xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision 2105a15a)
1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #ifndef KFD_PRIV_H_INCLUDED
25 #define KFD_PRIV_H_INCLUDED
26 
27 #include <linux/hashtable.h>
28 #include <linux/mmu_notifier.h>
29 #include <linux/memremap.h>
30 #include <linux/mutex.h>
31 #include <linux/types.h>
32 #include <linux/atomic.h>
33 #include <linux/workqueue.h>
34 #include <linux/spinlock.h>
35 #include <linux/kfd_ioctl.h>
36 #include <linux/idr.h>
37 #include <linux/kfifo.h>
38 #include <linux/seq_file.h>
39 #include <linux/kref.h>
40 #include <linux/sysfs.h>
41 #include <linux/device_cgroup.h>
42 #include <drm/drm_file.h>
43 #include <drm/drm_drv.h>
44 #include <drm/drm_device.h>
45 #include <drm/drm_ioctl.h>
46 #include <kgd_kfd_interface.h>
47 #include <linux/swap.h>
48 
49 #include "amd_shared.h"
50 #include "amdgpu.h"
51 
52 #define KFD_MAX_RING_ENTRY_SIZE	8
53 
54 #define KFD_SYSFS_FILE_MODE 0444
55 
56 /* GPU ID hash width in bits */
57 #define KFD_GPU_ID_HASH_WIDTH 16
58 
59 /* Use upper bits of mmap offset to store KFD driver specific information.
60  * BITS[63:62] - Encode MMAP type
61  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
62  * BITS[45:0]  - MMAP offset value
63  *
64  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
65  *  defines are w.r.t to PAGE_SIZE
66  */
67 #define KFD_MMAP_TYPE_SHIFT	62
68 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
70 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
71 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
72 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
73 
74 #define KFD_MMAP_GPU_ID_SHIFT 46
75 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
76 				<< KFD_MMAP_GPU_ID_SHIFT)
77 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
78 				& KFD_MMAP_GPU_ID_MASK)
79 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
80 				>> KFD_MMAP_GPU_ID_SHIFT)
81 
82 /*
83  * When working with cp scheduler we should assign the HIQ manually or via
84  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
85  * definitions for Kaveri. In Kaveri only the first ME queues participates
86  * in the cp scheduling taking that in mind we set the HIQ slot in the
87  * second ME.
88  */
89 #define KFD_CIK_HIQ_PIPE 4
90 #define KFD_CIK_HIQ_QUEUE 0
91 
92 /* Macro for allocating structures */
93 #define kfd_alloc_struct(ptr_to_struct)	\
94 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
95 
96 #define KFD_MAX_NUM_OF_PROCESSES 512
97 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
98 
99 /*
100  * Size of the per-process TBA+TMA buffer: 2 pages
101  *
102  * The first page is the TBA used for the CWSR ISA code. The second
103  * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
104  */
105 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
106 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
107 
108 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
109 	(KFD_MAX_NUM_OF_PROCESSES *			\
110 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
111 
112 #define KFD_KERNEL_QUEUE_SIZE 2048
113 
114 #define KFD_UNMAP_LATENCY_MS	(4000)
115 
116 #define KFD_MAX_SDMA_QUEUES	128
117 
118 /*
119  * 512 = 0x200
120  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
121  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
122  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
123  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
124  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
125  */
126 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
127 
128 /**
129  * enum kfd_ioctl_flags - KFD ioctl flags
130  * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how
131  * userspace can use a given ioctl.
132  */
133 enum kfd_ioctl_flags {
134 	/*
135 	 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE:
136 	 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially
137 	 * perform privileged operations and load arbitrary data into MQDs and
138 	 * eventually HQD registers when the queue is mapped by HWS. In order to
139 	 * prevent this we should perform additional security checks.
140 	 *
141 	 * This is equivalent to callers with the CHECKPOINT_RESTORE capability.
142 	 *
143 	 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE,
144 	 * we also allow ioctls with SYS_ADMIN capability.
145 	 */
146 	KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0),
147 };
148 /*
149  * Kernel module parameter to specify maximum number of supported queues per
150  * device
151  */
152 extern int max_num_of_queues_per_device;
153 
154 
155 /* Kernel module parameter to specify the scheduling policy */
156 extern int sched_policy;
157 
158 /*
159  * Kernel module parameter to specify the maximum process
160  * number per HW scheduler
161  */
162 extern int hws_max_conc_proc;
163 
164 extern int cwsr_enable;
165 
166 /*
167  * Kernel module parameter to specify whether to send sigterm to HSA process on
168  * unhandled exception
169  */
170 extern int send_sigterm;
171 
172 /*
173  * This kernel module is used to simulate large bar machine on non-large bar
174  * enabled machines.
