1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/printk.h> 25 #include <linux/slab.h> 26 #include <linux/mm_types.h> 27 28 #include "kfd_priv.h" 29 #include "kfd_mqd_manager.h" 30 #include "vi_structs.h" 31 #include "gca/gfx_8_0_sh_mask.h" 32 #include "gca/gfx_8_0_enum.h" 33 #include "oss/oss_3_0_sh_mask.h" 34 35 #define CP_MQD_CONTROL__PRIV_STATE__SHIFT 0x8 36 37 static inline struct vi_mqd *get_mqd(void *mqd) 38 { 39 return (struct vi_mqd *)mqd; 40 } 41 42 static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd) 43 { 44 return (struct vi_sdma_mqd *)mqd; 45 } 46 47 static void update_cu_mask(struct mqd_manager *mm, void *mqd, 48 struct queue_properties *q) 49 { 50 struct vi_mqd *m; 51 uint32_t se_mask[4] = {0}; /* 4 is the max # of SEs */ 52 53 if (q->cu_mask_count == 0) 54 return; 55 56 mqd_symmetrically_map_cu_mask(mm, 57 q->cu_mask, q->cu_mask_count, se_mask); 58 59 m = get_mqd(mqd); 60 m->compute_static_thread_mgmt_se0 = se_mask[0]; 61 m->compute_static_thread_mgmt_se1 = se_mask[1]; 62 m->compute_static_thread_mgmt_se2 = se_mask[2]; 63 m->compute_static_thread_mgmt_se3 = se_mask[3]; 64 65 pr_debug("Update cu mask to %#x %#x %#x %#x\n", 66 m->compute_static_thread_mgmt_se0, 67 m->compute_static_thread_mgmt_se1, 68 m->compute_static_thread_mgmt_se2, 69 m->compute_static_thread_mgmt_se3); 70 } 71 72 static void set_priority(struct vi_mqd *m, struct queue_properties *q) 73 { 74 m->cp_hqd_pipe_priority = pipe_priority_map[q->priority]; 75 m->cp_hqd_queue_priority = q->priority; 76 } 77 78 static struct kfd_mem_obj *allocate_mqd(struct kfd_dev *kfd, 79 struct queue_properties *q) 80 { 81 struct kfd_mem_obj *mqd_mem_obj; 82 83 if (kfd_gtt_sa_allocate(kfd, sizeof(struct vi_mqd), 84 &mqd_mem_obj)) 85 return NULL; 86 87 return mqd_mem_obj; 88 } 89 90 static void init_mqd(struct mqd_manager *mm, void **mqd, 91 struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr, 92 struct queue_properties *q) 93 { 94 uint64_t addr; 95 struct vi_mqd *m; 96 97 m = (struct vi_mqd *) mqd_mem_obj->cpu_ptr; 98 addr = mqd_mem_obj->gpu_addr; 99 100 memset(m, 0, sizeof(struct vi_mqd)); 101 102 m->header = 0xC0310800; 103 m->compute_pipelinestat_enable = 1; 104 m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF; 105 m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF; 106 m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF; 107 m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF; 108 109 m->cp_hqd_persistent_state = CP_HQD_PERSISTENT_STATE__PRELOAD_REQ_MASK | 110 0x53 << CP_HQD_PERSISTENT_STATE__PRELOAD_SIZE__SHIFT; 111 112 m->cp_mqd_control = 1 << CP_MQD_CONTROL__PRIV_STATE__SHIFT | 113 MTYPE_UC << CP_MQD_CONTROL__MTYPE__SHIFT; 114 115 m->cp_mqd_base_addr_lo = lower_32_bits(addr); 116 m->cp_mqd_base_addr_hi = upper_32_bits(addr); 117 118 m->cp_hqd_quantum = 1 << CP_HQD_QUANTUM__QUANTUM_EN__SHIFT | 119 1 << CP_HQD_QUANTUM__QUANTUM_SCALE__SHIFT | 120 10 << CP_HQD_QUANTUM__QUANTUM_DURATION__SHIFT; 121 122 set_priority(m, q); 