1 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #ifndef KFD_PRIV_H_INCLUDED 25 #define KFD_PRIV_H_INCLUDED 26 27 #include <linux/hashtable.h> 28 #include <linux/mmu_notifier.h> 29 #include <linux/memremap.h> 30 #include <linux/mutex.h> 31 #include <linux/types.h> 32 #include <linux/atomic.h> 33 #include <linux/workqueue.h> 34 #include <linux/spinlock.h> 35 #include <linux/kfd_ioctl.h> 36 #include <linux/idr.h> 37 #include <linux/kfifo.h> 38 #include <linux/seq_file.h> 39 #include <linux/kref.h> 40 #include <linux/sysfs.h> 41 #include <linux/device_cgroup.h> 42 #include <drm/drm_file.h> 43 #include <drm/drm_drv.h> 44 #include <drm/drm_device.h> 45 #include <drm/drm_ioctl.h> 46 #include <kgd_kfd_interface.h> 47 #include <linux/swap.h> 48 49 #include "amd_shared.h" 50 #include "amdgpu.h" 51 52 #define KFD_MAX_RING_ENTRY_SIZE 8 53 54 #define KFD_SYSFS_FILE_MODE 0444 55 56 /* GPU ID hash width in bits */ 57 #define KFD_GPU_ID_HASH_WIDTH 16 58 59 /* Use upper bits of mmap offset to store KFD driver specific information. 60 * BITS[63:62] - Encode MMAP type 61 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to 62 * BITS[45:0] - MMAP offset value 63 * 64 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these 65 * defines are w.r.t to PAGE_SIZE 66 */ 67 #define KFD_MMAP_TYPE_SHIFT 62 68 #define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT) 69 #define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT) 70 #define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT) 71 #define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT) 72 #define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT) 73 74 #define KFD_MMAP_GPU_ID_SHIFT 46 75 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \ 76 << KFD_MMAP_GPU_ID_SHIFT) 77 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\ 78 & KFD_MMAP_GPU_ID_MASK) 79 #define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \ 80 >> KFD_MMAP_GPU_ID_SHIFT) 81 82 /* 83 * When working with cp scheduler we should assign the HIQ manually or via 84 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot 85 * definitions for Kaveri. In Kaveri only the first ME queues participates 86 * in the cp scheduling taking that in mind we set the HIQ slot in the 87 * second ME. 88 */ 89 #define KFD_CIK_HIQ_PIPE 4 90 #define KFD_CIK_HIQ_QUEUE 0 91 92 /* Macro for allocating structures */ 93 #define kfd_alloc_struct(ptr_to_struct) \ 94 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL)) 95 96 #define KFD_MAX_NUM_OF_PROCESSES 512 97 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 98 99 /* 100 * Size of the per-process TBA+TMA buffer: 2 pages 101 * 102 * The first page is the TBA used for the CWSR ISA code. The second 103 * page is used as TMA for user-mode trap handler setup in daisy-chain mode. 104 */ 105 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2) 106 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE 107 108 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \ 109 (KFD_MAX_NUM_OF_PROCESSES * \ 110 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) 111 112 #define KFD_KERNEL_QUEUE_SIZE 2048 113 114 #define KFD_UNMAP_LATENCY_MS (4000) 115 116 /* 117 * 512 = 0x200 118 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the 119 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA. 120 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC 121 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in 122 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE. 123 */ 124 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512 125 126 /** 127 * enum kfd_ioctl_flags - KFD ioctl flags 128 * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how 129 * userspace can use a given ioctl. 130 */ 131 enum kfd_ioctl_flags { 132 /* 133 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE: 134 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially 135 * perform privileged operations and load arbitrary data into MQDs and 136 * eventually HQD registers when the queue is mapped by HWS. In order to 137 * prevent this we should perform additional security checks. 138 * 139 * This is equivalent to callers with the CHECKPOINT_RESTORE capability. 140 * 141 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE, 142 * we also allow ioctls with SYS_ADMIN capability. 143 */ 144 KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0), 145 }; 146 /* 147 * Kernel module parameter to specify maximum number of supported queues per 148 * device 149 */ 150 extern int max_num_of_queues_per_device; 151 152 153 /* Kernel module parameter to specify the scheduling policy */ 154 extern int sched_policy; 155 156 /* 157 * Kernel module parameter to specify the maximum process 158 * number per HW scheduler 159 */ 160 extern int hws_max_conc_proc; 161 162 extern int cwsr_enable; 163 164 /* 165 * Kernel module parameter to specify whether to send sigterm to HSA process on 166 * unhandled exception 167 */ 168 extern int send_sigterm; 169 170 /* 171 * This kernel module is used to simulate large bar machine on non-large bar 172 * enabled machines. 