175  */
176 extern int debug_largebar;
177 
178 /*
179  * Ignore CRAT table during KFD initialization, can be used to work around
180  * broken CRAT tables on some AMD systems
181  */
182 extern int ignore_crat;
183 
184 /* Set sh_mem_config.retry_disable on GFX v9 */
185 extern int amdgpu_noretry;
186 
187 /* Halt if HWS hang is detected */
188 extern int halt_if_hws_hang;
189 
190 /* Whether MEC FW support GWS barriers */
191 extern bool hws_gws_support;
192 
193 /* Queue preemption timeout in ms */
194 extern int queue_preemption_timeout_ms;
195 
196 /*
197  * Don't evict process queues on vm fault
198  */
199 extern int amdgpu_no_queue_eviction_on_vm_fault;
200 
201 /* Enable eviction debug messages */
202 extern bool debug_evictions;
203 
204 extern struct mutex kfd_processes_mutex;
205 
206 enum cache_policy {
207 	cache_policy_coherent,
208 	cache_policy_noncoherent
209 };
210 
211 #define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0])
212 #define KFD_IS_SOC15(dev)   ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1)))
213 #define KFD_SUPPORT_XNACK_PER_PROCESS(dev)\
214 	((KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2)) ||	\
215 	 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3)))
216 
217 struct kfd_node;
218 
219 struct kfd_event_interrupt_class {
220 	bool (*interrupt_isr)(struct kfd_node *dev,
221 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
222 			bool *patched_flag);
223 	void (*interrupt_wq)(struct kfd_node *dev,
224 			const uint32_t *ih_ring_entry);
225 };
226 
227 struct kfd_device_info {
228 	uint32_t gfx_target_version;
229 	const struct kfd_event_interrupt_class *event_interrupt_class;
230 	unsigned int max_pasid_bits;
231 	unsigned int max_no_of_hqd;
232 	unsigned int doorbell_size;
233 	size_t ih_ring_entry_size;
234 	uint8_t num_of_watch_points;
235 	uint16_t mqd_size_aligned;
236 	bool supports_cwsr;
237 	bool needs_iommu_device;
238 	bool needs_pci_atomics;
239 	uint32_t no_atomic_fw_version;
240 	unsigned int num_sdma_queues_per_engine;
241 	unsigned int num_reserved_sdma_queues_per_engine;
242 	DECLARE_BITMAP(reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
243 };
244 
245 unsigned int kfd_get_num_sdma_engines(struct kfd_node *kdev);
246 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *kdev);
247 
248 struct kfd_mem_obj {
249 	uint32_t range_start;
250 	uint32_t range_end;
251 	uint64_t gpu_addr;
252 	uint32_t *cpu_ptr;
253 	void *gtt_mem;
254 };
255 
256 struct kfd_vmid_info {
257 	uint32_t first_vmid_kfd;
258 	uint32_t last_vmid_kfd;
259 	uint32_t vmid_num_kfd;
260 };
261 
262 #define MAX_KFD_NODES	8
263 
264 struct kfd_dev;
265 
266 struct kfd_node {
267 	unsigned int node_id;
268 	struct amdgpu_device *adev;     /* Duplicated here along with keeping
269 					 * a copy in kfd_dev to save a hop
270 					 */
271 	const struct kfd2kgd_calls *kfd2kgd; /* Duplicated here along with
272 					      * keeping a copy in kfd_dev to
273 					      * save a hop
274 					      */
275 	struct kfd_vmid_info vm_info;
276 	unsigned int id;                /* topology stub index */
277 	uint32_t xcc_mask; /* Instance mask of XCCs present */
278 	struct amdgpu_xcp *xcp;
279 
280 	/* Interrupts */
281 	struct kfifo ih_fifo;
282 	struct workqueue_struct *ih_wq;
283 	struct work_struct interrupt_work;
284 	spinlock_t interrupt_lock;
285 
286 	/*
287 	 * Interrupts of interest to KFD are copied
288 	 * from the HW ring into a SW ring.
289 	 */
290 	bool interrupts_active;
291 	uint32_t interrupt_bitmap; /* Only used for GFX 9.4.3 */
292 
293 	/* QCM Device instance */
294 	struct device_queue_manager *dqm;
295 
296 	/* Global GWS resource shared between processes */
297 	void *gws;
298 	bool gws_debug_workaround;
299 
300 	/* Clients watching SMI events */
301 	struct list_head smi_clients;
302 	spinlock_t smi_lock;
303 	uint32_t reset_seq_num;
304 
305 	/* SRAM ECC flag */
306 	atomic_t sram_ecc_flag;
307 
308 	/*spm process id */
309 	unsigned int spm_pasid;
310 
311 	/* Maximum process number mapped to HW scheduler */
312 	unsigned int max_proc_per_quantum;
313 
314 	unsigned int compute_vmid_bitmap;
315 
316 	struct kfd_local_mem_info local_mem_info;
317 
318 	struct kfd_dev *kfd;
319 };
320 
321 struct kfd_dev {
322 	struct amdgpu_device *adev;
323 
324 	struct kfd_device_info device_info;
325 
326 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
327 					 * KFD. It is aligned for mapping
328 					 * into user mode
329 					 */
330 	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
331 					 * doorbell BAR to the first KFD
332 					 * doorbell in dwords. GFX reserves
333 					 * the segment before this offset.
334 					 */
335 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
336 					   * page used by kernel queue
337 					   */
338 
339 	struct kgd2kfd_shared_resources shared_resources;
340 
341 	const struct kfd2kgd_calls *kfd2kgd;
342 	struct mutex doorbell_mutex;
343 	DECLARE_BITMAP(doorbell_available_index,
344 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
345 
346 	void *gtt_mem;
347 	uint64_t gtt_start_gpu_addr;
348 	void *gtt_start_cpu_ptr;
349 	void *gtt_sa_bitmap;
350 	struct mutex gtt_sa_lock;
351 	unsigned int gtt_sa_chunk_size;
352 	unsigned int gtt_sa_num_of_chunks;
353 
354 	bool init_complete;
355 
356 	/* Firmware versions */
357 	uint16_t mec_fw_version;
358 	uint16_t mec2_fw_version;
359 	uint16_t sdma_fw_version;
360 
361 	/* CWSR */
362 	bool cwsr_enabled;
363 	const void *cwsr_isa;
364 	unsigned int cwsr_isa_size;
365 
366 	/* xGMI */
367 	uint64_t hive_id;
368 
369 	bool pci_atomic_requested;
370 
371 	/* Use IOMMU v2 flag */
372 	bool use_iommu_v2;
373 
374 	/* Compute Profile ref. count */
375 	atomic_t compute_profile;
376 
377 	struct ida doorbell_ida;
378 	unsigned int max_doorbell_slices;
379 
380 	int noretry;
381 
382 	struct kfd_node *nodes[MAX_KFD_NODES];
383 	unsigned int num_nodes;
384 
385 	/* Track per device allocated watch points */
386 	uint32_t alloc_watch_ids;
387 	spinlock_t watch_points_lock;
388 
389 	/* Kernel doorbells for KFD device */
390 	struct amdgpu_bo *doorbells;
391 
392 	/* bitmap for dynamic doorbell allocation from doorbell object */
393 	unsigned long *doorbell_bitmap;
394 };
395 
396 enum kfd_mempool {
397 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
398 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
399 	KFD_MEMPOOL_FRAMEBUFFER = 3,
400 };
401 
402 /* Character device interface */
403 int kfd_chardev_init(void);
404 void kfd_chardev_exit(void);
405 
406 /**
407  * enum kfd_unmap_queues_filter - Enum for queue filters.
408  *
409  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
410  *						running queues list.
411  *
412  * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues
413  *						in the run list.
414  *
415  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
416  *						specific process.
417  *
418  */
419 enum kfd_unmap_queues_filter {
420 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1,
421 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2,
422 	KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3
423 };
424 
425 /**
426  * enum kfd_queue_type - Enum for various queue types.
