xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_mqd_manager_v9.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  * Copyright 2016-2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/printk.h>
25 #include <linux/slab.h>
26 #include <linux/uaccess.h>
27 #include "kfd_priv.h"
28 #include "kfd_mqd_manager.h"
29 #include "v9_structs.h"
30 #include "gc/gc_9_0_offset.h"
31 #include "gc/gc_9_0_sh_mask.h"
32 #include "sdma0/sdma0_4_0_sh_mask.h"
33 #include "amdgpu_amdkfd.h"
34 
35 static inline struct v9_mqd *get_mqd(void *mqd)
36 {
37 	return (struct v9_mqd *)mqd;
38 }
39 
40 static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
41 {
42 	return (struct v9_sdma_mqd *)mqd;
43 }
44 
45 static void update_cu_mask(struct mqd_manager *mm, void *mqd,
46 			struct queue_properties *q)
47 {
48 	struct v9_mqd *m;
49 	uint32_t se_mask[4] = {0}; /* 4 is the max # of SEs */
50 
51 	if (q->cu_mask_count == 0)
52 		return;
53 
54 	mqd_symmetrically_map_cu_mask(mm,
55 		q->cu_mask, q->cu_mask_count, se_mask);
56 
57 	m = get_mqd(mqd);
58 	m->compute_static_thread_mgmt_se0 = se_mask[0];
59 	m->compute_static_thread_mgmt_se1 = se_mask[1];
60 	m->compute_static_thread_mgmt_se2 = se_mask[2];
61 	m->compute_static_thread_mgmt_se3 = se_mask[3];
62 
63 	pr_debug("update cu mask to %#x %#x %#x %#x\n",
64 		m->compute_static_thread_mgmt_se0,
65 		m->compute_static_thread_mgmt_se1,
66 		m->compute_static_thread_mgmt_se2,
67 		m->compute_static_thread_mgmt_se3);
68 }
69 
70 static int init_mqd(struct mqd_manager *mm, void **mqd,
71 			struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
72 			struct queue_properties *q)
73 {
74 	int retval;
75 	uint64_t addr;
76 	struct v9_mqd *m;
77 	struct kfd_dev *kfd = mm->dev;
78 
79 	/* From V9,  for CWSR, the control stack is located on the next page
80 	 * boundary after the mqd, we will use the gtt allocation function
81 	 * instead of sub-allocation function.
82 	 */
83 	if (kfd->cwsr_enabled && (q->type == KFD_QUEUE_TYPE_COMPUTE)) {
84 		*mqd_mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
85 		if (!*mqd_mem_obj)
86 			return -ENOMEM;
87 		retval = amdgpu_amdkfd_alloc_gtt_mem(kfd->kgd,
88 			ALIGN(q->ctl_stack_size, PAGE_SIZE) +
89 				ALIGN(sizeof(struct v9_mqd), PAGE_SIZE),
90 			&((*mqd_mem_obj)->gtt_mem),
91 			&((*mqd_mem_obj)->gpu_addr),
92 			(void *)&((*mqd_mem_obj)->cpu_ptr), true);
93 	} else
94 		retval = kfd_gtt_sa_allocate(mm->dev, sizeof(struct v9_mqd),
95 				mqd_mem_obj);
96 	if (retval != 0)
97 		return -ENOMEM;
98 
99 	m = (struct v9_mqd *) (*mqd_mem_obj)->cpu_ptr;
100 	addr = (*mqd_mem_obj)->gpu_addr;
101 
102 	memset(m, 0, sizeof(struct v9_mqd));
103 
104 	m->header = 0xC0310800;
105 	m->compute_pipelinestat_enable = 1;
106 	m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
107 	m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
108 	m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
109 	m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
110 
111 	m->cp_hqd_persistent_state = CP_HQD_PERSISTENT_STATE__PRELOAD_REQ_MASK |
112 			0x53 << CP_HQD_PERSISTENT_STATE__PRELOAD_SIZE__SHIFT;
113 
114 	m->cp_mqd_control = 1 << CP_MQD_CONTROL__PRIV_STATE__SHIFT;
