xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h (revision 06ff634c0dae791c17ceeeb60c74e14470d76898)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25 
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/mutex.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/workqueue.h>
32 #include <linux/spinlock.h>
33 #include <linux/kfd_ioctl.h>
34 #include <linux/idr.h>
35 #include <linux/kfifo.h>
36 #include <linux/seq_file.h>
37 #include <linux/kref.h>
38 #include <linux/sysfs.h>
39 #include <linux/device_cgroup.h>
40 #include <drm/drm_file.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_device.h>
43 #include <kgd_kfd_interface.h>
44 #include <linux/swap.h>
45 
46 #include "amd_shared.h"
47 
48 #define KFD_MAX_RING_ENTRY_SIZE	8
49 
50 #define KFD_SYSFS_FILE_MODE 0444
51 
52 /* GPU ID hash width in bits */
53 #define KFD_GPU_ID_HASH_WIDTH 16
54 
55 /* Use upper bits of mmap offset to store KFD driver specific information.
56  * BITS[63:62] - Encode MMAP type
57  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
58  * BITS[45:0]  - MMAP offset value
59  *
60  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
61  *  defines are w.r.t to PAGE_SIZE
62  */
63 #define KFD_MMAP_TYPE_SHIFT	62
64 #define KFD_MMAP_TYPE_MASK	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
65 #define KFD_MMAP_TYPE_DOORBELL	(0x3ULL << KFD_MMAP_TYPE_SHIFT)
66 #define KFD_MMAP_TYPE_EVENTS	(0x2ULL << KFD_MMAP_TYPE_SHIFT)
67 #define KFD_MMAP_TYPE_RESERVED_MEM	(0x1ULL << KFD_MMAP_TYPE_SHIFT)
68 #define KFD_MMAP_TYPE_MMIO	(0x0ULL << KFD_MMAP_TYPE_SHIFT)
69 
70 #define KFD_MMAP_GPU_ID_SHIFT 46
71 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
72 				<< KFD_MMAP_GPU_ID_SHIFT)
73 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
74 				& KFD_MMAP_GPU_ID_MASK)
75 #define KFD_MMAP_GET_GPU_ID(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
76 				>> KFD_MMAP_GPU_ID_SHIFT)
77 
78 /*
79  * When working with cp scheduler we should assign the HIQ manually or via
80  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
81  * definitions for Kaveri. In Kaveri only the first ME queues participates
82  * in the cp scheduling taking that in mind we set the HIQ slot in the
83  * second ME.
84  */
85 #define KFD_CIK_HIQ_PIPE 4
86 #define KFD_CIK_HIQ_QUEUE 0
87 
88 /* Macro for allocating structures */
89 #define kfd_alloc_struct(ptr_to_struct)	\
90 	((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
91 
92 #define KFD_MAX_NUM_OF_PROCESSES 512
93 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
94 
95 /*
96  * Size of the per-process TBA+TMA buffer: 2 pages
97  *
98  * The first page is the TBA used for the CWSR ISA code. The second
99  * page is used as TMA for daisy changing a user-mode trap handler.
100  */
101 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
102 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
103 
104 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE		\
105 	(KFD_MAX_NUM_OF_PROCESSES *			\
106 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
107 
108 #define KFD_KERNEL_QUEUE_SIZE 2048
109 
110 #define KFD_UNMAP_LATENCY_MS	(4000)
111 
112 /*
113  * 512 = 0x200
114  * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
115  * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
116  * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
117  * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
118  * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
119  */
120 #define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
121 
122 
123 /*
124  * Kernel module parameter to specify maximum number of supported queues per
125  * device
126  */
127 extern int max_num_of_queues_per_device;
128 
129 
130 /* Kernel module parameter to specify the scheduling policy */
131 extern int sched_policy;
132 
133 /*
134  * Kernel module parameter to specify the maximum process
135  * number per HW scheduler
136  */
137 extern int hws_max_conc_proc;
138 
139 extern int cwsr_enable;
140 
141 /*
142  * Kernel module parameter to specify whether to send sigterm to HSA process on
143  * unhandled exception
144  */
145 extern int send_sigterm;
146 
147 /*
148  * This kernel module is used to simulate large bar machine on non-large bar
149  * enabled machines.