427  *
428  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
429  *
430  * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
431  *
432  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
433  *
434  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
435  *
436  * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
437  */
438 enum kfd_queue_type  {
439 	KFD_QUEUE_TYPE_COMPUTE,
440 	KFD_QUEUE_TYPE_SDMA,
441 	KFD_QUEUE_TYPE_HIQ,
442 	KFD_QUEUE_TYPE_DIQ,
443 	KFD_QUEUE_TYPE_SDMA_XGMI
444 };
445 
446 enum kfd_queue_format {
447 	KFD_QUEUE_FORMAT_PM4,
448 	KFD_QUEUE_FORMAT_AQL
449 };
450 
451 enum KFD_QUEUE_PRIORITY {
452 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
453 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
454 };
455 
456 /**
457  * struct queue_properties
458  *
459  * @type: The queue type.
460  *
461  * @queue_id: Queue identifier.
462  *
463  * @queue_address: Queue ring buffer address.
464  *
465  * @queue_size: Queue ring buffer size.
466  *
467  * @priority: Defines the queue priority relative to other queues in the
468  * process.
469  * This is just an indication and HW scheduling may override the priority as
470  * necessary while keeping the relative prioritization.
471  * the priority granularity is from 0 to f which f is the highest priority.
472  * currently all queues are initialized with the highest priority.
473  *
474  * @queue_percent: This field is partially implemented and currently a zero in
475  * this field defines that the queue is non active.
476  *
477  * @read_ptr: User space address which points to the number of dwords the
478  * cp read from the ring buffer. This field updates automatically by the H/W.
479  *
480  * @write_ptr: Defines the number of dwords written to the ring buffer.
481  *
482  * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
483  * buffer. This field should be similar to write_ptr and the user should
484  * update this field after updating the write_ptr.
485  *
486  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
487  *
488  * @is_interop: Defines if this is a interop queue. Interop queue means that
489  * the queue can access both graphics and compute resources.
490  *
491  * @is_evicted: Defines if the queue is evicted. Only active queues
492  * are evicted, rendering them inactive.
493  *
494  * @is_active: Defines if the queue is active or not. @is_active and
495  * @is_evicted are protected by the DQM lock.
496  *
497  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
498  * @is_gws should be protected by the DQM lock, since changing it can yield the
499  * possibility of updating DQM state on number of GWS queues.
500  *
501  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
502  * of the queue.
503  *
504  * This structure represents the queue properties for each queue no matter if
505  * it's user mode or kernel mode queue.
506  *
507  */
508 
509 struct queue_properties {
510 	enum kfd_queue_type type;
511 	enum kfd_queue_format format;
512 	unsigned int queue_id;
513 	uint64_t queue_address;
514 	uint64_t  queue_size;
515 	uint32_t priority;
516 	uint32_t queue_percent;
517 	uint32_t *read_ptr;
518 	uint32_t *write_ptr;
519 	void __iomem *doorbell_ptr;
520 	uint32_t doorbell_off;
521 	bool is_interop;
522 	bool is_evicted;
523 	bool is_suspended;
524 	bool is_being_destroyed;
525 	bool is_active;
526 	bool is_gws;
527 	uint32_t pm4_target_xcc;
528 	bool is_dbg_wa;
529 	bool is_user_cu_masked;
530 	/* Not relevant for user mode queues in cp scheduling */
531 	unsigned int vmid;
532 	/* Relevant only for sdma queues*/
533 	uint32_t sdma_engine_id;
534 	uint32_t sdma_queue_id;
535 	uint32_t sdma_vm_addr;
536 	/* Relevant only for VI */
537 	uint64_t eop_ring_buffer_address;
538 	uint32_t eop_ring_buffer_size;
539 	uint64_t ctx_save_restore_area_address;
540 	uint32_t ctx_save_restore_area_size;
541 	uint32_t ctl_stack_size;
542 	uint64_t tba_addr;
543 	uint64_t tma_addr;
544 	uint64_t exception_status;
545 };
546 
547 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
548 			    (q).queue_address != 0 &&	\
549 			    (q).queue_percent > 0 &&	\
550 			    !(q).is_evicted &&		\
551 			    !(q).is_suspended)
552 
553 enum mqd_update_flag {
554 	UPDATE_FLAG_DBG_WA_ENABLE = 1,
555 	UPDATE_FLAG_DBG_WA_DISABLE = 2,
556 };
557 
558 struct mqd_update_info {
559 	union {
560 		struct {
561 			uint32_t count; /* Must be a multiple of 32 */
562 			uint32_t *ptr;
563 		} cu_mask;
564 	};
565 	enum mqd_update_flag update_flag;
566 };
567 
568 /**
569  * struct queue
570  *
571  * @list: Queue linked list.
572  *
573  * @mqd: The queue MQD (memory queue descriptor).
574  *
575  * @mqd_mem_obj: The MQD local gpu memory object.
576  *
577  * @gart_mqd_addr: The MQD gart mc address.
578  *
579  * @properties: The queue properties.
580  *
581  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
582  *	 that the queue should be executed on.
583  *
584  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
585  *	  id.
586  *
587  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
588  *
589  * @process: The kfd process that created this queue.
590  *
591  * @device: The kfd device that created this queue.
592  *
593  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
594  * otherwise.
595  *
596  * This structure represents user mode compute queues.
597  * It contains all the necessary data to handle such queues.