115 
116 	m->cp_mqd_base_addr_lo        = lower_32_bits(addr);
117 	m->cp_mqd_base_addr_hi        = upper_32_bits(addr);
118 
119 	m->cp_hqd_quantum = 1 << CP_HQD_QUANTUM__QUANTUM_EN__SHIFT |
120 			1 << CP_HQD_QUANTUM__QUANTUM_SCALE__SHIFT |
121 			10 << CP_HQD_QUANTUM__QUANTUM_DURATION__SHIFT;
122 
123 	m->cp_hqd_pipe_priority = 1;
124 	m->cp_hqd_queue_priority = 15;
125 
126 	if (q->format == KFD_QUEUE_FORMAT_AQL) {
127 		m->cp_hqd_aql_control =
128 			1 << CP_HQD_AQL_CONTROL__CONTROL0__SHIFT;
129 	}
130 
131 	if (q->tba_addr) {
132 		m->compute_pgm_rsrc2 |=
133 			(1 << COMPUTE_PGM_RSRC2__TRAP_PRESENT__SHIFT);
134 	}
135 
136 	if (mm->dev->cwsr_enabled && q->ctx_save_restore_area_address) {
137 		m->cp_hqd_persistent_state |=
138 			(1 << CP_HQD_PERSISTENT_STATE__QSWITCH_MODE__SHIFT);
139 		m->cp_hqd_ctx_save_base_addr_lo =
140 			lower_32_bits(q->ctx_save_restore_area_address);
141 		m->cp_hqd_ctx_save_base_addr_hi =
142 			upper_32_bits(q->ctx_save_restore_area_address);
143 		m->cp_hqd_ctx_save_size = q->ctx_save_restore_area_size;
144 		m->cp_hqd_cntl_stack_size = q->ctl_stack_size;
145 		m->cp_hqd_cntl_stack_offset = q->ctl_stack_size;
146 		m->cp_hqd_wg_state_offset = q->ctl_stack_size;
147 	}
148 
149 	*mqd = m;
150 	if (gart_addr)
151 		*gart_addr = addr;
152 	retval = mm->update_mqd(mm, m, q);
153 
154 	return retval;
155 }
156 
157 static int load_mqd(struct mqd_manager *mm, void *mqd,
158 			uint32_t pipe_id, uint32_t queue_id,
159 			struct queue_properties *p, struct mm_struct *mms)
160 {
161 	/* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */
162 	uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0);
163 
164 	return mm->dev->kfd2kgd->hqd_load(mm->dev->kgd, mqd, pipe_id, queue_id,
165 					  (uint32_t __user *)p->write_ptr,
166 					  wptr_shift, 0, mms);
167 }
168 
169 static int update_mqd(struct mqd_manager *mm, void *mqd,
170 		      struct queue_properties *q)
171 {
172 	struct v9_mqd *m;
173 
174 	m = get_mqd(mqd);
175 
176 	m->cp_hqd_pq_control = 5 << CP_HQD_PQ_CONTROL__RPTR_BLOCK_SIZE__SHIFT;
177 	m->cp_hqd_pq_control |= order_base_2(q->queue_size / 4) - 1;
178 	pr_debug("cp_hqd_pq_control 0x%x\n", m->cp_hqd_pq_control);
179 
180 	m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
181 	m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
182 
183 	m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
184 	m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
185 	m->cp_hqd_pq_wptr_poll_addr_lo = lower_32_bits((uint64_t)q->write_ptr);
186 	m->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits((uint64_t)q->write_ptr);
187 
188 	m->cp_hqd_pq_doorbell_control =
189 		q->doorbell_off <<
190 			CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT;
191 	pr_debug("cp_hqd_pq_doorbell_control 0x%x\n",
192 			m->cp_hqd_pq_doorbell_control);
193 
194 	m->cp_hqd_ib_control =
195 		3 << CP_HQD_IB_CONTROL__MIN_IB_AVAIL_SIZE__SHIFT |
196 		1 << CP_HQD_IB_CONTROL__IB_EXE_DISABLE__SHIFT;
197 
198 	/*
199 	 * HW does not clamp this field correctly. Maximum EOP queue size
200 	 * is constrained by per-SE EOP done signal count, which is 8-bit.