173 */ 174 extern int debug_largebar; 175 176 /* 177 * Ignore CRAT table during KFD initialization, can be used to work around 178 * broken CRAT tables on some AMD systems 179 */ 180 extern int ignore_crat; 181 182 /* Set sh_mem_config.retry_disable on GFX v9 */ 183 extern int amdgpu_noretry; 184 185 /* Halt if HWS hang is detected */ 186 extern int halt_if_hws_hang; 187 188 /* Whether MEC FW support GWS barriers */ 189 extern bool hws_gws_support; 190 191 /* Queue preemption timeout in ms */ 192 extern int queue_preemption_timeout_ms; 193 194 /* 195 * Don't evict process queues on vm fault 196 */ 197 extern int amdgpu_no_queue_eviction_on_vm_fault; 198 199 /* Enable eviction debug messages */ 200 extern bool debug_evictions; 201 202 enum cache_policy { 203 cache_policy_coherent, 204 cache_policy_noncoherent 205 }; 206 207 #define KFD_GC_VERSION(dev) ((dev)->adev->ip_versions[GC_HWIP][0]) 208 #define KFD_IS_SOC15(dev) ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1))) 209 #define KFD_SUPPORT_XNACK_PER_PROCESS(dev)\ 210 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2)) 211 212 struct kfd_event_interrupt_class { 213 bool (*interrupt_isr)(struct kfd_dev *dev, 214 const uint32_t *ih_ring_entry, uint32_t *patched_ihre, 215 bool *patched_flag); 216 void (*interrupt_wq)(struct kfd_dev *dev, 217 const uint32_t *ih_ring_entry); 218 }; 219 220 struct kfd_device_info { 221 uint32_t gfx_target_version; 222 const struct kfd_event_interrupt_class *event_interrupt_class; 223 unsigned int max_pasid_bits; 224 unsigned int max_no_of_hqd; 225 unsigned int doorbell_size; 226 size_t ih_ring_entry_size; 227 uint8_t num_of_watch_points; 228 uint16_t mqd_size_aligned; 229 bool supports_cwsr; 230 bool needs_iommu_device; 231 bool needs_pci_atomics; 232 uint32_t no_atomic_fw_version; 233 unsigned int num_sdma_queues_per_engine; 234 unsigned int num_reserved_sdma_queues_per_engine; 235 uint64_t reserved_sdma_queues_bitmap; 236 }; 237 238 unsigned int kfd_get_num_sdma_engines(struct kfd_dev *kdev); 239 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_dev *kdev); 240 241 struct kfd_mem_obj { 242 uint32_t range_start; 243 uint32_t range_end; 244 uint64_t gpu_addr; 245 uint32_t *cpu_ptr; 246 void *gtt_mem; 247 }; 248 249 struct kfd_vmid_info { 250 uint32_t first_vmid_kfd; 251 uint32_t last_vmid_kfd; 252 uint32_t vmid_num_kfd; 253 }; 254 255 struct kfd_dev { 256 struct amdgpu_device *adev; 257 258 struct kfd_device_info device_info; 259 260 unsigned int id; /* topology stub index */ 261 262 phys_addr_t doorbell_base; /* Start of actual doorbells used by 263 * KFD. It is aligned for mapping 264 * into user mode 265 */ 266 size_t doorbell_base_dw_offset; /* Offset from the start of the PCI 267 * doorbell BAR to the first KFD 268 * doorbell in dwords. GFX reserves 269 * the segment before this offset. 270 */ 271 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells 272 * page used by kernel queue 273 */ 274 275 struct kgd2kfd_shared_resources shared_resources; 276 struct kfd_vmid_info vm_info; 277 struct kfd_local_mem_info local_mem_info; 278 279 const struct kfd2kgd_calls *kfd2kgd; 280 struct mutex doorbell_mutex; 281 DECLARE_BITMAP(doorbell_available_index, 282 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 283 284 void *gtt_mem; 285 uint64_t gtt_start_gpu_addr; 286 void *gtt_start_cpu_ptr; 287 void *gtt_sa_bitmap; 288 struct mutex gtt_sa_lock; 289 unsigned int gtt_sa_chunk_size; 290 unsigned int gtt_sa_num_of_chunks; 291 292 /* Interrupts */ 293 struct kfifo ih_fifo; 294 struct workqueue_struct *ih_wq; 295 struct work_struct interrupt_work; 296 spinlock_t interrupt_lock; 297 298 /* QCM Device instance */ 299 struct device_queue_manager *dqm; 300 301 bool init_complete; 302 /* 303 * Interrupts of interest to KFD are copied 304 * from the HW ring into a SW ring. 305 */ 306 bool interrupts_active; 307 308 /* Firmware versions */ 309 uint16_t mec_fw_version; 310 uint16_t mec2_fw_version; 311 uint16_t sdma_fw_version; 312 313 /* Maximum process number mapped to HW scheduler */ 314 unsigned int max_proc_per_quantum; 315 316 /* CWSR */ 317 bool cwsr_enabled; 318 const void *cwsr_isa; 319 unsigned int cwsr_isa_size; 320 321 /* xGMI */ 322 uint64_t hive_id; 323 324 bool pci_atomic_requested; 325 326 /* Use IOMMU v2 flag */ 327 bool use_iommu_v2; 328 329 /* SRAM ECC flag */ 330 atomic_t sram_ecc_flag; 331 332 /* Compute Profile ref. count */ 333 atomic_t compute_profile; 334 335 /* Global GWS resource shared between processes */ 336 void *gws; 337 338 /* Clients watching SMI events */ 339 struct list_head smi_clients; 340 spinlock_t smi_lock; 341 342 uint32_t reset_seq_num; 343 344 struct ida doorbell_ida; 345 unsigned int max_doorbell_slices; 346 347 int noretry; 348 349 /* HMM page migration MEMORY_DEVICE_PRIVATE mapping */ 350 struct dev_pagemap pgmap; 351 }; 352 353 enum kfd_mempool { 354 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1, 355 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2, 356 KFD_MEMPOOL_FRAMEBUFFER = 3, 357 }; 358 359 /* Character device interface */ 360 int kfd_chardev_init(void); 361 void kfd_chardev_exit(void); 362 363 /** 364 * enum kfd_unmap_queues_filter - Enum for queue filters. 365 * 366 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the 367 * running queues list. 368 * 369 * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues 370 * in the run list. 371 * 372 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to 373 * specific process. 374 * 375 */ 376 enum kfd_unmap_queues_filter { 377 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1, 378 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2, 379 KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3 380 }; 381 382 /** 383 * enum kfd_queue_type - Enum for various queue types. 