void __user *ctl_stack,
1065 		       u32 *ctl_stack_used_size,
1066 		       u32 *save_area_used_size);
1067 
1068 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1069 			      uint64_t fence_value,
1070 			      unsigned int timeout_ms);
1071 
1072 /* Packet Manager */
1073 
1074 #define KFD_FENCE_COMPLETED (100)
1075 #define KFD_FENCE_INIT   (10)
1076 
1077 struct packet_manager {
1078 	struct device_queue_manager *dqm;
1079 	struct kernel_queue *priv_queue;
1080 	struct mutex lock;
1081 	bool allocated;
1082 	struct kfd_mem_obj *ib_buffer_obj;
1083 	unsigned int ib_size_bytes;
1084 	bool is_over_subscription;
1085 
1086 	const struct packet_manager_funcs *pmf;
1087 };
1088 
1089 struct packet_manager_funcs {
1090 	/* Support ASIC-specific packet formats for PM4 packets */
1091 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1092 			struct qcm_process_device *qpd);
1093 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1094 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1095 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1096 			struct scheduling_resources *res);
1097 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1098 			struct queue *q, bool is_static);
1099 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1100 			enum kfd_queue_type type,
1101 			enum kfd_unmap_queues_filter mode,
1102 			uint32_t filter_param, bool reset,
1103 			unsigned int sdma_engine);
1104 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1105 			uint64_t fence_address,	uint64_t fence_value);
1106 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1107 
1108 	/* Packet sizes */
1109 	int map_process_size;
1110 	int runlist_size;
1111 	int set_resources_size;
1112 	int map_queues_size;
1113 	int unmap_queues_size;
1114 	int query_status_size;
1115 	int release_mem_size;
1116 };
1117 
1118 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1119 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1120 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1121 
1122 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1123 void pm_uninit(struct packet_manager *pm, bool hanging);
1124 int pm_send_set_resources(struct packet_manager *pm,
1125 				struct scheduling_resources *res);
1126 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1127 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1128 				uint64_t fence_value);
1129 
1130 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
1131 			enum kfd_unmap_queues_filter mode,
1132 			uint32_t filter_param, bool reset,
1133 			unsigned int sdma_engine);
1134 
1135 void pm_release_ib(struct packet_manager *pm);
1136 
1137 /* Following PM funcs can be shared among VI and AI */
1138 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1139 
1140 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1141 
1142 /* Events */
1143 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1144 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1145 
1146 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1147 
1148 void kfd_event_init_process(struct kfd_process *p);
1149 void kfd_event_free_process(struct kfd_process *p);
1150 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1151 int kfd_wait_on_events(struct kfd_process *p,
1152 		       uint32_t num_events, void __user *data,
1153 		       bool all, uint32_t user_timeout_ms,
1154 		       uint32_t *wait_result);
1155 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1156 				uint32_t valid_id_bits);
1157 void kfd_signal_iommu_event(struct kfd_dev *dev,
1158 			    u32 pasid, unsigned long address,
1159 			    bool is_write_requested, bool is_execute_requested);
1160 void kfd_signal_hw_exception_event(u32 pasid);
1161 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1162 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1163 int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1164 		       uint64_t size);
1165 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1166 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1167 		     uint32_t *event_id, uint32_t *event_trigger_data,
1168 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1169 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1170 
1171 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
1172 				struct kfd_vm_fault_info *info);
1173 
1174 void kfd_signal_reset_event(struct kfd_dev *dev);
1175 
1176 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid);
1177 
1178 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type);
1179 
1180 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1181 
1182 bool kfd_is_locked(void);
1183 
1184 /* Compute profile */
1185 void kfd_inc_compute_active(struct kfd_dev *dev);
1186 void kfd_dec_compute_active(struct kfd_dev *dev);
1187 
1188 /* Cgroup Support */
1189 /* Check with device cgroup if @kfd device is accessible */
1190 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1191 {
1192 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1193 	struct drm_device *ddev = kfd->ddev;
1194 
1195 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1196 					  ddev->render->index,
1197 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1198 #else
1199 	return 0;
1200 #endif
1201 }
1202 
1203 /* Debugfs */
1204 #if defined(CONFIG_DEBUG_FS)
1205 
1206 void kfd_debugfs_init(void);
1207 void kfd_debugfs_fini(void);
1208 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1209 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1210 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1211 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1212 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1213 int pm_debugfs_runlist(struct seq_file *m, void *data);
1214 
1215 int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1216 int pm_debugfs_hang_hws(struct packet_manager *pm);
1217 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1218 
1219 #else
1220 
1221 static inline void kfd_debugfs_init(void) {}
1222 static inline void kfd_debugfs_fini(void) {}
1223 
1224 #endif
1225 
1226 #endif
1227