201 	 * Limit is 0xFF EOP entries (= 0x7F8 dwords). CP will not submit
202 	 * more than (EOP entry count - 1) so a queue size of 0x800 dwords
203 	 * is safe, giving a maximum field value of 0xA.
204 	 */
205 	m->cp_hqd_eop_control = min(0xA,
206 		order_base_2(q->eop_ring_buffer_size / 4) - 1);
207 	m->cp_hqd_eop_base_addr_lo =
208 			lower_32_bits(q->eop_ring_buffer_address >> 8);
209 	m->cp_hqd_eop_base_addr_hi =
210 			upper_32_bits(q->eop_ring_buffer_address >> 8);
211 
212 	m->cp_hqd_iq_timer = 0;
213 
214 	m->cp_hqd_vmid = q->vmid;
215 
216 	if (q->format == KFD_QUEUE_FORMAT_AQL) {
217 		m->cp_hqd_pq_control |= CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK |
218 				2 << CP_HQD_PQ_CONTROL__SLOT_BASED_WPTR__SHIFT |
219 				1 << CP_HQD_PQ_CONTROL__QUEUE_FULL_EN__SHIFT |
220 				1 << CP_HQD_PQ_CONTROL__WPP_CLAMP_EN__SHIFT;
221 		m->cp_hqd_pq_doorbell_control |= 1 <<
222 			CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_BIF_DROP__SHIFT;
223 	}
224 	if (mm->dev->cwsr_enabled && q->ctx_save_restore_area_address)
225 		m->cp_hqd_ctx_save_control = 0;
226 
227 	update_cu_mask(mm, mqd, q);
228 
229 	q->is_active = (q->queue_size > 0 &&
230 			q->queue_address != 0 &&
231 			q->queue_percent > 0 &&
232 			!q->is_evicted);
233 
234 	return 0;
235 }
236 
237 
238 static int destroy_mqd(struct mqd_manager *mm, void *mqd,
239 			enum kfd_preempt_type type,
240 			unsigned int timeout, uint32_t pipe_id,
241 			uint32_t queue_id)
242 {
243 	return mm->dev->kfd2kgd->hqd_destroy
244 		(mm->dev->kgd, mqd, type, timeout,
245 		pipe_id, queue_id);
246 }
247 
248 static void uninit_mqd(struct mqd_manager *mm, void *mqd,
249 			struct kfd_mem_obj *mqd_mem_obj)
250 {
251 	struct kfd_dev *kfd = mm->dev;
252 
253 	if (mqd_mem_obj->gtt_mem) {
254 		amdgpu_amdkfd_free_gtt_mem(kfd->kgd, mqd_mem_obj->gtt_mem);
255 		kfree(mqd_mem_obj);
256 	} else {
257 		kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
258 	}
259 }
260 
261 static bool is_occupied(struct mqd_manager *mm, void *mqd,
262 			uint64_t queue_address,	uint32_t pipe_id,
263 			uint32_t queue_id)
264 {
265 	return mm->dev->kfd2kgd->hqd_is_occupied(
266 		mm->dev->kgd, queue_address,
267 		pipe_id, queue_id);
268 }
269 
270 static int get_wave_state(struct mqd_manager *mm, void *mqd,
271 			  void __user *ctl_stack,
272 			  u32 *ctl_stack_used_size,
273 			  u32 *save_area_used_size)
274 {
275 	struct v9_mqd *m;
276 
277 	/* Control stack is located one page after MQD. */
278 	void *mqd_ctl_stack = (void *)((uintptr_t)mqd + PAGE_SIZE);
279 
280 	m = get_mqd(mqd);
281 
282 	*ctl_stack_used_size = m->cp_hqd_cntl_stack_size -
283 		m->cp_hqd_cntl_stack_offset;
284 	*save_area_used_size = m->cp_hqd_wg_state_offset;
285 
286 	if (copy_to_user(ctl_stack, mqd_ctl_stack, m->cp_hqd_cntl_stack_size))
287 		return -EFAULT;
288 
289 	return 0;
290 }
291 
292 static int init_mqd_hiq(struct mqd_manager *mm, void **mqd,
