xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision 0b26ca68)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25 
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/mutex.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/workqueue.h>
32 #include <linux/spinlock.h>
33 #include <linux/kfd_ioctl.h>
34 #include <linux/idr.h>
35 #include <linux/kfifo.h>
36 #include <linux/seq_file.h>
37 #include <linux/kref.h>
38 #include <linux/sysfs.h>
39 #include <linux/device_cgroup.h>
40 #include <drm/drm_file.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_device.h>
43 #include <drm/drm_ioctl.h>
44 #include <kgd_kfd_interface.h>
45 #include <linux/swap.h>
46 
47 #include "amd_shared.h"
48 
49 #define KFD_MAX_RING_ENTRY_SIZE	8
50 
51 #define KFD_SYSFS_FILE_MODE 0444
52 
53 /* GPU ID hash width in bits */
54 #define KFD_GPU_ID_HASH_WIDTH 16
55 
56 /* Use upper bits of mmap offset to store KFD driver specific information.
57  * BITS[63:62] - Encode MMAP type
58  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
59  * BITS[45:0]  - MMAP offset value
60  *
61  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
62  *  defines are w.r.t to PAGE_SIZE
63  */
64 #define KFD_MMAP_TYPE_SHIFT	62
65 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
66 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
67 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
68 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
69 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
70 
71 #define KFD_MMAP_GPU_ID_SHIFT 46
72 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
73 				<< KFD_MMAP_GPU_ID_SHIFT)
74 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
75 				& KFD_MMAP_GPU_ID_MASK)
76 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
77 				>> KFD_MMAP_GPU_ID_SHIFT)
78 
79 /*
80  * When working with cp scheduler we should assign the HIQ manually or via
81  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
82  * definitions for Kaveri. In Kaveri only the first ME queues participates
83  * in the cp scheduling taking that in mind we set the HIQ slot in the
84  * second ME.
85  */
86 #define KFD_CIK_HIQ_PIPE 4
87 #define KFD_CIK_HIQ_QUEUE 0
88 
89 /* Macro for allocating structures */
90 #define kfd_alloc_struct(ptr_to_struct)	\
91 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
92 
93 #define KFD_MAX_NUM_OF_PROCESSES 512
94 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
95 
96 /*
97  * Size of the per-process TBA+TMA buffer: 2 pages
98  *
99  * The first page is the TBA used for the CWSR ISA code. The second
100  * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
101  */
102 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
103 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
104 
105 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
106 	(KFD_MAX_NUM_OF_PROCESSES *			\
107 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
108 
109 #define KFD_KERNEL_QUEUE_SIZE 2048
110 
111 #define KFD_UNMAP_LATENCY_MS	(4000)
112 
113 /*
114  * 512 = 0x200
115  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
116  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
117  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
118  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
119  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
120  */
121 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
122 
123 
124 /*
125  * Kernel module parameter to specify maximum number of supported queues per
126  * device
127  */
128 extern int max_num_of_queues_per_device;
129 
130 
131 /* Kernel module parameter to specify the scheduling policy */
132 extern int sched_policy;
133 
134 /*
135  * Kernel module parameter to specify the maximum process
136  * number per HW scheduler
137  */
138 extern int hws_max_conc_proc;
139 
140 extern int cwsr_enable;
141 
142 /*
143  * Kernel module parameter to specify whether to send sigterm to HSA process on
144  * unhandled exception
145  */
146 extern int send_sigterm;
147 
148 /*
149  * This kernel module is used to simulate large bar machine on non-large bar
150  * enabled machines.