123 m->cp_hqd_eop_rptr = 1 << CP_HQD_EOP_RPTR__INIT_FETCHER__SHIFT; 124 125 if (q->format == KFD_QUEUE_FORMAT_AQL) 126 m->cp_hqd_iq_rptr = 1; 127 128 if (q->tba_addr) { 129 m->compute_tba_lo = lower_32_bits(q->tba_addr >> 8); 130 m->compute_tba_hi = upper_32_bits(q->tba_addr >> 8); 131 m->compute_tma_lo = lower_32_bits(q->tma_addr >> 8); 132 m->compute_tma_hi = upper_32_bits(q->tma_addr >> 8); 133 m->compute_pgm_rsrc2 |= 134 (1 << COMPUTE_PGM_RSRC2__TRAP_PRESENT__SHIFT); 135 } 136 137 if (mm->dev->cwsr_enabled && q->ctx_save_restore_area_address) { 138 m->cp_hqd_persistent_state |= 139 (1 << CP_HQD_PERSISTENT_STATE__QSWITCH_MODE__SHIFT); 140 m->cp_hqd_ctx_save_base_addr_lo = 141 lower_32_bits(q->ctx_save_restore_area_address); 142 m->cp_hqd_ctx_save_base_addr_hi = 143 upper_32_bits(q->ctx_save_restore_area_address); 144 m->cp_hqd_ctx_save_size = q->ctx_save_restore_area_size; 145 m->cp_hqd_cntl_stack_size = q->ctl_stack_size; 146 m->cp_hqd_cntl_stack_offset = q->ctl_stack_size; 147 m->cp_hqd_wg_state_offset = q->ctl_stack_size; 148 } 149 150 *mqd = m; 151 if (gart_addr) 152 *gart_addr = addr; 153 mm->update_mqd(mm, m, q); 154 } 155 156 static int load_mqd(struct mqd_manager *mm, void *mqd, 157 uint32_t pipe_id, uint32_t queue_id, 158 struct queue_properties *p, struct mm_struct *mms) 159 { 160 /* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */ 161 uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0); 162 uint32_t wptr_mask = (uint32_t)((p->queue_size / 4) - 1); 163 164 return mm->dev->kfd2kgd->hqd_load(mm->dev->kgd, mqd, pipe_id, queue_id, 165 (uint32_t __user *)p->write_ptr, 166 wptr_shift, wptr_mask, mms); 167 } 168 169 static void __update_mqd(struct mqd_manager *mm, void *mqd, 170 struct queue_properties *q, unsigned int mtype, 171 unsigned int atc_bit) 172 { 173 struct vi_mqd *m; 174 175 m = get_mqd(mqd); 176 177 m->cp_hqd_pq_control = 5 << CP_HQD_PQ_CONTROL__RPTR_BLOCK_SIZE__SHIFT | 178 atc_bit << CP_HQD_PQ_CONTROL__PQ_ATC__SHIFT | 179 mtype << CP_HQD_PQ_CONTROL__MTYPE__SHIFT; 180 m->cp_hqd_pq_control |= order_base_2(q->queue_size / 4) - 1; 181 pr_debug("cp_hqd_pq_control 0x%x\n", m->cp_hqd_pq_control); 182 183 m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8); 184 m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8); 185 186 m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr); 187 m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr); 188 m->cp_hqd_pq_wptr_poll_addr_lo = lower_32_bits((uint64_t)q->write_ptr); 189 m->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits((uint64_t)q->write_ptr); 190 191 m->cp_hqd_pq_doorbell_control = 192 q->doorbell_off << 193 CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT; 194 pr_debug("cp_hqd_pq_doorbell_control 0x%x\n", 195 m->cp_hqd_pq_doorbell_control); 196 197 m->cp_hqd_eop_control = atc_bit << CP_HQD_EOP_CONTROL__EOP_ATC__SHIFT | 198 mtype << CP_HQD_EOP_CONTROL__MTYPE__SHIFT; 199 200 m->cp_hqd_ib_control = atc_bit << CP_HQD_IB_CONTROL__IB_ATC__SHIFT | 201 3 << CP_HQD_IB_CONTROL__MIN_IB_AVAIL_SIZE__SHIFT | 202 mtype << CP_HQD_IB_CONTROL__MTYPE__SHIFT; 203 204 /* 205 * HW does not clamp this field correctly. Maximum EOP queue size 206 * is constrained by per-SE EOP done signal count, which is 8-bit. 207 * Limit is 0xFF EOP entries (= 0x7F8 dwords). CP will not submit 208 * more than (EOP entry count - 1) so a queue size of 0x800 dwords 209 * is safe, giving a maximum field value of 0xA. 210 */ 211 m->cp_hqd_eop_control |= min(0xA, 212 order_base_2(q->eop_ring_buffer_size / 4) - 1); 213 m->cp_hqd_eop_base_addr_lo = 214 lower_32_bits(q->eop_ring_buffer_address >> 8); 215 m->cp_hqd_eop_base_addr_hi = 216 upper_32_bits(q->eop_ring_buffer_address >> 8); 217 218 m->cp_hqd_iq_timer = atc_bit << CP_HQD_IQ_TIMER__IQ_ATC__SHIFT | 219 mtype << CP_HQD_IQ_TIMER__MTYPE__SHIFT; 220 221 m->cp_hqd_vmid = q->vmid; 222 223 if (q->format == KFD_QUEUE_FORMAT_AQL) { 224 m->cp_hqd_pq_control |= CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK | 225 2 << CP_HQD_PQ_CONTROL__SLOT_BASED_WPTR__SHIFT; 226 } 227 228 if (mm->dev->cwsr_enabled && q->ctx_save_restore_area_address) 229 m->cp_hqd_ctx_save_control = 230 atc_bit << CP_HQD_CTX_SAVE_CONTROL__ATC__SHIFT | 231 mtype << CP_HQD_CTX_SAVE_CONTROL__MTYPE__SHIFT; 232 233 update_cu_mask(mm, mqd, q); 234 set_priority(m, q); 235 236 q->is_active = QUEUE_IS_ACTIVE(*q); 237 } 238 239 240 static void update_mqd(struct mqd_manager *mm, void *mqd, 241 struct queue_properties *q) 242 { 243 __update_mqd(mm, mqd, q, MTYPE_CC, 1); 244 } 245 246 static void update_mqd_tonga(struct mqd_manager *mm, void *mqd, 247 struct queue_properties *q) 248 { 249 __update_mqd(mm, mqd, q, MTYPE_UC, 0); 250 } 251 252 static int destroy_mqd(struct mqd_manager *mm, void *mqd, 253 enum kfd_preempt_type type, 254 unsigned int timeout, uint32_t pipe_id, 255 uint32_t queue_id) 256 { 257 return mm->dev->kfd2kgd->hqd_destroy 258 (mm->dev->kgd, mqd, type, timeout, 259 pipe_id, queue_id); 260 } 261 262 static void free_mqd(struct mqd_manager *mm, void *mqd, 263 struct kfd_mem_obj *mqd_mem_obj) 264 { 265 kfd_gtt_sa_free(mm->dev, mqd_mem_obj); 266 } 267 268 static bool is_occupied(struct mqd_manager *mm, void *mqd, 269 uint64_t queue_address, uint32_t pipe_id, 270 uint32_t queue_id) 271 { 272 return mm->dev->kfd2kgd->hqd_is_occupied( 273 mm->dev->kgd, queue_address, 274 pipe_id, queue_id); 275 } 276 277 static int get_wave_state(struct mqd_manager *mm, void *mqd, 278 void __user *ctl_stack, 279 u32 *ctl_stack_used_size, 280 u32 *save_area_used_size) 281 { 282 struct vi_mqd *m; 283 284 m = get_mqd(mqd); 285 286 *ctl_stack_used_size = m->cp_hqd_cntl_stack_size - 287 m->cp_hqd_cntl_stack_offset; 288 *save_area_used_size = m->cp_hqd_wg_state_offset - 289 m->cp_hqd_cntl_stack_size; 290 291 /* Control stack is not copied to user mode for GFXv8 because 292 * it's part of the context save area that is already 293 * accessible to user mode 294 */ 295 296 