384 * 385 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type. 386 * 387 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type. 388 * 389 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type. 390 * 391 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type. 392 * 393 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface. 394 */ 395 enum kfd_queue_type { 396 KFD_QUEUE_TYPE_COMPUTE, 397 KFD_QUEUE_TYPE_SDMA, 398 KFD_QUEUE_TYPE_HIQ, 399 KFD_QUEUE_TYPE_DIQ, 400 KFD_QUEUE_TYPE_SDMA_XGMI 401 }; 402 403 enum kfd_queue_format { 404 KFD_QUEUE_FORMAT_PM4, 405 KFD_QUEUE_FORMAT_AQL 406 }; 407 408 enum KFD_QUEUE_PRIORITY { 409 KFD_QUEUE_PRIORITY_MINIMUM = 0, 410 KFD_QUEUE_PRIORITY_MAXIMUM = 15 411 }; 412 413 /** 414 * struct queue_properties 415 * 416 * @type: The queue type. 417 * 418 * @queue_id: Queue identifier. 419 * 420 * @queue_address: Queue ring buffer address. 421 * 422 * @queue_size: Queue ring buffer size. 423 * 424 * @priority: Defines the queue priority relative to other queues in the 425 * process. 426 * This is just an indication and HW scheduling may override the priority as 427 * necessary while keeping the relative prioritization. 428 * the priority granularity is from 0 to f which f is the highest priority. 429 * currently all queues are initialized with the highest priority. 430 * 431 * @queue_percent: This field is partially implemented and currently a zero in 432 * this field defines that the queue is non active. 433 * 434 * @read_ptr: User space address which points to the number of dwords the 435 * cp read from the ring buffer. This field updates automatically by the H/W. 436 * 437 * @write_ptr: Defines the number of dwords written to the ring buffer. 438 * 439 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring 440 * buffer. This field should be similar to write_ptr and the user should 441 * update this field after updating the write_ptr. 442 * 443 * @doorbell_off: The doorbell offset in the doorbell pci-bar. 444 * 445 * @is_interop: Defines if this is a interop queue. Interop queue means that 446 * the queue can access both graphics and compute resources. 447 * 448 * @is_evicted: Defines if the queue is evicted. Only active queues 449 * are evicted, rendering them inactive. 450 * 451 * @is_active: Defines if the queue is active or not. @is_active and 452 * @is_evicted are protected by the DQM lock. 453 * 454 * @is_gws: Defines if the queue has been updated to be GWS-capable or not. 455 * @is_gws should be protected by the DQM lock, since changing it can yield the 456 * possibility of updating DQM state on number of GWS queues. 457 * 458 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid 459 * of the queue. 460 * 461 * This structure represents the queue properties for each queue no matter if 462 * it's user mode or kernel mode queue. 463 * 464 */ 465 466 struct queue_properties { 467 enum kfd_queue_type type; 468 enum kfd_queue_format format; 469 unsigned int queue_id; 470 uint64_t queue_address; 471 uint64_t queue_size; 472 uint32_t priority; 473 uint32_t queue_percent; 474 uint32_t *read_ptr; 475 uint32_t *write_ptr; 476 void __iomem *doorbell_ptr; 477 uint32_t doorbell_off; 478 bool is_interop; 479 bool is_evicted; 480 bool is_active; 481 bool is_gws; 482 /* Not relevant for user mode queues in cp scheduling */ 483 unsigned int vmid; 484 /* Relevant only for sdma queues*/ 485 uint32_t sdma_engine_id; 486 uint32_t sdma_queue_id; 487 uint32_t sdma_vm_addr; 488 /* Relevant only for VI */ 489 uint64_t eop_ring_buffer_address; 490 uint32_t eop_ring_buffer_size; 491 uint64_t ctx_save_restore_area_address; 492 uint32_t ctx_save_restore_area_size; 493 uint32_t ctl_stack_size; 494 uint64_t tba_addr; 495 uint64_t tma_addr; 496 }; 497 498 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \ 499 (q).queue_address != 0 && \ 500 (q).queue_percent > 0 && \ 501 !(q).is_evicted) 502 503 enum mqd_update_flag { 504 UPDATE_FLAG_CU_MASK = 0, 505 }; 506 507 struct mqd_update_info { 508 union { 509 struct { 510 uint32_t count; /* Must be a multiple of 32 */ 511 uint32_t *ptr; 512 } cu_mask; 513 }; 514 enum mqd_update_flag update_flag; 515 }; 516 517 /** 518 * struct queue 519 * 520 * @list: Queue linked list. 521 * 522 * @mqd: The queue MQD (memory queue descriptor). 523 * 524 * @mqd_mem_obj: The MQD local gpu memory object. 525 * 526 * @gart_mqd_addr: The MQD gart mc address. 527 * 528 * @properties: The queue properties. 529 * 530 * @mec: Used only in no cp scheduling mode and identifies to micro engine id 531 * that the queue should be executed on. 532 * 533 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe 534 * id. 535 * 536 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot. 537 * 538 * @process: The kfd process that created this queue. 539 * 540 * @device: The kfd device that created this queue. 541 * 542 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL 543 * otherwise. 544 * 545 * This structure represents user mode compute queues. 546 * It contains all the necessary data to handle such queues. 