150  */
151 extern int debug_largebar;
152 
153 /*
154  * Ignore CRAT table during KFD initialization, can be used to work around
155  * broken CRAT tables on some AMD systems
156  */
157 extern int ignore_crat;
158 
159 /*
160  * Set sh_mem_config.retry_disable on Vega10
161  */
162 extern int amdgpu_noretry;
163 
164 /*
165  * Halt if HWS hang is detected
166  */
167 extern int halt_if_hws_hang;
168 
169 /*
170  * Whether MEC FW support GWS barriers
171  */
172 extern bool hws_gws_support;
173 
174 /*
175  * Queue preemption timeout in ms
176  */
177 extern int queue_preemption_timeout_ms;
178 
179 enum cache_policy {
180 	cache_policy_coherent,
181 	cache_policy_noncoherent
182 };
183 
184 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
185 
186 struct kfd_event_interrupt_class {
187 	bool (*interrupt_isr)(struct kfd_dev *dev,
188 			const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
189 			bool *patched_flag);
190 	void (*interrupt_wq)(struct kfd_dev *dev,
191 			const uint32_t *ih_ring_entry);
192 };
193 
194 struct kfd_device_info {
195 	enum amd_asic_type asic_family;
196 	const char *asic_name;
197 	const struct kfd_event_interrupt_class *event_interrupt_class;
198 	unsigned int max_pasid_bits;
199 	unsigned int max_no_of_hqd;
200 	unsigned int doorbell_size;
201 	size_t ih_ring_entry_size;
202 	uint8_t num_of_watch_points;
203 	uint16_t mqd_size_aligned;
204 	bool supports_cwsr;
205 	bool needs_iommu_device;
206 	bool needs_pci_atomics;
207 	unsigned int num_sdma_engines;
208 	unsigned int num_xgmi_sdma_engines;
209 	unsigned int num_sdma_queues_per_engine;
210 };
211 
212 struct kfd_mem_obj {
213 	uint32_t range_start;
214 	uint32_t range_end;
215 	uint64_t gpu_addr;
216 	uint32_t *cpu_ptr;
217 	void *gtt_mem;
218 };
219 
220 struct kfd_vmid_info {
221 	uint32_t first_vmid_kfd;
222 	uint32_t last_vmid_kfd;
223 	uint32_t vmid_num_kfd;
224 };
225 
226 struct kfd_dev {
227 	struct kgd_dev *kgd;
228 
229 	const struct kfd_device_info *device_info;
230 	struct pci_dev *pdev;
231 	struct drm_device *ddev;
232 
233 	unsigned int id;		/* topology stub index */
234 
235 	phys_addr_t doorbell_base;	/* Start of actual doorbells used by
236 					 * KFD. It is aligned for mapping
237 					 * into user mode
238 					 */
239 	size_t doorbell_base_dw_offset;	/* Offset from the start of the PCI
240 					 * doorbell BAR to the first KFD
241 					 * doorbell in dwords. GFX reserves
242 					 * the segment before this offset.
243 					 */
244 	u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
245 					   * page used by kernel queue
246 					   */
247 
248 	struct kgd2kfd_shared_resources shared_resources;
249 	struct kfd_vmid_info vm_info;
250 
251 	const struct kfd2kgd_calls *kfd2kgd;
252 	struct mutex doorbell_mutex;
253 	DECLARE_BITMAP(doorbell_available_index,
254 			KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
255 
256 	void *gtt_mem;
257 	uint64_t gtt_start_gpu_addr;
258 	void *gtt_start_cpu_ptr;
259 	void *gtt_sa_bitmap;
260 	struct mutex gtt_sa_lock;
261 	unsigned int gtt_sa_chunk_size;
262 	unsigned int gtt_sa_num_of_chunks;
263 
264 	/* Interrupts */
265 	struct kfifo ih_fifo;
266 	struct workqueue_struct *ih_wq;
267 	struct work_struct interrupt_work;
268 	spinlock_t interrupt_lock;
269 
270 	/* QCM Device instance */
271 	struct device_queue_manager *dqm;
272 
273 	bool init_complete;
274 	/*
275 	 * Interrupts of interest to KFD are copied
276 	 * from the HW ring into a SW ring.