598  *
599  */
600 
601 struct queue {
602 	struct list_head list;
603 	void *mqd;
604 	struct kfd_mem_obj *mqd_mem_obj;
605 	uint64_t gart_mqd_addr;
606 	struct queue_properties properties;
607 
608 	uint32_t mec;
609 	uint32_t pipe;
610 	uint32_t queue;
611 
612 	unsigned int sdma_id;
613 	unsigned int doorbell_id;
614 
615 	struct kfd_process	*process;
616 	struct kfd_node		*device;
617 	void *gws;
618 
619 	/* procfs */
620 	struct kobject kobj;
621 
622 	void *gang_ctx_bo;
623 	uint64_t gang_ctx_gpu_addr;
624 	void *gang_ctx_cpu_ptr;
625 
626 	struct amdgpu_bo *wptr_bo;
627 };
628 
629 enum KFD_MQD_TYPE {
630 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
631 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
632 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
633 	KFD_MQD_TYPE_DIQ,		/* for diq */
634 	KFD_MQD_TYPE_MAX
635 };
636 
637 enum KFD_PIPE_PRIORITY {
638 	KFD_PIPE_PRIORITY_CS_LOW = 0,
639 	KFD_PIPE_PRIORITY_CS_MEDIUM,
640 	KFD_PIPE_PRIORITY_CS_HIGH
641 };
642 
643 struct scheduling_resources {
644 	unsigned int vmid_mask;
645 	enum kfd_queue_type type;
646 	uint64_t queue_mask;
647 	uint64_t gws_mask;
648 	uint32_t oac_mask;
649 	uint32_t gds_heap_base;
650 	uint32_t gds_heap_size;
651 };
652 
653 struct process_queue_manager {
654 	/* data */
655 	struct kfd_process	*process;
656 	struct list_head	queues;
657 	unsigned long		*queue_slot_bitmap;
658 };
659 
660 struct qcm_process_device {
661 	/* The Device Queue Manager that owns this data */
662 	struct device_queue_manager *dqm;
663 	struct process_queue_manager *pqm;
664 	/* Queues list */
665 	struct list_head queues_list;
666 	struct list_head priv_queue_list;
667 
668 	unsigned int queue_count;
669 	unsigned int vmid;
670 	bool is_debug;
671 	unsigned int evicted; /* eviction counter, 0=active */
672 
673 	/* This flag tells if we should reset all wavefronts on
674 	 * process termination
675 	 */
676 	bool reset_wavefronts;
677 
678 	/* This flag tells us if this process has a GWS-capable
679 	 * queue that will be mapped into the runlist. It's
680 	 * possible to request a GWS BO, but not have the queue
681 	 * currently mapped, and this changes how the MAP_PROCESS
682 	 * PM4 packet is configured.
683 	 */
684 	bool mapped_gws_queue;
685 
686 	/* All the memory management data should be here too */
687 	uint64_t gds_context_area;
688 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
689 	uint64_t page_table_base;
690 	uint32_t sh_mem_config;
691 	uint32_t sh_mem_bases;
692 	uint32_t sh_mem_ape1_base;
693 	uint32_t sh_mem_ape1_limit;
694 	uint32_t gds_size;
695 	uint32_t num_gws;
696 	uint32_t num_oac;
697 	uint32_t sh_hidden_private_base;
698 
699 	/* CWSR memory */
700 	struct kgd_mem *cwsr_mem;
701 	void *cwsr_kaddr;
702 	uint64_t cwsr_base;
703 	uint64_t tba_addr;
704 	uint64_t tma_addr;
705 
706 	/* IB memory */
707 	struct kgd_mem *ib_mem;
708 	uint64_t ib_base;
709 	void *ib_kaddr;
710 
711 	/* doorbells for kfd process */
712 	struct amdgpu_bo *proc_doorbells;
713 
714 	/* bitmap for dynamic doorbell allocation from the bo */
715 	unsigned long *doorbell_bitmap;
716 };
717 
718 /* KFD Memory Eviction */
719 
720 /* Approx. wait time before attempting to restore evicted BOs */
721 #define PROCESS_RESTORE_TIME_MS 100
722 /* Approx. back off time if restore fails due to lack of memory */
723 #define PROCESS_BACK_OFF_TIME_MS 100
724 /* Approx. time before evicting the process again */
725 #define PROCESS_ACTIVE_TIME_MS 10
726 
727 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
728  * idr_handle in the least significant 4 bytes
729  */
730 #define MAKE_HANDLE(gpu_id, idr_handle) \
731 	(((uint64_t)(gpu_id) << 32) + idr_handle)
732 #define GET_GPU_ID(handle) (handle >> 32)
733 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
734 
735 enum kfd_pdd_bound {
736 	PDD_UNBOUND = 0,
737 	PDD_BOUND,
738 	PDD_BOUND_SUSPENDED,
739 };
740 
741 #define MAX_SYSFS_FILENAME_LEN 15
742 
743 /*
744  * SDMA counter runs at 100MHz frequency.
745  * We display SDMA activity in microsecond granularity in sysfs.
746  * As a result, the divisor is 100.
747  */
748 #define SDMA_ACTIVITY_DIVISOR  100
749 
750 /* Data that is per-process-per device. */
751 struct kfd_process_device {
752 	/* The device that owns this data. */
753 	struct kfd_node *dev;
754 
755 	/* The process that owns this kfd_process_device. */
756 	struct kfd_process *process;
757 
758 	/* per-process-per device QCM data structure */
759 	struct qcm_process_device qpd;
760 
761 	/*Apertures*/
762 	uint64_t lds_base;
763 	uint64_t lds_limit;
764 	uint64_t gpuvm_base;
765 	uint64_t gpuvm_limit;
766 	uint64_t scratch_base;
767 	uint64_t scratch_limit;
768 
769 	/* VM context for GPUVM allocations */
770 	struct file *drm_file;
771 	void *drm_priv;
772 	atomic64_t tlb_seq;
773 
774 	/* GPUVM allocations storage */
775 	struct idr alloc_idr;
776 
777 	/* Flag used to tell the pdd has dequeued from the dqm.
778 	 * This is used to prevent dev->dqm->ops.process_termination() from
779 	 * being called twice when it is already called in IOMMU callback
780 	 * function.
781 	 */
782 	bool already_dequeued;
783 	bool runtime_inuse;
784 
785 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
786 	enum kfd_pdd_bound bound;
787 
788 	/* VRAM usage */
789 	uint64_t vram_usage;
790 	struct attribute attr_vram;
791 	char vram_filename[MAX_SYSFS_FILENAME_LEN];
792 
793 	/* SDMA activity tracking */
794 	uint64_t sdma_past_activity_counter;
795 	struct attribute attr_sdma;
796 	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
797 
798 	/* Eviction activity tracking */
799 	uint64_t last_evict_timestamp;
800 	atomic64_t evict_duration_counter;
801 	struct attribute attr_evict;
802 
803 	struct kobject *kobj_stats;
804 	unsigned int doorbell_index;
805 
806 	/*
807 	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
808 	 * that is associated with device encoded by "this" struct instance. The
809 	 * value reflects CU usage by all of the waves launched by this process
810 	 * on this device. A very important property of occupancy parameter is
811 	 * that its value is a snapshot of current use.
812 	 *
813 	 * Following is to be noted regarding how this parameter is reported:
814 	 *
815 	 *  The number of waves that a CU can launch is limited by couple of
816 	 *  parameters. These are encoded by struct amdgpu_cu_info instance
817 	 *  that is part of every device definition. For GFX9 devices this
818 	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
819 	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
820 	 *  when they do use scratch memory. This could change for future
821 	 *  devices and therefore this example should be considered as a guide.
822 	 *
823 	 *  All CU's of a device are available for the process. This may not be true
824 	 *  under certain conditions - e.g. CU masking.