151  */
152 extern int debug_largebar;
153 
154 /*
155  * Ignore CRAT table during KFD initialization, can be used to work around
156  * broken CRAT tables on some AMD systems
157  */
158 extern int ignore_crat;
159 
160 /* Set sh_mem_config.retry_disable on GFX v9 */
161 extern int amdgpu_noretry;
162 
163 /* Halt if HWS hang is detected */
164 extern int halt_if_hws_hang;
165 
166 /* Whether MEC FW support GWS barriers */
167 extern bool hws_gws_support;
168 
169 /* Queue preemption timeout in ms */
170 extern int queue_preemption_timeout_ms;
171 
172 /* Enable eviction debug messages */
173 extern bool debug_evictions;
174 
175 enum cache_policy {
176 	cache_policy_coherent,
177 	cache_policy_noncoherent
178 };
179 
180 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
181 
182 struct kfd_event_interrupt_class {
183 	bool (*interrupt_isr)(struct kfd_dev *dev,
184 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
185 			bool *patched_flag);
186 	void (*interrupt_wq)(struct kfd_dev *dev,
187 			const uint32_t *ih_ring_entry);
188 };
189 
190 struct kfd_device_info {
191 	enum amd_asic_type asic_family;
192 	const char *asic_name;
193 	const struct kfd_event_interrupt_class *event_interrupt_class;
194 	unsigned int max_pasid_bits;
195 	unsigned int max_no_of_hqd;
196 	unsigned int doorbell_size;
197 	size_t ih_ring_entry_size;
198 	uint8_t num_of_watch_points;
199 	uint16_t mqd_size_aligned;
200 	bool supports_cwsr;
201 	bool needs_iommu_device;
202 	bool needs_pci_atomics;
203 	unsigned int num_sdma_engines;
204 	unsigned int num_xgmi_sdma_engines;
205 	unsigned int num_sdma_queues_per_engine;
206 };
207 
208 struct kfd_mem_obj {
209 	uint32_t range_start;
210 	uint32_t range_end;
211 	uint64_t gpu_addr;
212 	uint32_t *cpu_ptr;
213 	void *gtt_mem;
214 };
215 
216 struct kfd_vmid_info {
217 	uint32_t first_vmid_kfd;
218 	uint32_t last_vmid_kfd;
219 	uint32_t vmid_num_kfd;
220 };
221 
222 struct kfd_dev {
223 	struct kgd_dev *kgd;
224 
225 	const struct kfd_device_info *device_info;
226 	struct pci_dev *pdev;
227 	struct drm_device *ddev;
228 
229 	unsigned int id;		/* topology stub index */
230 
231 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
232 					 * KFD. It is aligned for mapping
233 					 * into user mode
234 					 */
235 	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
236 					 * doorbell BAR to the first KFD
237 					 * doorbell in dwords. GFX reserves
238 					 * the segment before this offset.
239 					 */
240 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
241 					   * page used by kernel queue
242 					   */
243 
244 	struct kgd2kfd_shared_resources shared_resources;
245 	struct kfd_vmid_info vm_info;
246 
247 	const struct kfd2kgd_calls *kfd2kgd;
248 	struct mutex doorbell_mutex;
249 	DECLARE_BITMAP(doorbell_available_index,
250 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
251 
252 	void *gtt_mem;
253 	uint64_t gtt_start_gpu_addr;
254 	void *gtt_start_cpu_ptr;
255 	void *gtt_sa_bitmap;
256 	struct mutex gtt_sa_lock;
257 	unsigned int gtt_sa_chunk_size;
258 	unsigned int gtt_sa_num_of_chunks;
259 
260 	/* Interrupts */
261 	struct kfifo ih_fifo;
262 	struct workqueue_struct *ih_wq;
263 	struct work_struct interrupt_work;
264 	spinlock_t interrupt_lock;
265 
266 	/* QCM Device instance */
267 	struct device_queue_manager *dqm;
268 
269 	bool init_complete;
270 	/*
271 	 * Interrupts of interest to KFD are copied
272 	 * from the HW ring into a SW ring.
273 	 */
274 	bool interrupts_active;
275 
276 	/* Debug manager */
277 	struct kfd_dbgmgr *dbgmgr;
278 
279 	/* Firmware versions */
280 	uint16_t mec_fw_version;
281 	uint16_t mec2_fw_version;
282 	uint16_t sdma_fw_version;
283 
284 	/* Maximum process number mapped to HW scheduler */
285 	unsigned int max_proc_per_quantum;
286 
287 	/* CWSR */
288 	bool cwsr_enabled;
289 	const void *cwsr_isa;
290 	unsigned int cwsr_isa_size;
291 
292 	/* xGMI */
293 	uint64_t hive_id;
294 
295 	bool pci_atomic_requested;
296 
297 	/* Use IOMMU v2 flag */
298 	bool use_iommu_v2;
299 
300 	/* SRAM ECC flag */
301 	atomic_t sram_ecc_flag;
302 
303 	/* Compute Profile ref. count */
304 	atomic_t compute_profile;
305 
306 	/* Global GWS resource shared between processes */
307 	void *gws;
308 
309 	/* Clients watching SMI events */
310 	struct list_head smi_clients;
311 	spinlock_t smi_lock;
312 
313 	uint32_t reset_seq_num;
314 
315 	struct ida doorbell_ida;
316 	unsigned int max_doorbell_slices;
317 
318 	int noretry;
319 };
320 
321 enum kfd_mempool {
322 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
323 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
324 	KFD_MEMPOOL_FRAMEBUFFER = 3,
325 };
326 
327 /* Character device interface */
328 int kfd_chardev_init(void);
329 void kfd_chardev_exit(void);
330 struct device *kfd_chardev(void);
331 
332 /**
333  * enum kfd_unmap_queues_filter - Enum for queue filters.