547 * 548 */ 549 550 struct queue { 551 struct list_head list; 552 void *mqd; 553 struct kfd_mem_obj *mqd_mem_obj; 554 uint64_t gart_mqd_addr; 555 struct queue_properties properties; 556 557 uint32_t mec; 558 uint32_t pipe; 559 uint32_t queue; 560 561 unsigned int sdma_id; 562 unsigned int doorbell_id; 563 564 struct kfd_process *process; 565 struct kfd_dev *device; 566 void *gws; 567 568 /* procfs */ 569 struct kobject kobj; 570 571 void *gang_ctx_bo; 572 uint64_t gang_ctx_gpu_addr; 573 void *gang_ctx_cpu_ptr; 574 575 struct amdgpu_bo *wptr_bo; 576 }; 577 578 enum KFD_MQD_TYPE { 579 KFD_MQD_TYPE_HIQ = 0, /* for hiq */ 580 KFD_MQD_TYPE_CP, /* for cp queues and diq */ 581 KFD_MQD_TYPE_SDMA, /* for sdma queues */ 582 KFD_MQD_TYPE_DIQ, /* for diq */ 583 KFD_MQD_TYPE_MAX 584 }; 585 586 enum KFD_PIPE_PRIORITY { 587 KFD_PIPE_PRIORITY_CS_LOW = 0, 588 KFD_PIPE_PRIORITY_CS_MEDIUM, 589 KFD_PIPE_PRIORITY_CS_HIGH 590 }; 591 592 struct scheduling_resources { 593 unsigned int vmid_mask; 594 enum kfd_queue_type type; 595 uint64_t queue_mask; 596 uint64_t gws_mask; 597 uint32_t oac_mask; 598 uint32_t gds_heap_base; 599 uint32_t gds_heap_size; 600 }; 601 602 struct process_queue_manager { 603 /* data */ 604 struct kfd_process *process; 605 struct list_head queues; 606 unsigned long *queue_slot_bitmap; 607 }; 608 609 struct qcm_process_device { 610 /* The Device Queue Manager that owns this data */ 611 struct device_queue_manager *dqm; 612 struct process_queue_manager *pqm; 613 /* Queues list */ 614 struct list_head queues_list; 615 struct list_head priv_queue_list; 616 617 unsigned int queue_count; 618 unsigned int vmid; 619 bool is_debug; 620 unsigned int evicted; /* eviction counter, 0=active */ 621 622 /* This flag tells if we should reset all wavefronts on 623 * process termination 624 */ 625 bool reset_wavefronts; 626 627 /* This flag tells us if this process has a GWS-capable 628 * queue that will be mapped into the runlist. It's 629 * possible to request a GWS BO, but not have the queue 630 * currently mapped, and this changes how the MAP_PROCESS 631 * PM4 packet is configured. 632 */ 633 bool mapped_gws_queue; 634 635 /* All the memory management data should be here too */ 636 uint64_t gds_context_area; 637 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */ 638 uint64_t page_table_base; 639 uint32_t sh_mem_config; 640 uint32_t sh_mem_bases; 641 uint32_t sh_mem_ape1_base; 642 uint32_t sh_mem_ape1_limit; 643 uint32_t gds_size; 644 uint32_t num_gws; 645 uint32_t num_oac; 646 uint32_t sh_hidden_private_base; 647 648 /* CWSR memory */ 649 struct kgd_mem *cwsr_mem; 650 void *cwsr_kaddr; 651 uint64_t cwsr_base; 652 uint64_t tba_addr; 653 uint64_t tma_addr; 654 655 /* IB memory */ 656 struct kgd_mem *ib_mem; 657 uint64_t ib_base; 658 void *ib_kaddr; 659 660 /* doorbell resources per process per device */ 661 unsigned long *doorbell_bitmap; 662 }; 663 664 /* KFD Memory Eviction */ 665 666 /* Approx. wait time before attempting to restore evicted BOs */ 667 #define PROCESS_RESTORE_TIME_MS 100 668 /* Approx. back off time if restore fails due to lack of memory */ 669 #define PROCESS_BACK_OFF_TIME_MS 100 670 /* Approx. time before evicting the process again */ 671 #define PROCESS_ACTIVE_TIME_MS 10 672 673 /* 8 byte handle containing GPU ID in the most significant 4 bytes and 674 * idr_handle in the least significant 4 bytes 675 */ 676 #define MAKE_HANDLE(gpu_id, idr_handle) \ 677 (((uint64_t)(gpu_id) << 32) + idr_handle) 678 #define GET_GPU_ID(handle) (handle >> 32) 679 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF) 680 681 enum kfd_pdd_bound { 682 PDD_UNBOUND = 0, 683 PDD_BOUND, 684 PDD_BOUND_SUSPENDED, 685 }; 686 687 #define MAX_SYSFS_FILENAME_LEN 15 688 689 /* 690 * SDMA counter runs at 100MHz frequency. 691 * We display SDMA activity in microsecond granularity in sysfs. 692 * As a result, the divisor is 100. 693 */ 694 #define SDMA_ACTIVITY_DIVISOR 100 695 696 /* Data that is per-process-per device. */ 697 struct kfd_process_device { 698 /* The device that owns this data. */ 699 struct kfd_dev *dev; 700 701 /* The process that owns this kfd_process_device. */ 702 struct kfd_process *process; 703 704 /* per-process-per device QCM data structure */ 705 struct qcm_process_device qpd; 706 707 /*Apertures*/ 708 uint64_t lds_base; 709 uint64_t lds_limit; 710 uint64_t gpuvm_base; 711 uint64_t gpuvm_limit; 712 uint64_t scratch_base; 713 uint64_t scratch_limit; 714 715 /* VM context for GPUVM allocations */ 716 struct file *drm_file; 717 void *drm_priv; 718 atomic64_t tlb_seq; 719 720 /* GPUVM allocations storage */ 721 struct idr alloc_idr; 722 723 /* Flag used to tell the pdd has dequeued from the dqm. 724 * This is used to prevent dev->dqm->ops.process_termination() from 725 * being called twice when it is already called in IOMMU callback 726 * function. 727 */ 728 bool already_dequeued; 729 bool runtime_inuse; 730 731 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */ 732 enum kfd_pdd_bound bound; 733 734 /* VRAM usage */ 735 uint64_t vram_usage; 736 struct attribute attr_vram; 737 char vram_filename[MAX_SYSFS_FILENAME_LEN]; 738 739 /* SDMA activity tracking */ 740 uint64_t sdma_past_activity_counter; 741 struct attribute attr_sdma; 742 char sdma_filename[MAX_SYSFS_FILENAME_LEN]; 743 744 /* Eviction activity tracking */ 745 uint64_t last_evict_timestamp; 746 atomic64_t evict_duration_counter; 747 struct attribute attr_evict; 748 749 struct kobject *kobj_stats; 750 unsigned int doorbell_index; 751 752 /* 753 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process 754 * that is associated with device encoded by "this" struct instance. The 755 * value reflects CU usage by all of the waves launched by this process 756 * on this device. A very important property of occupancy parameter is 757 * that its value is a snapshot of current use. 758 * 759 * Following is to be noted regarding how this parameter is reported: 760 * 761 * The number of waves that a CU can launch is limited by couple of 762 * parameters. These are encoded by struct amdgpu_cu_info instance 763 * that is part of every device definition. For GFX9 devices this 764 * translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves 765 * do not use scratch memory and 32 waves (max_scratch_slots_per_cu) 766 * when they do use scratch memory. This could change for future 767 * devices and therefore this example should be considered as a guide. 