293 			struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
294 			struct queue_properties *q)
295 {
296 	struct v9_mqd *m;
297 	int retval = init_mqd(mm, mqd, mqd_mem_obj, gart_addr, q);
298 
299 	if (retval != 0)
300 		return retval;
301 
302 	m = get_mqd(*mqd);
303 
304 	m->cp_hqd_pq_control |= 1 << CP_HQD_PQ_CONTROL__PRIV_STATE__SHIFT |
305 			1 << CP_HQD_PQ_CONTROL__KMD_QUEUE__SHIFT;
306 
307 	return retval;
308 }
309 
310 static int update_mqd_hiq(struct mqd_manager *mm, void *mqd,
311 			struct queue_properties *q)
312 {
313 	struct v9_mqd *m;
314 	int retval = update_mqd(mm, mqd, q);
315 
316 	if (retval != 0)
317 		return retval;
318 
319 	/* TODO: what's the point? update_mqd already does this. */
320 	m = get_mqd(mqd);
321 	m->cp_hqd_vmid = q->vmid;
322 	return retval;
323 }
324 
325 static int init_mqd_sdma(struct mqd_manager *mm, void **mqd,
326 		struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
327 		struct queue_properties *q)
328 {
329 	int retval;
330 	struct v9_sdma_mqd *m;
331 
332 
333 	retval = kfd_gtt_sa_allocate(mm->dev,
334 			sizeof(struct v9_sdma_mqd),
335 			mqd_mem_obj);
336 
337 	if (retval != 0)
338 		return -ENOMEM;
339 
340 	m = (struct v9_sdma_mqd *) (*mqd_mem_obj)->cpu_ptr;
341 
342 	memset(m, 0, sizeof(struct v9_sdma_mqd));
343 
344 	*mqd = m;
345 	if (gart_addr)
346 		*gart_addr = (*mqd_mem_obj)->gpu_addr;
347 
348 	retval = mm->update_mqd(mm, m, q);
349 
350 	return retval;
351 }
352 
353 static void uninit_mqd_sdma(struct mqd_manager *mm, void *mqd,
354 		struct kfd_mem_obj *mqd_mem_obj)
355 {
356 	kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
357 }
358 
359 static int load_mqd_sdma(struct mqd_manager *mm, void *mqd,
360 		uint32_t pipe_id, uint32_t queue_id,
361 		struct queue_properties *p, struct mm_struct *mms)
362 {
363 	return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->kgd, mqd,
364 					       (uint32_t __user *)p->write_ptr,
365 					       mms);
366 }
367 
368 #define SDMA_RLC_DUMMY_DEFAULT 0xf
369 
370 static int update_mqd_sdma(struct mqd_manager *mm, void *mqd,
371 		struct queue_properties *q)
372 {
373 	struct v9_sdma_mqd *m;
374 
375 	m = get_sdma_mqd(mqd);
376 	m->sdmax_rlcx_rb_cntl = order_base_2(q->queue_size / 4)
377 		<< SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
378 		q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT |
379 		1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
380 		6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT;
381 
382 	m->sdmax_rlcx_rb_base = lower_32_bits(q->queue_address >> 8);
383 	m->sdmax_rlcx_rb_base_hi = upper_32_bits(q->queue_address >> 8);
384 	m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
385 	m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
386 	m->sdmax_rlcx_doorbell_offset =
387 		q->doorbell_off << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT;
388 
389 	m->sdma_engine_id = q->sdma_engine_id;