825 	 *
826 	 *  Finally number of CU's that are occupied by a process is affected by both
827 	 *  number of CU's a device has along with number of other competing processes
828 	 */
829 	struct attribute attr_cu_occupancy;
830 
831 	/* sysfs counters for GPU retry fault and page migration tracking */
832 	struct kobject *kobj_counters;
833 	struct attribute attr_faults;
834 	struct attribute attr_page_in;
835 	struct attribute attr_page_out;
836 	uint64_t faults;
837 	uint64_t page_in;
838 	uint64_t page_out;
839 
840 	/* Exception code status*/
841 	uint64_t exception_status;
842 	void *vm_fault_exc_data;
843 	size_t vm_fault_exc_data_size;
844 
845 	/* Tracks debug per-vmid request settings */
846 	uint32_t spi_dbg_override;
847 	uint32_t spi_dbg_launch_mode;
848 	uint32_t watch_points[4];
849 	uint32_t alloc_watch_ids;
850 
851 	/*
852 	 * If this process has been checkpointed before, then the user
853 	 * application will use the original gpu_id on the
854 	 * checkpointed node to refer to this device.
855 	 */
856 	uint32_t user_gpu_id;
857 
858 	void *proc_ctx_bo;
859 	uint64_t proc_ctx_gpu_addr;
860 	void *proc_ctx_cpu_ptr;
861 };
862 
863 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
864 
865 struct svm_range_list {
866 	struct mutex			lock;
867 	struct rb_root_cached		objects;
868 	struct list_head		list;
869 	struct work_struct		deferred_list_work;
870 	struct list_head		deferred_range_list;
871 	struct list_head                criu_svm_metadata_list;
872 	spinlock_t			deferred_list_lock;
873 	atomic_t			evicted_ranges;
874 	atomic_t			drain_pagefaults;
875 	struct delayed_work		restore_work;
876 	DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
877 	struct task_struct		*faulting_task;
878 };
879 
880 /* Process data */
881 struct kfd_process {
882 	/*
883 	 * kfd_process are stored in an mm_struct*->kfd_process*
884 	 * hash table (kfd_processes in kfd_process.c)
885 	 */
886 	struct hlist_node kfd_processes;
887 
888 	/*
889 	 * Opaque pointer to mm_struct. We don't hold a reference to
890 	 * it so it should never be dereferenced from here. This is
891 	 * only used for looking up processes by their mm.
892 	 */
893 	void *mm;
894 
895 	struct kref ref;
896 	struct work_struct release_work;
897 
898 	struct mutex mutex;
899 
900 	/*
901 	 * In any process, the thread that started main() is the lead
902 	 * thread and outlives the rest.
903 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
904 	 * It can also be used for safely getting a reference to the
905 	 * mm_struct of the process.
906 	 */
907 	struct task_struct *lead_thread;
908 
909 	/* We want to receive a notification when the mm_struct is destroyed */
910 	struct mmu_notifier mmu_notifier;
911 
912 	u32 pasid;
913 
914 	/*
915 	 * Array of kfd_process_device pointers,
916 	 * one for each device the process is using.
917 	 */
918 	struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
919 	uint32_t n_pdds;
920 
921 	struct process_queue_manager pqm;
922 
923 	/*Is the user space process 32 bit?*/
924 	bool is_32bit_user_mode;
925 
926 	/* Event-related data */
927 	struct mutex event_mutex;
928 	/* Event ID allocator and lookup */
929 	struct idr event_idr;
930 	/* Event page */
931 	u64 signal_handle;
932 	struct kfd_signal_page *signal_page;
933 	size_t signal_mapped_size;
934 	size_t signal_event_count;
935 	bool signal_event_limit_reached;
936 
937 	/* Information used for memory eviction */
938 	void *kgd_process_info;
939 	/* Eviction fence that is attached to all the BOs of this process. The
940 	 * fence will be triggered during eviction and new one will be created
941 	 * during restore
942 	 */
943 	struct dma_fence *ef;
944 
945 	/* Work items for evicting and restoring BOs */
946 	struct delayed_work eviction_work;
947 	struct delayed_work restore_work;
948 	/* seqno of the last scheduled eviction */
949 	unsigned int last_eviction_seqno;
950 	/* Approx. the last timestamp (in jiffies) when the process was
951 	 * restored after an eviction
952 	 */
953 	unsigned long last_restore_timestamp;
954 
955 	/* Indicates device process is debug attached with reserved vmid. */
956 	bool debug_trap_enabled;
957 
958 	/* per-process-per device debug event fd file */
959 	struct file *dbg_ev_file;
960 
961 	/* If the process is a kfd debugger, we need to know so we can clean
962 	 * up at exit time.  If a process enables debugging on itself, it does
963 	 * its own clean-up, so we don't set the flag here.  We track this by
964 	 * counting the number of processes this process is debugging.
965 	 */
966 	atomic_t debugged_process_count;
967 
968 	/* If the process is a debugged, this is the debugger process */
969 	struct kfd_process *debugger_process;
970 
971 	/* Kobj for our procfs */
972 	struct kobject *kobj;
973 	struct kobject *kobj_queues;
974 	struct attribute attr_pasid;
975 
976 	/* Keep track cwsr init */
977 	bool has_cwsr;
978 
979 	/* Exception code enable mask and status */
980 	uint64_t exception_enable_mask;
981 	uint64_t exception_status;
982 
983 	/* Used to drain stale interrupts */
984 	wait_queue_head_t wait_irq_drain;
985 	bool irq_drain_is_open;
986 
987 	/* shared virtual memory registered by this process */
988 	struct svm_range_list svms;
989 
990 	bool xnack_enabled;
991 
992 	/* Work area for debugger event writer worker. */
993 	struct work_struct debug_event_workarea;
994 
995 	/* Tracks debug per-vmid request for debug flags */
996 	bool dbg_flags;
997 
998 	atomic_t poison;
999 	/* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */
1000 	bool queues_paused;
1001 
1002 	/* Tracks runtime enable status */
1003 	struct semaphore runtime_enable_sema;
1004 	bool is_runtime_retry;
1005 	struct kfd_runtime_info runtime_info;
1006 };
1007 
1008 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
1009 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
1010 extern struct srcu_struct kfd_processes_srcu;
1011 
1012 /**
1013  * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
1014  *
1015  * @filep: pointer to file structure.
1016  * @p: amdkfd process pointer.
1017  * @data: pointer to arg that was copied from user.