277 	 */
278 	bool interrupts_active;
279 
280 	/* Debug manager */
281 	struct kfd_dbgmgr *dbgmgr;
282 
283 	/* Firmware versions */
284 	uint16_t mec_fw_version;
285 	uint16_t mec2_fw_version;
286 	uint16_t sdma_fw_version;
287 
288 	/* Maximum process number mapped to HW scheduler */
289 	unsigned int max_proc_per_quantum;
290 
291 	/* CWSR */
292 	bool cwsr_enabled;
293 	const void *cwsr_isa;
294 	unsigned int cwsr_isa_size;
295 
296 	/* xGMI */
297 	uint64_t hive_id;
298 
299 	/* UUID */
300 	uint64_t unique_id;
301 
302 	bool pci_atomic_requested;
303 
304 	/* SRAM ECC flag */
305 	atomic_t sram_ecc_flag;
306 
307 	/* Compute Profile ref. count */
308 	atomic_t compute_profile;
309 
310 	/* Global GWS resource shared b/t processes*/
311 	void *gws;
312 };
313 
314 enum kfd_mempool {
315 	KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
316 	KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
317 	KFD_MEMPOOL_FRAMEBUFFER = 3,
318 };
319 
320 /* Character device interface */
321 int kfd_chardev_init(void);
322 void kfd_chardev_exit(void);
323 struct device *kfd_chardev(void);
324 
325 /**
326  * enum kfd_unmap_queues_filter
327  *
328  * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
329  *
330  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
331  *						running queues list.
332  *
333  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
334  *						specific process.
335  *
336  */
337 enum kfd_unmap_queues_filter {
338 	KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
339 	KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
340 	KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
341 	KFD_UNMAP_QUEUES_FILTER_BY_PASID
342 };
343 
344 /**
345  * enum kfd_queue_type
346  *
347  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
348  *
349  * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type.
350  *
351  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
352  *
353  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
354  */
355 enum kfd_queue_type  {
356 	KFD_QUEUE_TYPE_COMPUTE,
357 	KFD_QUEUE_TYPE_SDMA,
358 	KFD_QUEUE_TYPE_HIQ,
359 	KFD_QUEUE_TYPE_DIQ,
360 	KFD_QUEUE_TYPE_SDMA_XGMI
361 };
362 
363 enum kfd_queue_format {
364 	KFD_QUEUE_FORMAT_PM4,
365 	KFD_QUEUE_FORMAT_AQL
366 };
367 
368 enum KFD_QUEUE_PRIORITY {
369 	KFD_QUEUE_PRIORITY_MINIMUM = 0,
370 	KFD_QUEUE_PRIORITY_MAXIMUM = 15
371 };
372 
373 /**
374  * struct queue_properties
375  *
376  * @type: The queue type.
377  *
378  * @queue_id: Queue identifier.
379  *
380  * @queue_address: Queue ring buffer address.
381  *
382  * @queue_size: Queue ring buffer size.
383  *
384  * @priority: Defines the queue priority relative to other queues in the
385  * process.
386  * This is just an indication and HW scheduling may override the priority as
387  * necessary while keeping the relative prioritization.
388  * the priority granularity is from 0 to f which f is the highest priority.
389  * currently all queues are initialized with the highest priority.
390  *
391  * @queue_percent: This field is partially implemented and currently a zero in
392  * this field defines that the queue is non active.
393  *
394  * @read_ptr: User space address which points to the number of dwords the
395  * cp read from the ring buffer. This field updates automatically by the H/W.
396  *
397  * @write_ptr: Defines the number of dwords written to the ring buffer.
398  *
399  * @doorbell_ptr: This field aim is to notify the H/W of new packet written to
400  * the queue ring buffer. This field should be similar to write_ptr and the
401  * user should update this field after he updated the write_ptr.
402  *
403  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
404  *
405  * @is_interop: Defines if this is a interop queue. Interop queue means that
406  * the queue can access both graphics and compute resources.
407  *
408  * @is_evicted: Defines if the queue is evicted. Only active queues
409  * are evicted, rendering them inactive.
410  *
411  * @is_active: Defines if the queue is active or not. @is_active and
412  * @is_evicted are protected by the DQM lock.
413  *
414  * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
415  * @is_gws should be protected by the DQM lock, since changing it can yield the
416  * possibility of updating DQM state on number of GWS queues.
417  *
418  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
419  * of the queue.
420  *
421  * This structure represents the queue properties for each queue no matter if
422  * it's user mode or kernel mode queue.