334  *
335  * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
336  *
337  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
338  *						running queues list.
339  *
340  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
341  *						specific process.
342  *
343  */
344 enum kfd_unmap_queues_filter {
345 	KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
346 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
347 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
348 	KFD_UNMAP_QUEUES_FILTER_BY_PASID
349 };
350 
351 /**
352  * enum kfd_queue_type - Enum for various queue types.
353  *
354  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
355  *
356  * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
357  *
358  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
359  *
360  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
361  *
362  * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
363  */
364 enum kfd_queue_type  {
365 	KFD_QUEUE_TYPE_COMPUTE,
366 	KFD_QUEUE_TYPE_SDMA,
367 	KFD_QUEUE_TYPE_HIQ,
368 	KFD_QUEUE_TYPE_DIQ,
369 	KFD_QUEUE_TYPE_SDMA_XGMI
370 };
371 
372 enum kfd_queue_format {
373 	KFD_QUEUE_FORMAT_PM4,
374 	KFD_QUEUE_FORMAT_AQL
375 };
376 
377 enum KFD_QUEUE_PRIORITY {
378 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
379 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
380 };
381 
382 /**
383  * struct queue_properties
384  *
385  * @type: The queue type.
386  *
387  * @queue_id: Queue identifier.
388  *
389  * @queue_address: Queue ring buffer address.
390  *
391  * @queue_size: Queue ring buffer size.
392  *
393  * @priority: Defines the queue priority relative to other queues in the
394  * process.
395  * This is just an indication and HW scheduling may override the priority as
396  * necessary while keeping the relative prioritization.
397  * the priority granularity is from 0 to f which f is the highest priority.
398  * currently all queues are initialized with the highest priority.
399  *
400  * @queue_percent: This field is partially implemented and currently a zero in
401  * this field defines that the queue is non active.
402  *
403  * @read_ptr: User space address which points to the number of dwords the
404  * cp read from the ring buffer. This field updates automatically by the H/W.
405  *
406  * @write_ptr: Defines the number of dwords written to the ring buffer.
407  *
408  * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
409  * buffer. This field should be similar to write_ptr and the user should
410  * update this field after updating the write_ptr.
411  *
412  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
413  *
414  * @is_interop: Defines if this is a interop queue. Interop queue means that
415  * the queue can access both graphics and compute resources.
416  *
417  * @is_evicted: Defines if the queue is evicted. Only active queues
418  * are evicted, rendering them inactive.
419  *
420  * @is_active: Defines if the queue is active or not. @is_active and
421  * @is_evicted are protected by the DQM lock.
422  *
423  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
424  * @is_gws should be protected by the DQM lock, since changing it can yield the
425  * possibility of updating DQM state on number of GWS queues.
426  *
427  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
428  * of the queue.
429  *
430  * This structure represents the queue properties for each queue no matter if
431  * it's user mode or kernel mode queue.
432  *
433  */
434 struct queue_properties {
435 	enum kfd_queue_type type;
436 	enum kfd_queue_format format;
437 	unsigned int queue_id;
438 	uint64_t queue_address;
439 	uint64_t  queue_size;
440 	uint32_t priority;
441 	uint32_t queue_percent;
442 	uint32_t *read_ptr;
443 	uint32_t *write_ptr;
444 	void __iomem *doorbell_ptr;
445 	uint32_t doorbell_off;
446 	bool is_interop;
447 	bool is_evicted;
448 	bool is_active;
449 	bool is_gws;
450 	/* Not relevant for user mode queues in cp scheduling */
451 	unsigned int vmid;
452 	/* Relevant only for sdma queues*/
453 	uint32_t sdma_engine_id;
454 	uint32_t sdma_queue_id;
455 	uint32_t sdma_vm_addr;
456 	/* Relevant only for VI */
457 	uint64_t eop_ring_buffer_address;
458 	uint32_t eop_ring_buffer_size;
459 	uint64_t ctx_save_restore_area_address;
460 	uint32_t ctx_save_restore_area_size;
461 	uint32_t ctl_stack_size;
462 	uint64_t tba_addr;
463 	uint64_t tma_addr;
464 	/* Relevant for CU */
465 	uint32_t cu_mask_count; /* Must be a multiple of 32 */
466 	uint32_t *cu_mask;
467 };
468 
469 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
470 			    (q).queue_address != 0 &&	\
471 			    (q).queue_percent > 0 &&	\
472 			    !(q).is_evicted)
473 
474 /**
475  * struct queue
476  *
477  * @list: Queue linked list.