1018  *
1019  * Return: returns ioctl completion code.
1020  */
1021 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
1022 				void *data);
1023 
1024 struct amdkfd_ioctl_desc {
1025 	unsigned int cmd;
1026 	int flags;
1027 	amdkfd_ioctl_t *func;
1028 	unsigned int cmd_drv;
1029 	const char *name;
1030 };
1031 bool kfd_dev_is_large_bar(struct kfd_node *dev);
1032 
1033 int kfd_process_create_wq(void);
1034 void kfd_process_destroy_wq(void);
1035 void kfd_cleanup_processes(void);
1036 struct kfd_process *kfd_create_process(struct task_struct *thread);
1037 struct kfd_process *kfd_get_process(const struct task_struct *task);
1038 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
1039 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
1040 
1041 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
1042 int kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1043 				uint32_t *gpuid, uint32_t *gpuidx);
1044 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
1045 				uint32_t gpuidx, uint32_t *gpuid) {
1046 	return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
1047 }
1048 static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
1049 				struct kfd_process *p, uint32_t gpuidx) {
1050 	return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
1051 }
1052 
1053 void kfd_unref_process(struct kfd_process *p);
1054 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger);
1055 int kfd_process_restore_queues(struct kfd_process *p);
1056 void kfd_suspend_all_processes(void);
1057 int kfd_resume_all_processes(void);
1058 
1059 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process,
1060 							 uint32_t gpu_id);
1061 
1062 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id);
1063 
1064 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1065 			       struct file *drm_file);
1066 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1067 						struct kfd_process *p);
1068 struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1069 							struct kfd_process *p);
1070 struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1071 							struct kfd_process *p);
1072 
1073 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
1074 
1075 int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
1076 			  struct vm_area_struct *vma);
1077 
1078 /* KFD process API for creating and translating handles */
1079 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1080 					void *mem);
1081 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
1082 					int handle);
1083 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1084 					int handle);
1085 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid);
1086 
1087 /* PASIDs */
1088 int kfd_pasid_init(void);
1089 void kfd_pasid_exit(void);
1090 bool kfd_set_pasid_limit(unsigned int new_limit);
1091 unsigned int kfd_get_pasid_limit(void);
1092 u32 kfd_pasid_alloc(void);
1093 void kfd_pasid_free(u32 pasid);
1094 
1095 /* Doorbells */
1096 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
1097 int kfd_doorbell_init(struct kfd_dev *kfd);
1098 void kfd_doorbell_fini(struct kfd_dev *kfd);
1099 int kfd_doorbell_mmap(struct kfd_node *dev, struct kfd_process *process,
1100 		      struct vm_area_struct *vma);
1101 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
1102 					unsigned int *doorbell_off);
1103 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
1104 u32 read_kernel_doorbell(u32 __iomem *db);
1105 void write_kernel_doorbell(void __iomem *db, u32 value);
1106 void write_kernel_doorbell64(void __iomem *db, u64 value);
1107 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
1108 					struct kfd_process_device *pdd,
1109 					unsigned int doorbell_id);
1110 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
1111 int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
1112 				struct kfd_process_device *pdd);
1113 void kfd_free_process_doorbells(struct kfd_dev *kfd,
1114 				struct kfd_process_device *pdd);
1115 /* GTT Sub-Allocator */
1116 
1117 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1118 			struct kfd_mem_obj **mem_obj);
1119 
1120 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj);
1121 
1122 extern struct device *kfd_device;
1123 
1124 /* KFD's procfs */
1125 void kfd_procfs_init(void);
1126 void kfd_procfs_shutdown(void);
1127 int kfd_procfs_add_queue(struct queue *q);
1128 void kfd_procfs_del_queue(struct queue *q);
1129 
1130 /* Topology */
1131 int kfd_topology_init(void);
1132 void kfd_topology_shutdown(void);
1133 int kfd_topology_add_device(struct kfd_node *gpu);
1134 int kfd_topology_remove_device(struct kfd_node *gpu);
1135 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
1136 						uint32_t proximity_domain);
1137 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
1138 						uint32_t proximity_domain);
1139 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
1140 struct kfd_node *kfd_device_by_id(uint32_t gpu_id);
1141 struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev);
1142 static inline bool kfd_irq_is_from_node(struct kfd_node *node, uint32_t node_id,
1143 					uint32_t vmid)
1144 {
1145 	return (node->interrupt_bitmap & (1 << node_id)) != 0 &&
1146 	       (node->compute_vmid_bitmap & (1 << vmid)) != 0;
1147 }
1148 static inline struct kfd_node *kfd_node_by_irq_ids(struct amdgpu_device *adev,
1149 					uint32_t node_id, uint32_t vmid) {
1150 	struct kfd_dev *dev = adev->kfd.dev;
1151 	uint32_t i;
1152 
1153 	if (adev->ip_versions[GC_HWIP][0] != IP_VERSION(9, 4, 3))
1154 		return dev->nodes[0];
1155 
1156 	for (i = 0; i < dev->num_nodes; i++)
1157 		if (kfd_irq_is_from_node(dev->nodes[i], node_id, vmid))
1158 			return dev->nodes[i];
1159 
1160 	return NULL;
1161 }
1162 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev);
1163 int kfd_numa_node_to_apic_id(int numa_node_id);
1164 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
1165 
1166 /* Interrupts */
1167 #define	KFD_IRQ_FENCE_CLIENTID	0xff
1168 #define	KFD_IRQ_FENCE_SOURCEID	0xff
1169 #define	KFD_IRQ_IS_FENCE(client, source)				\
1170 				((client) == KFD_IRQ_FENCE_CLIENTID &&	\
1171 				(source) == KFD_IRQ_FENCE_SOURCEID)
1172 int kfd_interrupt_init(struct kfd_node *dev);
1173 void kfd_interrupt_exit(struct kfd_node *dev);
1174 bool enqueue_ih_ring_entry(struct kfd_node *kfd, const void *ih_ring_entry);
1175 bool interrupt_is_wanted(struct kfd_node *dev,
1176 				const uint32_t *ih_ring_entry,
1177 				uint32_t *patched_ihre, bool *flag);
1178 int kfd_process_drain_interrupts(struct kfd_process_device *pdd);
1179 void kfd_process_close_interrupt_drain(unsigned int pasid);
1180 
1181 /* amdkfd Apertures */
1182 int kfd_init_apertures(struct kfd_process *process);
1183 
1184 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1185 				  uint64_t tba_addr,