423  *
424  */
425 struct queue_properties {
426 	enum kfd_queue_type type;
427 	enum kfd_queue_format format;
428 	unsigned int queue_id;
429 	uint64_t queue_address;
430 	uint64_t  queue_size;
431 	uint32_t priority;
432 	uint32_t queue_percent;
433 	uint32_t *read_ptr;
434 	uint32_t *write_ptr;
435 	void __iomem *doorbell_ptr;
436 	uint32_t doorbell_off;
437 	bool is_interop;
438 	bool is_evicted;
439 	bool is_active;
440 	bool is_gws;
441 	/* Not relevant for user mode queues in cp scheduling */
442 	unsigned int vmid;
443 	/* Relevant only for sdma queues*/
444 	uint32_t sdma_engine_id;
445 	uint32_t sdma_queue_id;
446 	uint32_t sdma_vm_addr;
447 	/* Relevant only for VI */
448 	uint64_t eop_ring_buffer_address;
449 	uint32_t eop_ring_buffer_size;
450 	uint64_t ctx_save_restore_area_address;
451 	uint32_t ctx_save_restore_area_size;
452 	uint32_t ctl_stack_size;
453 	uint64_t tba_addr;
454 	uint64_t tma_addr;
455 	/* Relevant for CU */
456 	uint32_t cu_mask_count; /* Must be a multiple of 32 */
457 	uint32_t *cu_mask;
458 };
459 
460 #define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 &&	\
461 			    (q).queue_address != 0 &&	\
462 			    (q).queue_percent > 0 &&	\
463 			    !(q).is_evicted)
464 
465 /**
466  * struct queue
467  *
468  * @list: Queue linked list.
469  *
470  * @mqd: The queue MQD.
471  *
472  * @mqd_mem_obj: The MQD local gpu memory object.
473  *
474  * @gart_mqd_addr: The MQD gart mc address.
475  *
476  * @properties: The queue properties.
477  *
478  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
479  *	 that the queue should be execute on.
480  *
481  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
482  *	  id.
483  *
484  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
485  *
486  * @process: The kfd process that created this queue.
487  *
488  * @device: The kfd device that created this queue.
489  *
490  * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
491  * otherwise.
492  *
493  * This structure represents user mode compute queues.
494  * It contains all the necessary data to handle such queues.
495  *
496  */
497 
498 struct queue {
499 	struct list_head list;
500 	void *mqd;
501 	struct kfd_mem_obj *mqd_mem_obj;
502 	uint64_t gart_mqd_addr;
503 	struct queue_properties properties;
504 
505 	uint32_t mec;
506 	uint32_t pipe;
507 	uint32_t queue;
508 
509 	unsigned int sdma_id;
510 	unsigned int doorbell_id;
511 
512 	struct kfd_process	*process;
513 	struct kfd_dev		*device;
514 	void *gws;
515 
516 	/* procfs */
517 	struct kobject kobj;
518 };
519 
520 /*
521  * Please read the kfd_mqd_manager.h description.
522  */
523 enum KFD_MQD_TYPE {
524 	KFD_MQD_TYPE_HIQ = 0,		/* for hiq */
525 	KFD_MQD_TYPE_CP,		/* for cp queues and diq */
526 	KFD_MQD_TYPE_SDMA,		/* for sdma queues */
527 	KFD_MQD_TYPE_DIQ,		/* for diq */
528 	KFD_MQD_TYPE_MAX
529 };
530 
531 enum KFD_PIPE_PRIORITY {
532 	KFD_PIPE_PRIORITY_CS_LOW = 0,
533 	KFD_PIPE_PRIORITY_CS_MEDIUM,
534 	KFD_PIPE_PRIORITY_CS_HIGH
535 };
536 
537 struct scheduling_resources {
538 	unsigned int vmid_mask;
539 	enum kfd_queue_type type;
540 	uint64_t queue_mask;
541 	uint64_t gws_mask;
542 	uint32_t oac_mask;
543 	uint32_t gds_heap_base;
544 	uint32_t gds_heap_size;
545 };
546 
547 struct process_queue_manager {
548 	/* data */
549 	struct kfd_process	*process;
550 	struct list_head	queues;
551 	unsigned long		*queue_slot_bitmap;
552 };
553 
554 struct qcm_process_device {
555 	/* The Device Queue Manager that owns this data */
556 	struct device_queue_manager *dqm;
557 	struct process_queue_manager *pqm;
558 	/* Queues list */
559 	struct list_head queues_list;
560 	struct list_head priv_queue_list;
561 
562 	unsigned int queue_count;
563 	unsigned int vmid;
564 	bool is_debug;
565 	unsigned int evicted; /* eviction counter, 0=active */
566 
567 	/* This flag tells if we should reset all wavefronts on
568 	 * process termination
569 	 */
570 	bool reset_wavefronts;
571 
572 	/* This flag tells us if this process has a GWS-capable
573 	 * queue that will be mapped into the runlist. It's
574 	 * possible to request a GWS BO, but not have the queue
575 	 * currently mapped, and this changes how the MAP_PROCESS
576 	 * PM4 packet is configured.