768 * 769 * All CU's of a device are available for the process. This may not be true 770 * under certain conditions - e.g. CU masking. 771 * 772 * Finally number of CU's that are occupied by a process is affected by both 773 * number of CU's a device has along with number of other competing processes 774 */ 775 struct attribute attr_cu_occupancy; 776 777 /* sysfs counters for GPU retry fault and page migration tracking */ 778 struct kobject *kobj_counters; 779 struct attribute attr_faults; 780 struct attribute attr_page_in; 781 struct attribute attr_page_out; 782 uint64_t faults; 783 uint64_t page_in; 784 uint64_t page_out; 785 /* 786 * If this process has been checkpointed before, then the user 787 * application will use the original gpu_id on the 788 * checkpointed node to refer to this device. 789 */ 790 uint32_t user_gpu_id; 791 792 void *proc_ctx_bo; 793 uint64_t proc_ctx_gpu_addr; 794 void *proc_ctx_cpu_ptr; 795 }; 796 797 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd) 798 799 struct svm_range_list { 800 struct mutex lock; 801 struct rb_root_cached objects; 802 struct list_head list; 803 struct work_struct deferred_list_work; 804 struct list_head deferred_range_list; 805 struct list_head criu_svm_metadata_list; 806 spinlock_t deferred_list_lock; 807 atomic_t evicted_ranges; 808 atomic_t drain_pagefaults; 809 struct delayed_work restore_work; 810 DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE); 811 struct task_struct *faulting_task; 812 }; 813 814 /* Process data */ 815 struct kfd_process { 816 /* 817 * kfd_process are stored in an mm_struct*->kfd_process* 818 * hash table (kfd_processes in kfd_process.c) 819 */ 820 struct hlist_node kfd_processes; 821 822 /* 823 * Opaque pointer to mm_struct. We don't hold a reference to 824 * it so it should never be dereferenced from here. This is 825 * only used for looking up processes by their mm. 826 */ 827 void *mm; 828 829 struct kref ref; 830 struct work_struct release_work; 831 832 struct mutex mutex; 833 834 /* 835 * In any process, the thread that started main() is the lead 836 * thread and outlives the rest. 837 * It is here because amd_iommu_bind_pasid wants a task_struct. 838 * It can also be used for safely getting a reference to the 839 * mm_struct of the process. 840 */ 841 struct task_struct *lead_thread; 842 843 /* We want to receive a notification when the mm_struct is destroyed */ 844 struct mmu_notifier mmu_notifier; 845 846 u32 pasid; 847 848 /* 849 * Array of kfd_process_device pointers, 850 * one for each device the process is using. 851 */ 852 struct kfd_process_device *pdds[MAX_GPU_INSTANCE]; 853 uint32_t n_pdds; 854 855 struct process_queue_manager pqm; 856 857 /*Is the user space process 32 bit?*/ 858 bool is_32bit_user_mode; 859 860 /* Event-related data */ 861 struct mutex event_mutex; 862 /* Event ID allocator and lookup */ 863 struct idr event_idr; 864 /* Event page */ 865 u64 signal_handle; 866 struct kfd_signal_page *signal_page; 867 size_t signal_mapped_size; 868 size_t signal_event_count; 869 bool signal_event_limit_reached; 870 871 /* Information used for memory eviction */ 872 void *kgd_process_info; 873 /* Eviction fence that is attached to all the BOs of this process. The 874 * fence will be triggered during eviction and new one will be created 875 * during restore 876 */ 877 struct dma_fence *ef; 878 879 /* Work items for evicting and restoring BOs */ 880 struct delayed_work eviction_work; 881 struct delayed_work restore_work; 882 /* seqno of the last scheduled eviction */ 883 unsigned int last_eviction_seqno; 884 /* Approx. the last timestamp (in jiffies) when the process was 885 * restored after an eviction 886 */ 887 unsigned long last_restore_timestamp; 888 889 /* Kobj for our procfs */ 890 struct kobject *kobj; 891 struct kobject *kobj_queues; 892 struct attribute attr_pasid; 893 894 /* shared virtual memory registered by this process */ 895 struct svm_range_list svms; 896 897 bool xnack_enabled; 898 899 atomic_t poison; 900 /* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */ 901 bool queues_paused; 902 }; 903 904 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */ 905 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE); 906 extern struct srcu_struct kfd_processes_srcu; 907 908 /** 909 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer. 910 * 911 * @filep: pointer to file structure. 912 * @p: amdkfd process pointer. 913 * @data: pointer to arg that was copied from user. 914 * 915 * Return: returns ioctl completion code. 916 */ 917 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p, 918 void *data); 919 920 struct amdkfd_ioctl_desc { 921 unsigned int cmd; 922 int flags; 923 amdkfd_ioctl_t *func; 924 unsigned int cmd_drv; 925 const char *name; 926 }; 927 bool kfd_dev_is_large_bar(struct kfd_dev *dev); 928 929 int kfd_process_create_wq(void); 930 void kfd_process_destroy_wq(void); 931 void kfd_cleanup_processes(void); 932 struct kfd_process *kfd_create_process(struct file *filep); 933 struct kfd_process *kfd_get_process(const struct task_struct *task); 934 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid); 935 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm); 936 937 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id); 938 int kfd_process_gpuid_from_adev(struct kfd_process *p, 939 struct amdgpu_device *adev, uint32_t *gpuid, 940 uint32_t *gpuidx); 941 static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p, 942 uint32_t gpuidx, uint32_t *gpuid) { 943 return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL; 944 } 945 static inline struct kfd_process_device *kfd_process_device_from_gpuidx( 946 struct kfd_process *p, uint32_t gpuidx) { 947 return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL; 948 } 949 950 void kfd_unref_process(struct kfd_process *p); 951 int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger); 952 int kfd_process_restore_queues(struct kfd_process *p); 953 void kfd_suspend_all_processes(void); 954 int kfd_resume_all_processes(void); 955 956 struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process, 957 uint32_t gpu_id); 958 959 int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id); 960 961 int kfd_process_device_init_vm(struct kfd_process_device *pdd, 962 struct file *drm_file); 963 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, 964 struct kfd_process *p); 965 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, 966 struct kfd_process *p); 967 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, 968 struct kfd_process *p); 969 970 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported); 971 972 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process, 973 struct vm_area_struct *vma); 974 975 /* KFD process API for creating and translating handles */ 976 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd, 977 void *mem); 978 void *kfd_process_device_translate_handle(struct kfd_process_device *p, 979 int handle); 980 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd, 981 int handle); 982 struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid); 983 984 /* PASIDs */ 985 int kfd_pasid_init(void); 986 void kfd_pasid_exit(void); 987 bool kfd_set_pasid_limit(unsigned int new_limit); 988 unsigned int kfd_get_pasid_limit(void); 989 u32 kfd_pasid_alloc(void); 990 void kfd_pasid_free(u32 pasid); 991 992 /* Doorbells */ 993 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd); 994 int kfd_doorbell_init(struct kfd_dev *kfd); 995 void kfd_doorbell_fini(struct kfd_dev *kfd); 996 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process, 997 struct vm_area_struct *vma); 998 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, 999 unsigned int *doorbell_off); 1000 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr); 1001 u32 read_kernel_doorbell(u32 __iomem *db); 1002 void write_kernel_doorbell(void __iomem *db, u32 value); 1003 void write_kernel_doorbell64(void __iomem *db, u64 value); 1004 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd, 1005 struct kfd_process_device *pdd, 1006 unsigned int doorbell_id); 1007 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd); 1008 int kfd_alloc_process_doorbells(struct kfd_dev *kfd, 1009 unsigned int *doorbell_index); 1010 void kfd_free_process_doorbells(struct kfd_dev *kfd, 1011 unsigned int doorbell_index); 1012 /* GTT Sub-Allocator */ 1013 1014 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 1015 struct kfd_mem_obj **mem_obj); 1016 1017 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj); 1018 1019 extern struct device *kfd_device; 1020 1021 /* KFD's procfs */ 1022 void kfd_procfs_init(void); 1023 void kfd_procfs_shutdown(void); 1024 int kfd_procfs_add_queue(struct queue *q); 1025 void kfd_procfs_del_queue(struct queue *q); 1026 1027 /* Topology */ 1028 int kfd_topology_init(void); 1029 void kfd_topology_shutdown(void); 1030 int kfd_topology_add_device(struct kfd_dev *gpu); 1031 int kfd_topology_remove_device(struct kfd_dev *gpu); 1032 struct kfd_topology_device *kfd_topology_device_by_proximity_domain( 1033 uint32_t proximity_domain); 1034 struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock( 1035 uint32_t proximity_domain); 1036 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id); 1037 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id); 1038 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev); 1039 struct kfd_dev *kfd_device_by_adev(const struct amdgpu_device *adev); 1040 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev); 1041 int kfd_numa_node_to_apic_id(int numa_node_id); 1042 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu); 1043 1044 /* Interrupts */ 1045 int kfd_interrupt_init(struct kfd_dev *dev); 1046 void kfd_interrupt_exit(struct kfd_dev *dev); 1047 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry); 1048 bool interrupt_is_wanted(struct kfd_dev *dev, 1049 const uint32_t *ih_ring_entry, 1050 uint32_t *patched_ihre, bool *flag); 1051 1052 /* amdkfd Apertures */ 1053 int kfd_init_apertures(struct kfd_process *process); 1054 1055 void kfd_process_set_trap_handler(struct qcm_process_device *qpd, 1056 uint64_t tba_addr, 1057 uint64_t tma_addr); 1058 1059 /* CRIU */ 1060 /* 1061 * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private 1062 * structures: 1063 * kfd_criu_process_priv_data 1064 * kfd_criu_device_priv_data 1065 * kfd_criu_bo_priv_data 1066 * kfd_criu_queue_priv_data 1067 * kfd_criu_event_priv_data 1068 * kfd_criu_svm_range_priv_data 1069 */ 1070 1071 #define KFD_CRIU_PRIV_VERSION 1 1072 1073 struct kfd_criu_process_priv_data { 1074 uint32_t version; 1075 uint32_t xnack_mode; 1076 }; 1077 1078 struct kfd_criu_device_priv_data { 1079 /* For future use */ 1080 uint64_t reserved; 1081 }; 1082 1083 struct kfd_criu_bo_priv_data { 1084 uint64_t user_addr; 1085 uint32_t idr_handle; 1086 uint32_t mapped_gpuids[MAX_GPU_INSTANCE]; 1087 }; 1088 1089 /* 1090 * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data, 1091 * kfd_criu_svm_range_priv_data is the object type 1092 */ 1093 enum kfd_criu_object_type { 1094 KFD_CRIU_OBJECT_TYPE_QUEUE, 1095 KFD_CRIU_OBJECT_TYPE_EVENT, 1096 