1186 				  uint64_t tma_addr);
1187 void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1188 				     bool enabled);
1189 
1190 /* CWSR initialization */
1191 int kfd_process_init_cwsr_apu(struct kfd_process *process, struct file *filep);
1192 
1193 /* CRIU */
1194 /*
1195  * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private
1196  * structures:
1197  * kfd_criu_process_priv_data
1198  * kfd_criu_device_priv_data
1199  * kfd_criu_bo_priv_data
1200  * kfd_criu_queue_priv_data
1201  * kfd_criu_event_priv_data
1202  * kfd_criu_svm_range_priv_data
1203  */
1204 
1205 #define KFD_CRIU_PRIV_VERSION 1
1206 
1207 struct kfd_criu_process_priv_data {
1208 	uint32_t version;
1209 	uint32_t xnack_mode;
1210 };
1211 
1212 struct kfd_criu_device_priv_data {
1213 	/* For future use */
1214 	uint64_t reserved;
1215 };
1216 
1217 struct kfd_criu_bo_priv_data {
1218 	uint64_t user_addr;
1219 	uint32_t idr_handle;
1220 	uint32_t mapped_gpuids[MAX_GPU_INSTANCE];
1221 };
1222 
1223 /*
1224  * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data,
1225  * kfd_criu_svm_range_priv_data is the object type
1226  */
1227 enum kfd_criu_object_type {
1228 	KFD_CRIU_OBJECT_TYPE_QUEUE,
1229 	KFD_CRIU_OBJECT_TYPE_EVENT,
1230 	KFD_CRIU_OBJECT_TYPE_SVM_RANGE,
1231 };
1232 
1233 struct kfd_criu_svm_range_priv_data {
1234 	uint32_t object_type;
1235 	uint64_t start_addr;
1236 	uint64_t size;
1237 	/* Variable length array of attributes */
1238 	struct kfd_ioctl_svm_attribute attrs[];
1239 };
1240 
1241 struct kfd_criu_queue_priv_data {
1242 	uint32_t object_type;
1243 	uint64_t q_address;
1244 	uint64_t q_size;
1245 	uint64_t read_ptr_addr;
1246 	uint64_t write_ptr_addr;
1247 	uint64_t doorbell_off;
1248 	uint64_t eop_ring_buffer_address;
1249 	uint64_t ctx_save_restore_area_address;
1250 	uint32_t gpu_id;
1251 	uint32_t type;
1252 	uint32_t format;
1253 	uint32_t q_id;
1254 	uint32_t priority;
1255 	uint32_t q_percent;
1256 	uint32_t doorbell_id;
1257 	uint32_t gws;
1258 	uint32_t sdma_id;
1259 	uint32_t eop_ring_buffer_size;
1260 	uint32_t ctx_save_restore_area_size;
1261 	uint32_t ctl_stack_size;
1262 	uint32_t mqd_size;
1263 };
1264 
1265 struct kfd_criu_event_priv_data {
1266 	uint32_t object_type;
1267 	uint64_t user_handle;
1268 	uint32_t event_id;
1269 	uint32_t auto_reset;
1270 	uint32_t type;
1271 	uint32_t signaled;
1272 
1273 	union {
1274 		struct kfd_hsa_memory_exception_data memory_exception_data;
1275 		struct kfd_hsa_hw_exception_data hw_exception_data;
1276 	};
1277 };
1278 
1279 int kfd_process_get_queue_info(struct kfd_process *p,
1280 			       uint32_t *num_queues,
1281 			       uint64_t *priv_data_sizes);
1282 
1283 int kfd_criu_checkpoint_queues(struct kfd_process *p,
1284 			 uint8_t __user *user_priv_data,
1285 			 uint64_t *priv_data_offset);
1286 
1287 int kfd_criu_restore_queue(struct kfd_process *p,
1288 			   uint8_t __user *user_priv_data,
1289 			   uint64_t *priv_data_offset,
1290 			   uint64_t max_priv_data_size);
1291 
1292 int kfd_criu_checkpoint_events(struct kfd_process *p,
1293 			 uint8_t __user *user_priv_data,
1294 			 uint64_t *priv_data_offset);
1295 
1296 int kfd_criu_restore_event(struct file *devkfd,
1297 			   struct kfd_process *p,
1298 			   uint8_t __user *user_priv_data,
1299 			   uint64_t *priv_data_offset,
1300 			   uint64_t max_priv_data_size);
1301 /* CRIU - End */
1302 
1303 /* Queue Context Management */
1304 int init_queue(struct queue **q, const struct queue_properties *properties);
1305 void uninit_queue(struct queue *q);
1306 void print_queue_properties(struct queue_properties *q);
1307 void print_queue(struct queue *q);
1308 
1309 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
1310 		struct kfd_node *dev);
1311 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
1312 		struct kfd_node *dev);
1313 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1314 		struct kfd_node *dev);
1315 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
1316 		struct kfd_node *dev);
1317 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1318 		struct kfd_node *dev);
1319 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1320 		struct kfd_node *dev);
1321 struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type,
1322 		struct kfd_node *dev);
1323 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev);
1324 void device_queue_manager_uninit(struct device_queue_manager *dqm);
1325 struct kernel_queue *kernel_queue_init(struct kfd_node *dev,
1326 					enum kfd_queue_type type);
1327 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
1328 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid);
1329 
1330 /* Process Queue Manager */
1331 struct process_queue_node {
1332 	struct queue *q;
1333 	struct kernel_queue *kq;
1334 	struct list_head process_queue_list;
1335 };
1336 
1337 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1338 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1339 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1340 void pqm_uninit(struct process_queue_manager *pqm);
1341 int pqm_create_queue(struct process_queue_manager *pqm,
1342 			    struct kfd_node *dev,
1343 			    struct file *f,
1344 			    struct queue_properties *properties,
1345 			    unsigned int *qid,
1346 			    struct amdgpu_bo *wptr_bo,
1347 			    const struct kfd_criu_queue_priv_data *q_data,
1348 			    const void *restore_mqd,
1349 			    const void *restore_ctl_stack,
1350 			    uint32_t *p_doorbell_offset_in_process);
1351 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1352 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid,
1353 			struct queue_properties *p);
1354 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid,
1355 			struct mqd_update_info *minfo);
1356 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1357 			void *gws);
1358 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1359 						unsigned int qid);
1360 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1361 						unsigned int qid);
1362 int pqm_get_wave_state(struct process_queue_manager *pqm,
1363 		       unsigned int qid,
1364 		       void __user *ctl_stack,
1365 		       u32 *ctl_stack_used_size,
1366 		       u32 *save_area_used_size);
1367 int pqm_get_queue_snapshot(struct process_queue_manager *pqm,
1368 			   uint64_t exception_clear_mask,
1369 			   void __user *buf,
1370 			   int *num_qss_entries,
1371 			   uint32_t *entry_size);
1372 
1373 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1374 			      uint64_t fence_value,
1375 			      unsigned int timeout_ms);
1376 
1377 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
1378 				  unsigned int qid,
1379 				  u32 *mqd_size,
1380 				  u32 *ctl_stack_size);
1381 /* Packet Manager */
1382 
1383 #define KFD_FENCE_COMPLETED (100)
1384 #define KFD_FENCE_INIT   (10)