577 	 */
578 	bool mapped_gws_queue;
579 
580 	/*
581 	 * All the memory management data should be here too
582 	 */
583 	uint64_t gds_context_area;
584 	/* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
585 	uint64_t page_table_base;
586 	uint32_t sh_mem_config;
587 	uint32_t sh_mem_bases;
588 	uint32_t sh_mem_ape1_base;
589 	uint32_t sh_mem_ape1_limit;
590 	uint32_t gds_size;
591 	uint32_t num_gws;
592 	uint32_t num_oac;
593 	uint32_t sh_hidden_private_base;
594 
595 	/* CWSR memory */
596 	void *cwsr_kaddr;
597 	uint64_t cwsr_base;
598 	uint64_t tba_addr;
599 	uint64_t tma_addr;
600 
601 	/* IB memory */
602 	uint64_t ib_base;
603 	void *ib_kaddr;
604 
605 	/* doorbell resources per process per device */
606 	unsigned long *doorbell_bitmap;
607 };
608 
609 /* KFD Memory Eviction */
610 
611 /* Approx. wait time before attempting to restore evicted BOs */
612 #define PROCESS_RESTORE_TIME_MS 100
613 /* Approx. back off time if restore fails due to lack of memory */
614 #define PROCESS_BACK_OFF_TIME_MS 100
615 /* Approx. time before evicting the process again */
616 #define PROCESS_ACTIVE_TIME_MS 10
617 
618 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
619  * idr_handle in the least significant 4 bytes
620  */
621 #define MAKE_HANDLE(gpu_id, idr_handle) \
622 	(((uint64_t)(gpu_id) << 32) + idr_handle)
623 #define GET_GPU_ID(handle) (handle >> 32)
624 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
625 
626 enum kfd_pdd_bound {
627 	PDD_UNBOUND = 0,
628 	PDD_BOUND,
629 	PDD_BOUND_SUSPENDED,
630 };
631 
632 #define MAX_SYSFS_FILENAME_LEN 11
633 
634 /*
635  * SDMA counter runs at 100MHz frequency.
636  * We display SDMA activity in microsecond granularity in sysfs.
637  * As a result, the divisor is 100.
638  */
639 #define SDMA_ACTIVITY_DIVISOR  100
640 
641 /* Data that is per-process-per device. */
642 struct kfd_process_device {
643 	/*
644 	 * List of all per-device data for a process.
645 	 * Starts from kfd_process.per_device_data.
646 	 */
647 	struct list_head per_device_list;
648 
649 	/* The device that owns this data. */
650 	struct kfd_dev *dev;
651 
652 	/* The process that owns this kfd_process_device. */
653 	struct kfd_process *process;
654 
655 	/* per-process-per device QCM data structure */
656 	struct qcm_process_device qpd;
657 
658 	/*Apertures*/
659 	uint64_t lds_base;
660 	uint64_t lds_limit;
661 	uint64_t gpuvm_base;
662 	uint64_t gpuvm_limit;
663 	uint64_t scratch_base;
664 	uint64_t scratch_limit;
665 
666 	/* VM context for GPUVM allocations */
667 	struct file *drm_file;
668 	void *vm;
669 
670 	/* GPUVM allocations storage */
671 	struct idr alloc_idr;
672 
673 	/* Flag used to tell the pdd has dequeued from the dqm.
674 	 * This is used to prevent dev->dqm->ops.process_termination() from
675 	 * being called twice when it is already called in IOMMU callback
676 	 * function.
677 	 */
678 	bool already_dequeued;
679 	bool runtime_inuse;
680 
681 	/* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
682 	enum kfd_pdd_bound bound;
683 
684 	/* VRAM usage */
685 	uint64_t vram_usage;
686 	struct attribute attr_vram;
687 	char vram_filename[MAX_SYSFS_FILENAME_LEN];
688 
689 	/* SDMA activity tracking */
690 	uint64_t sdma_past_activity_counter;
691 	struct attribute attr_sdma;
692 	char sdma_filename[MAX_SYSFS_FILENAME_LEN];
693 };
694 
695 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
696 
697 /* Process data */
698 struct kfd_process {
699 	/*
700 	 * kfd_process are stored in an mm_struct*->kfd_process*
701 	 * hash table (kfd_processes in kfd_process.c)
702 	 */
703 	struct hlist_node kfd_processes;
704 
705 	/*
706 	 * Opaque pointer to mm_struct. We don't hold a reference to
707 	 * it so it should never be dereferenced from here. This is
708 	 * only used for looking up processes by their mm.