390 	m->sdma_queue_id = q->sdma_queue_id;
391 	m->sdmax_rlcx_dummy_reg = SDMA_RLC_DUMMY_DEFAULT;
392 
393 	q->is_active = (q->queue_size > 0 &&
394 			q->queue_address != 0 &&
395 			q->queue_percent > 0 &&
396 			!q->is_evicted);
397 
398 	return 0;
399 }
400 
401 /*
402  *  * preempt type here is ignored because there is only one way
403  *  * to preempt sdma queue
404  */
405 static int destroy_mqd_sdma(struct mqd_manager *mm, void *mqd,
406 		enum kfd_preempt_type type,
407 		unsigned int timeout, uint32_t pipe_id,
408 		uint32_t queue_id)
409 {
410 	return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->kgd, mqd, timeout);
411 }
412 
413 static bool is_occupied_sdma(struct mqd_manager *mm, void *mqd,
414 		uint64_t queue_address, uint32_t pipe_id,
415 		uint32_t queue_id)
416 {
417 	return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->kgd, mqd);
418 }
419 
420 #if defined(CONFIG_DEBUG_FS)
421 
422 static int debugfs_show_mqd(struct seq_file *m, void *data)
423 {
424 	seq_hex_dump(m, "    ", DUMP_PREFIX_OFFSET, 32, 4,
425 		     data, sizeof(struct v9_mqd), false);
426 	return 0;
427 }
428 
429 static int debugfs_show_mqd_sdma(struct seq_file *m, void *data)
430 {
431 	seq_hex_dump(m, "    ", DUMP_PREFIX_OFFSET, 32, 4,
432 		     data, sizeof(struct v9_sdma_mqd), false);
433 	return 0;
434 }
435 
436 #endif
437 
438 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
439 		struct kfd_dev *dev)
440 {
441 	struct mqd_manager *mqd;
442 
443 	if (WARN_ON(type >= KFD_MQD_TYPE_MAX))
444 		return NULL;
445 
446 	mqd = kzalloc(sizeof(*mqd), GFP_KERNEL);
447 	if (!mqd)
448 		return NULL;
449 
450 	mqd->dev = dev;
451 
452 	switch (type) {
453 	case KFD_MQD_TYPE_CP:
454 	case KFD_MQD_TYPE_COMPUTE:
455 		mqd->init_mqd = init_mqd;
456 		mqd->uninit_mqd = uninit_mqd;
457 		mqd->load_mqd = load_mqd;
458 		mqd->update_mqd = update_mqd;
459 		mqd->destroy_mqd = destroy_mqd;
460 		mqd->is_occupied = is_occupied;
461 		mqd->get_wave_state = get_wave_state;
462 #if defined(CONFIG_DEBUG_FS)
463 		mqd->debugfs_show_mqd = debugfs_show_mqd;
464 #endif
465 		break;
466 	case KFD_MQD_TYPE_HIQ:
467 		mqd->init_mqd = init_mqd_hiq;
468 		mqd->uninit_mqd = uninit_mqd;
469 		mqd->load_mqd = load_mqd;
470 		mqd->update_mqd = update_mqd_hiq;
471 		mqd->destroy_mqd = destroy_mqd;
472 		mqd->is_occupied = is_occupied;
473 #if defined(CONFIG_DEBUG_FS)
474 		mqd->debugfs_show_mqd = debugfs_show_mqd;
475 #endif
476 		break;
477 	case KFD_MQD_TYPE_SDMA:
478 		mqd->init_mqd = init_mqd_sdma;
479 		mqd->uninit_mqd = uninit_mqd_sdma;
480 		mqd->load_mqd = load_mqd_sdma;
481 		mqd->update_mqd = update_mqd_sdma;
482 		mqd->destroy_mqd = destroy_mqd_sdma;
483 		mqd->is_occupied = is_occupied_sdma;
484 #if defined(CONFIG_DEBUG_FS)
485 		mqd->debugfs_show_mqd = debugfs_show_mqd_sdma;
486 #endif
487 		break;
488 	default:
489 		kfree(mqd);
490 		return NULL;
491 	}
492 
493 	return mqd;
494 }
495