478  *
479  * @mqd: The queue MQD (memory queue descriptor).
480  *
481  * @mqd_mem_obj: The MQD local gpu memory object.
482  *
483  * @gart_mqd_addr: The MQD gart mc address.
484  *
485  * @properties: The queue properties.
486  *
487  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
488  *	 that the queue should be executed on.
489  *
490  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
491  *	  id.
492  *
493  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
494  *
495  * @process: The kfd process that created this queue.
496  *
497  * @device: The kfd device that created this queue.
498  *
499  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
500  * otherwise.
501  *
502  * This structure represents user mode compute queues.
503  * It contains all the necessary data to handle such queues.
504  *
505  */
506 
507 struct queue {
508 	struct list_head list;
509 	void *mqd;
510 	struct kfd_mem_obj *mqd_mem_obj;
511 	uint64_t gart_mqd_addr;
512 	struct queue_properties properties;
513 
514 	uint32_t mec;
515 	uint32_t pipe;
516 	uint32_t queue;
517 
518 	unsigned int sdma_id;
519 	unsigned int doorbell_id;
520 
521 	struct kfd_process	*process;
522 	struct kfd_dev		*device;
523 	void *gws;
524 
525 	/* procfs */
526 	struct kobject kobj;
527 };
528 
529 enum KFD_MQD_TYPE {
530 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
531 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
532 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
533 	KFD_MQD_TYPE_DIQ,		/* for diq */
534 	KFD_MQD_TYPE_MAX
535 };
536 
537 enum KFD_PIPE_PRIORITY {
538 	KFD_PIPE_PRIORITY_CS_LOW = 0,
539 	KFD_PIPE_PRIORITY_CS_MEDIUM,
540 	KFD_PIPE_PRIORITY_CS_HIGH
541 };
542 
543 struct scheduling_resources {
544 	unsigned int vmid_mask;
545 	enum kfd_queue_type type;
546 	uint64_t queue_mask;
547 	uint64_t gws_mask;
548 	uint32_t oac_mask;
549 	uint32_t gds_heap_base;
550 	uint32_t gds_heap_size;
551 };
552 
553 struct process_queue_manager {
554 	/* data */
555 	struct kfd_process	*process;
556 	struct list_head	queues;
557 	unsigned long		*queue_slot_bitmap;
558 };
559 
560 struct qcm_process_device {
561 	/* The Device Queue Manager that owns this data */
562 	struct device_queue_manager *dqm;
563 	struct process_queue_manager *pqm;
564 	/* Queues list */
565 	struct list_head queues_list;
566 	struct list_head priv_queue_list;
567 
568 	unsigned int queue_count;
569 	unsigned int vmid;
570 	bool is_debug;
571 	unsigned int evicted; /* eviction counter, 0=active */
572 
573 	/* This flag tells if we should reset all wavefronts on
574 	 * process termination
575 	 */
576 	bool reset_wavefronts;
577 
578 	/* This flag tells us if this process has a GWS-capable
579 	 * queue that will be mapped into the runlist. It's
580 	 * possible to request a GWS BO, but not have the queue
581 	 * currently mapped, and this changes how the MAP_PROCESS
582 	 * PM4 packet is configured.