709 	 */
710 	void *mm;
711 
712 	struct kref ref;
713 	struct work_struct release_work;
714 
715 	struct mutex mutex;
716 
717 	/*
718 	 * In any process, the thread that started main() is the lead
719 	 * thread and outlives the rest.
720 	 * It is here because amd_iommu_bind_pasid wants a task_struct.
721 	 * It can also be used for safely getting a reference to the
722 	 * mm_struct of the process.
723 	 */
724 	struct task_struct *lead_thread;
725 
726 	/* We want to receive a notification when the mm_struct is destroyed */
727 	struct mmu_notifier mmu_notifier;
728 
729 	uint16_t pasid;
730 	unsigned int doorbell_index;
731 
732 	/*
733 	 * List of kfd_process_device structures,
734 	 * one for each device the process is using.
735 	 */
736 	struct list_head per_device_data;
737 
738 	struct process_queue_manager pqm;
739 
740 	/*Is the user space process 32 bit?*/
741 	bool is_32bit_user_mode;
742 
743 	/* Event-related data */
744 	struct mutex event_mutex;
745 	/* Event ID allocator and lookup */
746 	struct idr event_idr;
747 	/* Event page */
748 	struct kfd_signal_page *signal_page;
749 	size_t signal_mapped_size;
750 	size_t signal_event_count;
751 	bool signal_event_limit_reached;
752 
753 	/* Information used for memory eviction */
754 	void *kgd_process_info;
755 	/* Eviction fence that is attached to all the BOs of this process. The
756 	 * fence will be triggered during eviction and new one will be created
757 	 * during restore
758 	 */
759 	struct dma_fence *ef;
760 
761 	/* Work items for evicting and restoring BOs */
762 	struct delayed_work eviction_work;
763 	struct delayed_work restore_work;
764 	/* seqno of the last scheduled eviction */
765 	unsigned int last_eviction_seqno;
766 	/* Approx. the last timestamp (in jiffies) when the process was
767 	 * restored after an eviction
768 	 */
769 	unsigned long last_restore_timestamp;
770 
771 	/* Kobj for our procfs */
772 	struct kobject *kobj;
773 	struct kobject *kobj_queues;
774 	struct attribute attr_pasid;
775 };
776 
777 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
778 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
779 extern struct srcu_struct kfd_processes_srcu;
780 
781 /**
782  * Ioctl function type.
783  *
784  * \param filep pointer to file structure.
785  * \param p amdkfd process pointer.
786  * \param data pointer to arg that was copied from user.
787  */
788 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
789 				void *data);
790 
791 struct amdkfd_ioctl_desc {
792 	unsigned int cmd;
793 	int flags;
794 	amdkfd_ioctl_t *func;
795 	unsigned int cmd_drv;
796 	const char *name;
797 };
798 bool kfd_dev_is_large_bar(struct kfd_dev *dev);
799 
800 int kfd_process_create_wq(void);
801 void kfd_process_destroy_wq(void);
802 struct kfd_process *kfd_create_process(struct file *filep);
803 struct kfd_process *kfd_get_process(const struct task_struct *);
804 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid);
805 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
806 void kfd_unref_process(struct kfd_process *p);
807 int kfd_process_evict_queues(struct kfd_process *p);
808 int kfd_process_restore_queues(struct kfd_process *p);
809 void kfd_suspend_all_processes(void);
810 int kfd_resume_all_processes(void);
811 
812 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
813 			       struct file *drm_file);
814 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
815 						struct kfd_process *p);
816 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
817 							struct kfd_process *p);
818 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
819 							struct kfd_process *p);
820 
821 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
822 			  struct vm_area_struct *vma);
823 
824 /* KFD process API for creating and translating handles */
825 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
826 					void *mem);
827 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
828 					int handle);
829 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
830 					int handle);
831 
832 /* Process device data iterator */
833 struct kfd_process_device *kfd_get_first_process_device_data(
834 							struct kfd_process *p);
835 struct kfd_process_device *kfd_get_next_process_device_data(
836 						struct kfd_process *p,
837 						struct kfd_process_device *pdd);
838 bool kfd_has_process_device_data(struct kfd_process *p);
839 
840 /* PASIDs */
841 int kfd_pasid_init(void);
842 void kfd_pasid_exit(void);
843 bool kfd_set_pasid_limit(unsigned int new_limit);
844 unsigned int kfd_get_pasid_limit(void);
845 unsigned int kfd_pasid_alloc(void);
846 void kfd_pasid_free(unsigned int pasid);
847 
848 /* Doorbells */
849 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
850 int kfd_doorbell_init(struct kfd_dev *kfd);
851 void kfd_doorbell_fini(struct kfd_dev *kfd);
852 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
853 		      struct vm_area_struct *vma);
854 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
855 					unsigned int *doorbell_off);
856 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
857 u32 read_kernel_doorbell(u32 __iomem *db);
858 void write_kernel_doorbell(void __iomem *db, u32 value);