1385 
1386 struct packet_manager {
1387 	struct device_queue_manager *dqm;
1388 	struct kernel_queue *priv_queue;
1389 	struct mutex lock;
1390 	bool allocated;
1391 	struct kfd_mem_obj *ib_buffer_obj;
1392 	unsigned int ib_size_bytes;
1393 	bool is_over_subscription;
1394 
1395 	const struct packet_manager_funcs *pmf;
1396 };
1397 
1398 struct packet_manager_funcs {
1399 	/* Support ASIC-specific packet formats for PM4 packets */
1400 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1401 			struct qcm_process_device *qpd);
1402 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1403 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1404 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1405 			struct scheduling_resources *res);
1406 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1407 			struct queue *q, bool is_static);
1408 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1409 			enum kfd_unmap_queues_filter mode,
1410 			uint32_t filter_param, bool reset);
1411 	int (*set_grace_period)(struct packet_manager *pm, uint32_t *buffer,
1412 			uint32_t grace_period);
1413 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1414 			uint64_t fence_address,	uint64_t fence_value);
1415 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1416 
1417 	/* Packet sizes */
1418 	int map_process_size;
1419 	int runlist_size;
1420 	int set_resources_size;
1421 	int map_queues_size;
1422 	int unmap_queues_size;
1423 	int set_grace_period_size;
1424 	int query_status_size;
1425 	int release_mem_size;
1426 };
1427 
1428 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1429 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1430 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1431 
1432 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1433 void pm_uninit(struct packet_manager *pm, bool hanging);
1434 int pm_send_set_resources(struct packet_manager *pm,
1435 				struct scheduling_resources *res);
1436 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1437 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1438 				uint64_t fence_value);
1439 
1440 int pm_send_unmap_queue(struct packet_manager *pm,
1441 			enum kfd_unmap_queues_filter mode,
1442 			uint32_t filter_param, bool reset);
1443 
1444 void pm_release_ib(struct packet_manager *pm);
1445 
1446 int pm_update_grace_period(struct packet_manager *pm, uint32_t grace_period);
1447 
1448 /* Following PM funcs can be shared among VI and AI */
1449 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1450 
1451 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1452 
1453 /* Events */
1454 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1455 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1456 extern const struct kfd_event_interrupt_class event_interrupt_class_v9_4_3;
1457 extern const struct kfd_event_interrupt_class event_interrupt_class_v10;
1458 extern const struct kfd_event_interrupt_class event_interrupt_class_v11;
1459 
1460 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1461 
1462 int kfd_event_init_process(struct kfd_process *p);
1463 void kfd_event_free_process(struct kfd_process *p);
1464 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1465 int kfd_wait_on_events(struct kfd_process *p,
1466 		       uint32_t num_events, void __user *data,
1467 		       bool all, uint32_t *user_timeout_ms,
1468 		       uint32_t *wait_result);
1469 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1470 				uint32_t valid_id_bits);
1471 void kfd_signal_iommu_event(struct kfd_node *dev,
1472 			    u32 pasid, unsigned long address,
1473 			    bool is_write_requested, bool is_execute_requested);
1474 void kfd_signal_hw_exception_event(u32 pasid);
1475 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1476 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1477 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset);
1478 
1479 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1480 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1481 		     uint32_t *event_id, uint32_t *event_trigger_data,
1482 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1483 
1484 int kfd_get_num_events(struct kfd_process *p);
1485 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1486 
1487 void kfd_signal_vm_fault_event(struct kfd_node *dev, u32 pasid,
1488 				struct kfd_vm_fault_info *info,
1489 				struct kfd_hsa_memory_exception_data *data);
1490 
1491 void kfd_signal_reset_event(struct kfd_node *dev);
1492 
1493 void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid);
1494 
1495 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type);
1496 
1497 static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev)
1498 {
1499 	return KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3) ||
1500 	       KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2) ||
1501 	       (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) && dev->sdma_fw_version >= 18) ||
1502 	       KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0);
1503 }
1504 
1505 int kfd_send_exception_to_runtime(struct kfd_process *p,
1506 				unsigned int queue_id,
1507 				uint64_t error_reason);
1508 bool kfd_is_locked(void);
1509 
1510 /* Compute profile */
1511 void kfd_inc_compute_active(struct kfd_node *dev);
1512 void kfd_dec_compute_active(struct kfd_node *dev);
1513 
1514 /* Cgroup Support */
1515 /* Check with device cgroup if @kfd device is accessible */
1516 static inline int kfd_devcgroup_check_permission(struct kfd_node *kfd)
1517 {
1518 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1519 	struct drm_device *ddev = adev_to_drm(kfd->adev);
1520 
1521 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1522 					  ddev->render->index,
1523 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1524 #else
1525 	return 0;
1526 #endif
1527 }
1528 
1529 static inline bool kfd_is_first_node(struct kfd_node *node)
1530 {
1531 	return (node == node->kfd->nodes[0]);
1532 }
1533 
1534 /* Debugfs */
1535 #if defined(CONFIG_DEBUG_FS)
1536 
1537 void kfd_debugfs_init(void);
1538 void kfd_debugfs_fini(void);
1539 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1540 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1541 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1542 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1543 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1544 int pm_debugfs_runlist(struct seq_file *m, void *data);
1545 
1546 int kfd_debugfs_hang_hws(struct kfd_node *dev);
1547 int pm_debugfs_hang_hws(struct packet_manager *pm);
1548 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1549 
1550 #else
1551 
1552 static inline void kfd_debugfs_init(void) {}
1553 static inline void kfd_debugfs_fini(void) {}
1554 
1555 #endif
1556 
1557 #endif
1558