583 	 */
584 	bool mapped_gws_queue;
585 
586 	/* All the memory management data should be here too */
587 	uint64_t gds_context_area;
588 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
589 	uint64_t page_table_base;
590 	uint32_t sh_mem_config;
591 	uint32_t sh_mem_bases;
592 	uint32_t sh_mem_ape1_base;
593 	uint32_t sh_mem_ape1_limit;
594 	uint32_t gds_size;
595 	uint32_t num_gws;
596 	uint32_t num_oac;
597 	uint32_t sh_hidden_private_base;
598 
599 	/* CWSR memory */
600 	void *cwsr_kaddr;
601 	uint64_t cwsr_base;
602 	uint64_t tba_addr;
603 	uint64_t tma_addr;
604 
605 	/* IB memory */
606 	uint64_t ib_base;
607 	void *ib_kaddr;
608 
609 	/* doorbell resources per process per device */
610 	unsigned long *doorbell_bitmap;
611 };
612 
613 /* KFD Memory Eviction */
614 
615 /* Approx. wait time before attempting to restore evicted BOs */
616 #define PROCESS_RESTORE_TIME_MS 100
617 /* Approx. back off time if restore fails due to lack of memory */
618 #define PROCESS_BACK_OFF_TIME_MS 100
619 /* Approx. time before evicting the process again */
620 #define PROCESS_ACTIVE_TIME_MS 10
621 
622 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
623  * idr_handle in the least significant 4 bytes
624  */
625 #define MAKE_HANDLE(gpu_id, idr_handle) \
626 	(((uint64_t)(gpu_id) << 32) + idr_handle)
627 #define GET_GPU_ID(handle) (handle >> 32)
628 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
629 
630 enum kfd_pdd_bound {
631 	PDD_UNBOUND = 0,
632 	PDD_BOUND,
633 	PDD_BOUND_SUSPENDED,
634 };
635 
636 #define MAX_SYSFS_FILENAME_LEN 15
637 
638 /*
639  * SDMA counter runs at 100MHz frequency.
640  * We display SDMA activity in microsecond granularity in sysfs.
641  * As a result, the divisor is 100.
642  */
643 #define SDMA_ACTIVITY_DIVISOR  100
644 
645 /* Data that is per-process-per device. */
646 struct kfd_process_device {
647 	/*
648 	 * List of all per-device data for a process.
649 	 * Starts from kfd_process.per_device_data.
650 	 */
651 	struct list_head per_device_list;
652 
653 	/* The device that owns this data. */
654 	struct kfd_dev *dev;
655 
656 	/* The process that owns this kfd_process_device. */
657 	struct kfd_process *process;
658 
659 	/* per-process-per device QCM data structure */
660 	struct qcm_process_device qpd;
661 
662 	/*Apertures*/
663 	uint64_t lds_base;
664 	uint64_t lds_limit;
665 	uint64_t gpuvm_base;
666 	uint64_t gpuvm_limit;
667 	uint64_t scratch_base;
668 	uint64_t scratch_limit;
669 
670 	/* VM context for GPUVM allocations */
671 	struct file *drm_file;
672 	void *vm;
673 
674 	/* GPUVM allocations storage */
675 	struct idr alloc_idr;
676 
677 	/* Flag used to tell the pdd has dequeued from the dqm.
678 	 * This is used to prevent dev->dqm->ops.process_termination() from
679 	 * being called twice when it is already called in IOMMU callback
680 	 * function.
681 	 */
682 	bool already_dequeued;
683 	bool runtime_inuse;
684 
685 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
686 	enum kfd_pdd_bound bound;
687 
688 	/* VRAM usage */
689 	uint64_t vram_usage;
690 	struct attribute attr_vram;
691 	char vram_filename[MAX_SYSFS_FILENAME_LEN];
692 
693 	/* SDMA activity tracking */
694 	uint64_t sdma_past_activity_counter;
695 	struct attribute attr_sdma;
696 	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
697 
698 	/* Eviction activity tracking */
699 	uint64_t last_evict_timestamp;
700 	atomic64_t evict_duration_counter;
701 	struct attribute attr_evict;
702 
703 	struct kobject *kobj_stats;
704 	unsigned int doorbell_index;
705 
706 	/*
707 	 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
708 	 * that is associated with device encoded by "this" struct instance. The
709 	 * value reflects CU usage by all of the waves launched by this process
710 	 * on this device. A very important property of occupancy parameter is
711 	 * that its value is a snapshot of current use.
712 	 *
713 	 * Following is to be noted regarding how this parameter is reported:
714 	 *
715 	 *  The number of waves that a CU can launch is limited by couple of
716 	 *  parameters. These are encoded by struct amdgpu_cu_info instance
717 	 *  that is part of every device definition. For GFX9 devices this
718 	 *  translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
719 	 *  do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
720 	 *  when they do use scratch memory. This could change for future
721 	 *  devices and therefore this example should be considered as a guide.
722 	 *
723 	 *  All CU's of a device are available for the process. This may not be true
724 	 *  under certain conditions - e.g. CU masking.