859 void write_kernel_doorbell64(void __iomem *db, u64 value);
860 unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
861 					struct kfd_process *process,
862 					unsigned int doorbell_id);
863 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
864 					struct kfd_process *process);
865 int kfd_alloc_process_doorbells(struct kfd_process *process);
866 void kfd_free_process_doorbells(struct kfd_process *process);
867 
868 /* GTT Sub-Allocator */
869 
870 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
871 			struct kfd_mem_obj **mem_obj);
872 
873 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
874 
875 extern struct device *kfd_device;
876 
877 /* KFD's procfs */
878 void kfd_procfs_init(void);
879 void kfd_procfs_shutdown(void);
880 int kfd_procfs_add_queue(struct queue *q);
881 void kfd_procfs_del_queue(struct queue *q);
882 
883 /* Topology */
884 int kfd_topology_init(void);
885 void kfd_topology_shutdown(void);
886 int kfd_topology_add_device(struct kfd_dev *gpu);
887 int kfd_topology_remove_device(struct kfd_dev *gpu);
888 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
889 						uint32_t proximity_domain);
890 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
891 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
892 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
893 struct kfd_dev *kfd_device_by_kgd(const struct kgd_dev *kgd);
894 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
895 int kfd_numa_node_to_apic_id(int numa_node_id);
896 
897 /* Interrupts */
898 int kfd_interrupt_init(struct kfd_dev *dev);
899 void kfd_interrupt_exit(struct kfd_dev *dev);
900 bool enqueue_ih_ring_entry(struct kfd_dev *kfd,	const void *ih_ring_entry);
901 bool interrupt_is_wanted(struct kfd_dev *dev,
902 				const uint32_t *ih_ring_entry,
903 				uint32_t *patched_ihre, bool *flag);
904 
905 /* amdkfd Apertures */
906 int kfd_init_apertures(struct kfd_process *process);
907 
908 /* Queue Context Management */
909 int init_queue(struct queue **q, const struct queue_properties *properties);
910 void uninit_queue(struct queue *q);
911 void print_queue_properties(struct queue_properties *q);
912 void print_queue(struct queue *q);
913 
914 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
915 		struct kfd_dev *dev);
916 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
917 		struct kfd_dev *dev);
918 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
919 		struct kfd_dev *dev);
920 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
921 		struct kfd_dev *dev);
922 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
923 		struct kfd_dev *dev);
924 struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
925 		struct kfd_dev *dev);
926 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
927 void device_queue_manager_uninit(struct device_queue_manager *dqm);
928 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
929 					enum kfd_queue_type type);
930 void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
931 int kfd_process_vm_fault(struct device_queue_manager *dqm, unsigned int pasid);
932 
933 /* Process Queue Manager */
934 struct process_queue_node {
935 	struct queue *q;
936 	struct kernel_queue *kq;
937 	struct list_head process_queue_list;
938 };
939 
940 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
941 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
942 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
943 void pqm_uninit(struct process_queue_manager *pqm);
944 int pqm_create_queue(struct process_queue_manager *pqm,
945 			    struct kfd_dev *dev,
946 			    struct file *f,
947 			    struct queue_properties *properties,
948 			    unsigned int *qid,
949 			    uint32_t *p_doorbell_offset_in_process);
950 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
951 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
952 			struct queue_properties *p);
953 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid,
954 			struct queue_properties *p);
955 int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
956 			void *gws);
957 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
958 						unsigned int qid);
959 struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
960 						unsigned int qid);
961 int pqm_get_wave_state(struct process_queue_manager *pqm,
962 		       unsigned int qid,
963 		       void __user *ctl_stack,
964 		       u32 *ctl_stack_used_size,
965 		       u32 *save_area_used_size);
966 
967 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
968 			      unsigned int fence_value,
969 			      unsigned int timeout_ms);
970 
971 /* Packet Manager */
972 
973 #define KFD_FENCE_COMPLETED (100)
974 #define KFD_FENCE_INIT   (10)
975 
976 struct packet_manager {
977 	struct device_queue_manager *dqm;
978 	struct kernel_queue *priv_queue;
979 	struct mutex lock;
980 	bool allocated;
981 	struct kfd_mem_obj *ib_buffer_obj;
982 	unsigned int ib_size_bytes;
983 	bool is_over_subscription;
984 
985 	const struct packet_manager_funcs *pmf;
986 };
987 
988 struct packet_manager_funcs {
989 	/* Support ASIC-specific packet formats for PM4 packets */
990 	int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