return 0; 297 } 298 299 static void init_mqd_hiq(struct mqd_manager *mm, void **mqd, 300 struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr, 301 struct queue_properties *q) 302 { 303 struct vi_mqd *m; 304 init_mqd(mm, mqd, mqd_mem_obj, gart_addr, q); 305 306 m = get_mqd(*mqd); 307 308 m->cp_hqd_pq_control |= 1 << CP_HQD_PQ_CONTROL__PRIV_STATE__SHIFT | 309 1 << CP_HQD_PQ_CONTROL__KMD_QUEUE__SHIFT; 310 } 311 312 static void update_mqd_hiq(struct mqd_manager *mm, void *mqd, 313 struct queue_properties *q) 314 { 315 struct vi_mqd *m; 316 __update_mqd(mm, mqd, q, MTYPE_UC, 0); 317 318 m = get_mqd(mqd); 319 m->cp_hqd_vmid = q->vmid; 320 } 321 322 static void init_mqd_sdma(struct mqd_manager *mm, void **mqd, 323 struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr, 324 struct queue_properties *q) 325 { 326 struct vi_sdma_mqd *m; 327 328 m = (struct vi_sdma_mqd *) mqd_mem_obj->cpu_ptr; 329 330 memset(m, 0, sizeof(struct vi_sdma_mqd)); 331 332 *mqd = m; 333 if (gart_addr) 334 *gart_addr = mqd_mem_obj->gpu_addr; 335 336 mm->update_mqd(mm, m, q); 337 } 338 339 static int load_mqd_sdma(struct mqd_manager *mm, void *mqd, 340 uint32_t pipe_id, uint32_t queue_id, 341 struct queue_properties *p, struct mm_struct *mms) 342 { 343 return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->kgd, mqd, 344 (uint32_t __user *)p->write_ptr, 345 mms); 346 } 347 348 static void update_mqd_sdma(struct mqd_manager *mm, void *mqd, 349 struct queue_properties *q) 350 { 351 struct vi_sdma_mqd *m; 352 353 m = get_sdma_mqd(mqd); 354 m->sdmax_rlcx_rb_cntl = order_base_2(q->queue_size / 4) 355 << SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT | 356 q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT | 357 1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT | 358 6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT; 359 360 m->sdmax_rlcx_rb_base = lower_32_bits(q->queue_address >> 8); 361 m->sdmax_rlcx_rb_base_hi = upper_32_bits(q->queue_address >> 8); 362 m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr); 363 m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr); 364 m->sdmax_rlcx_doorbell = 365 q->doorbell_off << SDMA0_RLC0_DOORBELL__OFFSET__SHIFT; 366 367 m->sdmax_rlcx_virtual_addr = q->sdma_vm_addr; 368 369 m->sdma_engine_id = q->sdma_engine_id; 370 m->sdma_queue_id = q->sdma_queue_id; 371 372 q->is_active = QUEUE_IS_ACTIVE(*q); 373 } 374 375 /* 376 * * preempt type here is ignored because there is only one way 377 * * to preempt sdma queue 378 */ 379 static int destroy_mqd_sdma(struct mqd_manager *mm, void *mqd, 380 enum kfd_preempt_type type, 381 unsigned int timeout, uint32_t pipe_id, 382 uint32_t queue_id) 383 { 384 return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->kgd, mqd, timeout); 385 } 386 387 static bool is_occupied_sdma(struct mqd_manager *mm, void *mqd, 388 uint64_t queue_address, uint32_t pipe_id, 389 uint32_t queue_id) 390 { 391 return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->kgd, mqd); 