725 	 *
726 	 *  Finally number of CU's that are occupied by a process is affected by both
727 	 *  number of CU's a device has along with number of other competing processes
728 	 */
729 	struct attribute attr_cu_occupancy;
730 };
731 
732 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
733 
734 /* Process data */
735 struct kfd_process {
736 	/*
737 	 * kfd_process are stored in an mm_struct*->kfd_process*
738 	 * hash table (kfd_processes in kfd_process.c)
739 	 */
740 	struct hlist_node kfd_processes;
741 
742 	/*
743 	 * Opaque pointer to mm_struct. We don't hold a reference to
744 	 * it so it should never be dereferenced from here. This is
745 	 * only used for looking up processes by their mm.
746 	 */
747 	void *mm;
748 
749 	struct kref ref;
750 	struct work_struct release_work;
751 
752 	struct mutex mutex;
753 
754 	/*
755 	 * In any process, the thread that started main() is the lead
756 	 * thread and outlives the rest.
757 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
758 	 * It can also be used for safely getting a reference to the
759 	 * mm_struct of the process.
760 	 */
761 	struct task_struct *lead_thread;
762 
763 	/* We want to receive a notification when the mm_struct is destroyed */
764 	struct mmu_notifier mmu_notifier;
765 
766 	u32 pasid;
767 
768 	/*
769 	 * List of kfd_process_device structures,
770 	 * one for each device the process is using.
771 	 */
772 	struct list_head per_device_data;
773 
774 	struct process_queue_manager pqm;
775 
776 	/*Is the user space process 32 bit?*/
777 	bool is_32bit_user_mode;
778 
779 	/* Event-related data */
780 	struct mutex event_mutex;
781 	/* Event ID allocator and lookup */
782 	struct idr event_idr;
783 	/* Event page */
784 	struct kfd_signal_page *signal_page;
785 	size_t signal_mapped_size;
786 	size_t signal_event_count;
787 	bool signal_event_limit_reached;
788 
789 	/* Information used for memory eviction */
790 	void *kgd_process_info;
791 	/* Eviction fence that is attached to all the BOs of this process. The
792 	 * fence will be triggered during eviction and new one will be created
793 	 * during restore
794 	 */
795 	struct dma_fence *ef;
796 
797 	/* Work items for evicting and restoring BOs */
798 	struct delayed_work eviction_work;
799 	struct delayed_work restore_work;
800 	/* seqno of the last scheduled eviction */
801 	unsigned int last_eviction_seqno;
802 	/* Approx. the last timestamp (in jiffies) when the process was
803 	 * restored after an eviction
804 	 */
805 	unsigned long last_restore_timestamp;
806 
807 	/* Kobj for our procfs */
808 	struct kobject *kobj;
809 	struct kobject *kobj_queues;
810 	struct attribute attr_pasid;
811 };
812 
813 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
814 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
815 extern struct srcu_struct kfd_processes_srcu;
816 
817 /**
818  * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
819  *
820  * @filep: pointer to file structure.
821  * @p: amdkfd process pointer.
822  * @data: pointer to arg that was copied from user.
823  *
824  * Return: returns ioctl completion code.
825  */
826 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
827 				void *data);
828 
829 struct amdkfd_ioctl_desc {
830 	unsigned int cmd;
831 	int flags;
832 	amdkfd_ioctl_t *func;
833 	unsigned int cmd_drv;
834 	const char *name;
835 };
836 bool kfd_dev_is_large_bar(struct kfd_dev *dev);
837 
838 int kfd_process_create_wq(void);
839 void kfd_process_destroy_wq(void);
840 struct kfd_process *kfd_create_process(struct file *filep);
841 struct kfd_process *kfd_get_process(const struct task_struct *);
842 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
843 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
844 void kfd_unref_process(struct kfd_process *p);
845 int kfd_process_evict_queues(struct kfd_process *p);
846 int kfd_process_restore_queues(struct kfd_process *p);
847 void kfd_suspend_all_processes(void);
848 int kfd_resume_all_processes(void);
849 
850 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
851 			       struct file *drm_file);
852 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
853 						struct kfd_process *p);
854 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
855 							struct kfd_process *p);
856 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
857 							struct kfd_process *p);
858 
859 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
860 			  struct vm_area_struct *vma);
861 
862 /* KFD process API for creating and translating handles */
863 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
864 					void *mem);
865 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
866 					int handle);
867 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
868 					int handle);
869 
870 /* Process device data iterator */
871 struct kfd_process_device *kfd_get_first_process_device_data(
872 							struct kfd_process *p);
873 struct kfd_process_device *kfd_get_next_process_device_data(
874 						struct kfd_process *p,
875 						struct kfd_process_device *pdd);
876 bool kfd_has_process_device_data(struct kfd_process *p);
877 
878 /* PASIDs */
879 int kfd_pasid_init(void);
880 void kfd_pasid_exit(void);
881 bool kfd_set_pasid_limit(unsigned int new_limit);
882 unsigned int kfd_get_pasid_limit(void);
883 u32 kfd_pasid_alloc(void);
884 void kfd_pasid_free(u32 pasid);
885 
886 /* Doorbells */