991 			struct qcm_process_device *qpd);
992 	int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
993 			uint64_t ib, size_t ib_size_in_dwords, bool chain);
994 	int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
995 			struct scheduling_resources *res);
996 	int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
997 			struct queue *q, bool is_static);
998 	int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
999 			enum kfd_queue_type type,
1000 			enum kfd_unmap_queues_filter mode,
1001 			uint32_t filter_param, bool reset,
1002 			unsigned int sdma_engine);
1003 	int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1004 			uint64_t fence_address,	uint32_t fence_value);
1005 	int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1006 
1007 	/* Packet sizes */
1008 	int map_process_size;
1009 	int runlist_size;
1010 	int set_resources_size;
1011 	int map_queues_size;
1012 	int unmap_queues_size;
1013 	int query_status_size;
1014 	int release_mem_size;
1015 };
1016 
1017 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1018 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1019 
1020 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1021 void pm_uninit(struct packet_manager *pm, bool hanging);
1022 int pm_send_set_resources(struct packet_manager *pm,
1023 				struct scheduling_resources *res);
1024 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1025 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1026 				uint32_t fence_value);
1027 
1028 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
1029 			enum kfd_unmap_queues_filter mode,
1030 			uint32_t filter_param, bool reset,
1031 			unsigned int sdma_engine);
1032 
1033 void pm_release_ib(struct packet_manager *pm);
1034 
1035 /* Following PM funcs can be shared among VI and AI */
1036 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1037 
1038 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1039 
1040 /* Events */
1041 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1042 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1043 
1044 extern const struct kfd_device_global_init_class device_global_init_class_cik;
1045 
1046 void kfd_event_init_process(struct kfd_process *p);
1047 void kfd_event_free_process(struct kfd_process *p);
1048 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1049 int kfd_wait_on_events(struct kfd_process *p,
1050 		       uint32_t num_events, void __user *data,
1051 		       bool all, uint32_t user_timeout_ms,
1052 		       uint32_t *wait_result);
1053 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
1054 				uint32_t valid_id_bits);
1055 void kfd_signal_iommu_event(struct kfd_dev *dev,
1056 		unsigned int pasid, unsigned long address,
1057 		bool is_write_requested, bool is_execute_requested);
1058 void kfd_signal_hw_exception_event(unsigned int pasid);
1059 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1060 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1061 int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
1062 		       uint64_t size);
1063 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1064 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
1065 		     uint32_t *event_id, uint32_t *event_trigger_data,
1066 		     uint64_t *event_page_offset, uint32_t *event_slot_index);
1067 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1068 
1069 void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid,
1070 				struct kfd_vm_fault_info *info);
1071 
1072 void kfd_signal_reset_event(struct kfd_dev *dev);
1073 
1074 void kfd_flush_tlb(struct kfd_process_device *pdd);
1075 
1076 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
1077 
1078 bool kfd_is_locked(void);
1079 
1080 /* Compute profile */
1081 void kfd_inc_compute_active(struct kfd_dev *dev);
1082 void kfd_dec_compute_active(struct kfd_dev *dev);
1083 
1084 /* Cgroup Support */
1085 /* Check with device cgroup if @kfd device is accessible */
1086 static inline int kfd_devcgroup_check_permission(struct kfd_dev *kfd)
1087 {
1088 #if defined(CONFIG_CGROUP_DEVICE)
1089 	struct drm_device *ddev = kfd->ddev;
1090 
1091 	return devcgroup_check_permission(DEVCG_DEV_CHAR, ddev->driver->major,
1092 					  ddev->render->index,
1093 					  DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1094 #else
1095 	return 0;
1096 #endif
1097 }
1098 
1099 /* Debugfs */
1100 #if defined(CONFIG_DEBUG_FS)
1101 
1102 void kfd_debugfs_init(void);
1103 void kfd_debugfs_fini(void);
1104 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1105 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1106 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1107 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1108 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1109 int pm_debugfs_runlist(struct seq_file *m, void *data);
1110 
1111 int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1112 int pm_debugfs_hang_hws(struct packet_manager *pm);
1113 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm);
1114 
1115 #else
1116 
1117 static inline void kfd_debugfs_init(void) {}
1118 static inline void kfd_debugfs_fini(void) {}
1119 
1120 #endif
1121 
1122 #endif
1123