KFD_CRIU_OBJECT_TYPE_SVM_RANGE, 1097 }; 1098 1099 struct kfd_criu_svm_range_priv_data { 1100 uint32_t object_type; 1101 uint64_t start_addr; 1102 uint64_t size; 1103 /* Variable length array of attributes */ 1104 struct kfd_ioctl_svm_attribute attrs[]; 1105 }; 1106 1107 struct kfd_criu_queue_priv_data { 1108 uint32_t object_type; 1109 uint64_t q_address; 1110 uint64_t q_size; 1111 uint64_t read_ptr_addr; 1112 uint64_t write_ptr_addr; 1113 uint64_t doorbell_off; 1114 uint64_t eop_ring_buffer_address; 1115 uint64_t ctx_save_restore_area_address; 1116 uint32_t gpu_id; 1117 uint32_t type; 1118 uint32_t format; 1119 uint32_t q_id; 1120 uint32_t priority; 1121 uint32_t q_percent; 1122 uint32_t doorbell_id; 1123 uint32_t gws; 1124 uint32_t sdma_id; 1125 uint32_t eop_ring_buffer_size; 1126 uint32_t ctx_save_restore_area_size; 1127 uint32_t ctl_stack_size; 1128 uint32_t mqd_size; 1129 }; 1130 1131 struct kfd_criu_event_priv_data { 1132 uint32_t object_type; 1133 uint64_t user_handle; 1134 uint32_t event_id; 1135 uint32_t auto_reset; 1136 uint32_t type; 1137 uint32_t signaled; 1138 1139 union { 1140 struct kfd_hsa_memory_exception_data memory_exception_data; 1141 struct kfd_hsa_hw_exception_data hw_exception_data; 1142 }; 1143 }; 1144 1145 int kfd_process_get_queue_info(struct kfd_process *p, 1146 uint32_t *num_queues, 1147 uint64_t *priv_data_sizes); 1148 1149 int kfd_criu_checkpoint_queues(struct kfd_process *p, 1150 uint8_t __user *user_priv_data, 1151 uint64_t *priv_data_offset); 1152 1153 int kfd_criu_restore_queue(struct kfd_process *p, 1154 uint8_t __user *user_priv_data, 1155 uint64_t *priv_data_offset, 1156 uint64_t max_priv_data_size); 1157 1158 int kfd_criu_checkpoint_events(struct kfd_process *p, 1159 uint8_t __user *user_priv_data, 1160 uint64_t *priv_data_offset); 1161 1162 int kfd_criu_restore_event(struct file *devkfd, 1163 struct kfd_process *p, 1164 uint8_t __user *user_priv_data, 1165 uint64_t *priv_data_offset, 1166 uint64_t max_priv_data_size); 1167 /* CRIU - End */ 1168 1169 /* Queue Context Management */ 1170 int init_queue(struct queue **q, const struct queue_properties *properties); 1171 void uninit_queue(struct queue *q); 1172 void print_queue_properties(struct queue_properties *q); 1173 void print_queue(struct queue *q); 1174 1175 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 1176 struct kfd_dev *dev); 1177 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type, 1178 struct kfd_dev *dev); 1179 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 1180 struct kfd_dev *dev); 1181 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type, 1182 struct kfd_dev *dev); 1183 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type, 1184 struct kfd_dev *dev); 1185 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type, 1186 struct kfd_dev *dev); 1187 struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type, 1188 struct kfd_dev *dev); 1189 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev); 1190 void device_queue_manager_uninit(struct device_queue_manager *dqm); 1191 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev, 1192 enum kfd_queue_type type); 1193 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging); 1194 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid); 1195 1196 /* Process Queue Manager */ 1197 struct process_queue_node { 1198 struct queue *q; 1199 struct kernel_queue *kq; 1200 struct list_head process_queue_list; 1201 }; 1202 1203 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd); 1204 void kfd_process_dequeue_from_all_devices(struct kfd_process *p); 1205 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p); 1206 void pqm_uninit(struct process_queue_manager *pqm); 1207 int pqm_create_queue(struct process_queue_manager *pqm, 1208 struct kfd_dev *dev, 1209 struct file *f, 1210 struct queue_properties *properties, 1211 unsigned int *qid, 1212 struct amdgpu_bo *wptr_bo, 1213 const struct kfd_criu_queue_priv_data *q_data, 1214 const void *restore_mqd, 1215 const void *restore_ctl_stack, 1216 uint32_t *p_doorbell_offset_in_process); 1217 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid); 1218 int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid, 1219 struct queue_properties *p); 1220 int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid, 1221 struct mqd_update_info *minfo); 1222 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid, 1223 void *gws); 1224 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm, 1225 unsigned int qid); 1226 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm, 1227 unsigned int qid); 1228 int pqm_get_wave_state(struct process_queue_manager *pqm, 1229 unsigned int qid, 1230 void __user *ctl_stack, 1231 u32 *ctl_stack_used_size, 1232 u32 *save_area_used_size); 1233 1234 int amdkfd_fence_wait_timeout(uint64_t *fence_addr, 1235 uint64_t fence_value, 1236 unsigned int timeout_ms); 1237 1238 int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm, 1239 unsigned int qid, 1240 u32 *mqd_size, 1241 u32 *ctl_stack_size); 1242 /* Packet Manager */ 1243 1244 #define KFD_FENCE_COMPLETED (100) 1245 #define KFD_FENCE_INIT (10) 1246 1247 struct packet_manager { 1248 struct device_queue_manager *dqm; 1249 struct kernel_queue *priv_queue; 1250 struct mutex lock; 1251 bool allocated; 1252 struct kfd_mem_obj *ib_buffer_obj; 1253 unsigned int ib_size_bytes; 1254 bool is_over_subscription; 1255 1256 const struct packet_manager_funcs *pmf; 1257 }; 1258 1259 struct packet_manager_funcs { 1260 /* Support ASIC-specific packet formats for PM4 packets */ 1261 int (*map_process)(struct packet_manager *pm, uint32_t *buffer, 1262 struct qcm_process_device *qpd); 1263 int (*runlist)(struct packet_manager *pm, uint32_t *buffer, 1264 uint64_t ib, size_t ib_size_in_dwords, bool chain); 1265 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer, 1266 struct scheduling_resources *res); 1267 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer, 1268 struct queue *q, bool is_static); 1269 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer, 1270 enum kfd_unmap_queues_filter mode, 1271 uint32_t filter_param, bool reset); 1272 int (*query_status)(struct packet_manager *pm, uint32_t *buffer, 1273 uint64_t fence_address, uint64_t fence_value); 1274 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer); 1275 1276 /* Packet sizes */ 1277 int map_process_size; 1278 int runlist_size; 1279 int set_resources_size; 1280 int map_queues_size; 1281 int unmap_queues_size; 1282 int query_status_size; 1283 int release_mem_size; 1284 }; 1285 1286 extern const struct packet_manager_funcs kfd_vi_pm_funcs; 1287 extern const struct packet_manager_funcs kfd_v9_pm_funcs; 1288 extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs; 1289 1290 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); 1291 void pm_uninit(struct packet_manager *pm, bool hanging); 1292 int pm_send_set_resources(struct packet_manager *pm, 1293 struct scheduling_resources *res); 1294 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues); 1295 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address, 1296 uint64_t fence_value); 1297 1298 int pm_send_unmap_queue(struct packet_manager *pm, 1299 enum kfd_unmap_queues_filter mode, 1300 uint32_t filter_param, bool reset); 1301 1302 void pm_release_ib(struct packet_manager *pm); 1303 1304 /* Following PM funcs can be shared among VI and AI */ 1305 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size); 1306 1307 uint64_t kfd_get_number_elems(struct kfd_dev *kfd); 1308 1309 /* Events */ 1310 extern const struct kfd_event_interrupt_class event_interrupt_class_cik; 1311 extern const struct kfd_event_interrupt_class event_interrupt_class_v9; 1312 extern const struct kfd_event_interrupt_class event_interrupt_class_v11; 1313 1314 extern const struct kfd_device_global_init_class device_global_init_class_cik; 1315 1316 int kfd_event_init_process(struct kfd_process *p); 1317 void kfd_event_free_process(struct kfd_process *p); 1318 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma); 1319 int kfd_wait_on_events(struct kfd_process *p, 1320 uint32_t num_events, void __user *data, 1321 bool all, uint32_t *user_timeout_ms, 1322 uint32_t *wait_result); 1323 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, 1324 uint32_t valid_id_bits); 1325 void kfd_signal_iommu_event(struct kfd_dev *dev, 1326 u32 pasid, unsigned long address, 1327 bool is_write_requested, bool is_execute_requested); 1328 void kfd_signal_hw_exception_event(u32 pasid); 1329 int kfd_set_event(struct kfd_process *p, uint32_t event_id); 1330 int kfd_reset_event(struct kfd_process *p, uint32_t event_id); 1331 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset); 1332 1333 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 1334 uint32_t event_type, bool auto_reset, uint32_t node_id, 1335 uint32_t *event_id, uint32_t *event_trigger_data, 1336 uint64_t *event_page_offset, uint32_t *event_slot_index); 1337 1338 int kfd_get_num_events(struct kfd_process *p); 1339 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); 1340 1341 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid, 1342 struct kfd_vm_fault_info *info); 1343 1344 void kfd_signal_reset_event(struct kfd_dev *dev); 1345 1346 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid); 1347 1348 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type); 1349 1350 static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev) 1351 { 1352 return KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2) || 1353 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) && 1354 dev->adev->sdma.instance[0].fw_version >= 18) || 1355 KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0); 1356 } 1357 1358 bool kfd_is_locked(void); 1359 1360 /* Compute profile */ 1361 void kfd_inc_compute_active(struct kfd_dev *dev); 1362 void kfd_dec_compute_active(struct kfd_dev *dev); 1363 1364 /* Cgroup Support */ 1365 /* Check with device cgroup if @kfd device is accessible */ 1366 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd) 1367 { 1368 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF) 1369 struct drm_device *ddev = adev_to_drm(kfd->adev); 1370 1371 return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR, 1372 ddev->render->index, 1373 DEVCG_ACC_WRITE | DEVCG_ACC_READ); 1374 #else 1375 return 0; 1376 #endif 1377 } 1378 1379 /* Debugfs */ 1380 #if defined(CONFIG_DEBUG_FS) 1381 1382 void kfd_debugfs_init(void); 1383 void kfd_debugfs_fini(void); 1384 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data); 1385 int pqm_debugfs_mqds(struct seq_file *m, void *data); 1386 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data); 1387 int dqm_debugfs_hqds(struct seq_file *m, void *data); 1388 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data); 1389 int pm_debugfs_runlist(struct seq_file *m, void *data); 1390 1391 int kfd_debugfs_hang_hws(struct kfd_dev *dev); 1392 int pm_debugfs_hang_hws(struct packet_manager *pm); 1393 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm); 1394 1395 #else 1396 1397 static inline void kfd_debugfs_init(void) {} 1398 static inline void kfd_debugfs_fini(void) {} 1399 1400 #endif 1401 1402 #endif 1403