887 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
888 int kfd_doorbell_init(struct kfd_dev *kfd);
889 void kfd_doorbell_fini(struct kfd_dev *kfd);
890 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
891 		      struct vm_area_struct *vma);
892 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
893 					unsigned int *doorbell_off);
894 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
895 u32 read_kernel_doorbell(u32 __iomem *db);
896 void write_kernel_doorbell(void __iomem *db, u32 value);
897 void write_kernel_doorbell64(void __iomem *db, u64 value);
898 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
899 					struct kfd_process_device *pdd,
900 					unsigned int doorbell_id);
901 phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
902 int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
903 				unsigned int *doorbell_index);
904 void kfd_free_process_doorbells(struct kfd_dev *kfd,
905 				unsigned int doorbell_index);
906 /* GTT Sub-Allocator */
907 
908 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
909 			struct kfd_mem_obj **mem_obj);
910 
911 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
912 
913 extern struct device *kfd_device;
914 
915 /* KFD's procfs */
916 void kfd_procfs_init(void);
917 void kfd_procfs_shutdown(void);
918 int kfd_procfs_add_queue(struct queue *q);
919 void kfd_procfs_del_queue(struct queue *q);
920 
921 /* Topology */
922 int kfd_topology_init(void);
923 void kfd_topology_shutdown(void);
924 int kfd_topology_add_device(struct kfd_dev *gpu);
925 int kfd_topology_remove_device(struct kfd_dev *gpu);
926 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
927 						uint32_t proximity_domain);
928 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
929 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
930 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
931 struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd);
932 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
933 int kfd_numa_node_to_apic_id(int numa_node_id);
934 void kfd_double_confirm_iommu_support(struct kfd_dev *gpu);
935 
936 /* Interrupts */
937 int kfd_interrupt_init(struct kfd_dev *dev);
938 void kfd_interrupt_exit(struct kfd_dev *dev);
939 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
940 bool interrupt_is_wanted(struct kfd_dev *dev,
941 				const uint32_t *ih_ring_entry,
942 				uint32_t *patched_ihre, bool *flag);
943 
944 /* amdkfd Apertures */
945 int kfd_init_apertures(struct kfd_process *process);
946 
947 /* Queue Context Management */
948 int init_queue(struct queue **q, const struct queue_properties *properties);
949 void uninit_queue(struct queue *q);
950 void print_queue_properties(struct queue_properties *q);
951 void print_queue(struct queue *q);
952 
953 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
954 		struct kfd_dev *dev);
955 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
956 		struct kfd_dev *dev);
957 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
958 		struct kfd_dev *dev);
959 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
960 		struct kfd_dev *dev);
961 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
962 		struct kfd_dev *dev);
963 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
964 		struct kfd_dev *dev);
965 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
966 void device_queue_manager_uninit(struct device_queue_manager *dqm);
967 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
968 					enum kfd_queue_type type);
969 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
970 int kfd_process_vm_fault(struct device_queue_manager *dqm, u32 pasid);
971 
972 /* Process Queue Manager */
973 struct process_queue_node {
974 	struct queue *q;
975 	struct kernel_queue *kq;
976 	struct list_head process_queue_list;
977 };
978 
979 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
980 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
981 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
982 void pqm_uninit(struct process_queue_manager *pqm);
983 int pqm_create_queue(struct process_queue_manager *pqm,
984 			    struct kfd_dev *dev,
985 			    struct file *f,
986 			    struct queue_properties *properties,
987 			    unsigned int *qid,
988 			    uint32_t *p_doorbell_offset_in_process);
989 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
990 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
991 			struct queue_properties *p);
992 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid,
993 			struct queue_properties *p);
994 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
995 			void *gws);
996 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
997 						unsigned int qid);
998 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
999 						unsigned int qid);
1000 int pqm_get_wave_state(struct process_queue_manager *pqm,
1001 		       unsigned int qid,
1002 		       void __user *ctl_stack,
1003 		       u32 *ctl_stack_used_size,
1004 		       u32 *save_area_used_size);
1005 
1006 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
1007 			      unsigned int fence_value,
1008 			      unsigned int timeout_ms);
1009 
1010 /* Packet Manager */
1011 
1012 #define KFD_FENCE_COMPLETED (100)
1013 #define KFD_FENCE_INIT   (10)
1014 
1015 struct packet_manager {
1016 	struct device_queue_manager *dqm;
1017 	struct kernel_queue *priv_queue;
1018 	struct mutex lock;