392 } 393 394 #if defined(CONFIG_DEBUG_FS) 395 396 static int debugfs_show_mqd(struct seq_file *m, void *data) 397 { 398 seq_hex_dump(m, " ", DUMP_PREFIX_OFFSET, 32, 4, 399 data, sizeof(struct vi_mqd), false); 400 return 0; 401 } 402 403 static int debugfs_show_mqd_sdma(struct seq_file *m, void *data) 404 { 405 seq_hex_dump(m, " ", DUMP_PREFIX_OFFSET, 32, 4, 406 data, sizeof(struct vi_sdma_mqd), false); 407 return 0; 408 } 409 410 #endif 411 412 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, 413 struct kfd_dev *dev) 414 { 415 struct mqd_manager *mqd; 416 417 if (WARN_ON(type >= KFD_MQD_TYPE_MAX)) 418 return NULL; 419 420 mqd = kzalloc(sizeof(*mqd), GFP_KERNEL); 421 if (!mqd) 422 return NULL; 423 424 mqd->dev = dev; 425 426 switch (type) { 427 case KFD_MQD_TYPE_CP: 428 case KFD_MQD_TYPE_COMPUTE: 429 mqd->allocate_mqd = allocate_mqd; 430 mqd->init_mqd = init_mqd; 431 mqd->free_mqd = free_mqd; 432 mqd->load_mqd = load_mqd; 433 mqd->update_mqd = update_mqd; 434 mqd->destroy_mqd = destroy_mqd; 435 mqd->is_occupied = is_occupied; 436 mqd->get_wave_state = get_wave_state; 437 mqd->mqd_size = sizeof(struct vi_mqd); 438 #if defined(CONFIG_DEBUG_FS) 439 mqd->debugfs_show_mqd = debugfs_show_mqd; 440 #endif 441 break; 442 case KFD_MQD_TYPE_HIQ: 443 mqd->allocate_mqd = allocate_hiq_mqd; 444 mqd->init_mqd = init_mqd_hiq; 445 mqd->free_mqd = free_mqd_hiq_sdma; 446 mqd->load_mqd = load_mqd; 447 mqd->update_mqd = update_mqd_hiq; 448 mqd->destroy_mqd = destroy_mqd; 449 mqd->is_occupied = is_occupied; 450 mqd->mqd_size = sizeof(struct vi_mqd); 451 #if defined(CONFIG_DEBUG_FS) 452 mqd->debugfs_show_mqd = debugfs_show_mqd; 453 #endif 454 break; 455 case KFD_MQD_TYPE_DIQ: 456 mqd->allocate_mqd = allocate_hiq_mqd; 457 mqd->init_mqd = init_mqd_hiq; 458 mqd->free_mqd = free_mqd; 459 mqd->load_mqd = load_mqd; 460 mqd->update_mqd = update_mqd_hiq; 461 mqd->destroy_mqd = destroy_mqd; 462 mqd->is_occupied = is_occupied; 463 mqd->mqd_size = sizeof(struct vi_mqd); 464 #if defined(CONFIG_DEBUG_FS) 465 mqd->debugfs_show_mqd = debugfs_show_mqd; 466 #endif 467 break; 468 case KFD_MQD_TYPE_SDMA: 469 mqd->allocate_mqd = allocate_sdma_mqd; 470 mqd->init_mqd = init_mqd_sdma; 471 mqd->free_mqd = free_mqd_hiq_sdma; 472 mqd->load_mqd = load_mqd_sdma; 473 mqd->update_mqd = update_mqd_sdma; 474 mqd->destroy_mqd = destroy_mqd_sdma; 475 mqd->is_occupied = is_occupied_sdma; 476 mqd->mqd_size = sizeof(struct vi_sdma_mqd); 477 #if defined(CONFIG_DEBUG_FS) 478 mqd->debugfs_show_mqd = debugfs_show_mqd_sdma; 479 #endif 480 break; 481 default: 482 kfree(mqd); 483 return NULL; 484 } 485 486 return mqd; 487 } 488 489 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type, 490 struct kfd_dev *dev) 491 { 492 struct mqd_manager *mqd; 493 494 mqd = mqd_manager_init_vi(type, dev); 495 if (!mqd) 496 return NULL; 497 if ((type == KFD_MQD_TYPE_CP) || (type == KFD_MQD_TYPE_COMPUTE)) 498 mqd->update_mqd = update_mqd_tonga; 499 return mqd; 500 } 501