1019 	bool allocated;
1020 	struct kfd_mem_obj *ib_buffer_obj;
1021 	unsigned int ib_size_bytes;
1022 	bool is_over_subscription;
1023 
1024 	const struct packet_manager_funcs *pmf;
1025 };
1026 
1027 struct packet_manager_funcs {
1028 	/* Support ASIC-specific packet formats for PM4 packets */
1029 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1030 			struct qcm_process_device *qpd);
1031 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1032 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
1033 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1034 			struct scheduling_resources *res);
1035 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1036 			struct queue *q, bool is_static);
1037 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1038 			enum kfd_queue_type type,
1039 			enum kfd_unmap_queues_filter mode,
1040 			uint32_t filter_param, bool reset,
1041 			unsigned int sdma_engine);
1042 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1043 			uint64_t fence_address,	uint32_t fence_value);
1044 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1045 
1046 	/* Packet sizes */
1047 	int map_process_size;
1048 	int runlist_size;
1049 	int set_resources_size;
1050 	int map_queues_size;
1051 	int unmap_queues_size;
1052 	int query_status_size;
1053 	int release_mem_size;
1054 };
1055 
1056 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1057 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1058 
1059 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1060 void pm_uninit(struct packet_manager *pm, bool hanging);
1061 int pm_send_set_resources(struct packet_manager *pm,
1062 				struct scheduling_resources *res);
1063 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1064 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1065 				uint32_t fence_value);
1066 
1067 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
1068 			enum kfd_unmap_queues_filter mode,
1069 			uint32_t filter_param, bool reset,
1070 			unsigned int sdma_engine);
1071 
1072 void pm_release_ib(struct packet_manager *pm);
1073 
1074 /* Following PM funcs can be shared among VI and AI */
1075 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1076 
1077 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1078 
1079 /* Events */
1080 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1081 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1082 
1083 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1084 
1085 void kfd_event_init_process(struct kfd_process *p);
1086 void kfd_event_free_process(struct kfd_process *p);
1087 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1088 int kfd_wait_on_events(struct kfd_process *p,
1089 		       uint32_t num_events, void __user *data,
1090 		       bool all, uint32_t user_timeout_ms,
1091 		       uint32_t *wait_result);
1092 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1093 				uint32_t valid_id_bits);
1094 void kfd_signal_iommu_event(struct kfd_dev *dev,
1095 			    u32 pasid, unsigned long address,
1096 			    bool is_write_requested, bool is_execute_requested);
1097 void kfd_signal_hw_exception_event(u32 pasid);
1098 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1099 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1100 int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1101 		       uint64_t size);
1102 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1103 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1104 		     uint32_t *event_id, uint32_t *event_trigger_data,
1105 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1106 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1107 
1108 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid,
1109 				struct kfd_vm_fault_info *info);
1110 
1111 void kfd_signal_reset_event(struct kfd_dev *dev);
1112 
1113 void kfd_flush_tlb(struct kfd_process_device *pdd);
1114 
1115 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1116 
1117 bool kfd_is_locked(void);
1118 
1119 /* Compute profile */
1120 void kfd_inc_compute_active(struct kfd_dev *dev);
1121 void kfd_dec_compute_active(struct kfd_dev *dev);
1122 
1123 /* Cgroup Support */
1124 /* Check with device cgroup if @kfd device is accessible */
1125 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1126 {
1127 #if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1128 	struct drm_device *ddev = kfd->ddev;
1129 
1130 	return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1131 					  ddev->render->index,
1132 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1133 #else
1134 	return 0;
1135 #endif
1136 }
1137 
1138 /* Debugfs */
1139 #if defined(CONFIG_DEBUG_FS)
1140 
1141 void kfd_debugfs_init(void);
1142 void kfd_debugfs_fini(void);
1143 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1144 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1145 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1146 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1147 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1148 int pm_debugfs_runlist(struct seq_file *m, void *data);
1149 
1150 int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1151 int pm_debugfs_hang_hws(struct packet_manager *pm);
1152 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm);
1153 
1154 #else
1155 
1156 static inline void kfd_debugfs_init(void) {}
1157 static inline void kfd_debugfs_fini(void) {}
1158 
1159 #endif
1160 
1161 #endif
1162