1 /*
2  * Copyright 2016-2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/printk.h>
25 #include <linux/slab.h>
26 #include <linux/uaccess.h>
27 #include "kfd_priv.h"
28 #include "kfd_mqd_manager.h"
29 #include "v9_structs.h"
30 #include "gc/gc_9_0_offset.h"
31 #include "gc/gc_9_0_sh_mask.h"
32 #include "sdma0/sdma0_4_0_sh_mask.h"
33 #include "amdgpu_amdkfd.h"
34 
35 static inline struct v9_mqd *get_mqd(void *mqd)
36 {
37 	return (struct v9_mqd *)mqd;
38 }
39 
40 static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
41 {
42 	return (struct v9_sdma_mqd *)mqd;
43 }
44 
45 static void update_cu_mask(struct mqd_manager *mm, void *mqd,
46 			struct mqd_update_info *minfo)
47 {
48 	struct v9_mqd *m;
49 	uint32_t se_mask[KFD_MAX_NUM_SE] = {0};
50 
51 	if (!minfo || (minfo->update_flag != UPDATE_FLAG_CU_MASK) ||
52 	    !minfo->cu_mask.ptr)
53 		return;
54 
55 	mqd_symmetrically_map_cu_mask(mm,
56 		minfo->cu_mask.ptr, minfo->cu_mask.count, se_mask);
57 
58 	m = get_mqd(mqd);
59 	m->compute_static_thread_mgmt_se0 = se_mask[0];
60 	m->compute_static_thread_mgmt_se1 = se_mask[1];
61 	m->compute_static_thread_mgmt_se2 = se_mask[2];
62 	m->compute_static_thread_mgmt_se3 = se_mask[3];
63 	m->compute_static_thread_mgmt_se4 = se_mask[4];
64 	m->compute_static_thread_mgmt_se5 = se_mask[5];
65 	m->compute_static_thread_mgmt_se6 = se_mask[6];
66 	m->compute_static_thread_mgmt_se7 = se_mask[7];
67 
68 	pr_debug("update cu mask to %#x %#x %#x %#x %#x %#x %#x %#x\n",
69 		m->compute_static_thread_mgmt_se0,
70 		m->compute_static_thread_mgmt_se1,
71 		m->compute_static_thread_mgmt_se2,
72 		m->compute_static_thread_mgmt_se3,
73 		m->compute_static_thread_mgmt_se4,
74 		m->compute_static_thread_mgmt_se5,
75 		m->compute_static_thread_mgmt_se6,
76 		m->compute_static_thread_mgmt_se7);
77 }
78 
79 static void set_priority(struct v9_mqd *m, struct queue_properties *q)
80 {
81 	m->cp_hqd_pipe_priority = pipe_priority_map[q->priority];
82 	m->cp_hqd_queue_priority = q->priority;
83 }
84 
85 static struct kfd_mem_obj *allocate_mqd(struct kfd_dev *kfd,
86 		struct queue_properties *q)
87 {
88 	int retval;
89 	struct kfd_mem_obj *mqd_mem_obj = NULL;
90 
91 	/* For V9 only, due to a HW bug, the control stack of a user mode
92 	 * compute queue needs to be allocated just behind the page boundary
93 	 * of its regular MQD buffer. So we allocate an enlarged MQD buffer:
94 	 * the first page of the buffer serves as the regular MQD buffer
95 	 * purpose and the remaining is for control stack. Although the two
96 	 * parts are in the same buffer object, they need different memory
97 	 * types: MQD part needs UC (uncached) as usual, while control stack
98 	 * needs NC (non coherent), which is different from the UC type which
99 	 * is used when control stack is allocated in user space.
100 	 *
101 	 * Because of all those, we use the gtt allocation function instead
102 	 * of sub-allocation function for this enlarged MQD buffer. Moreover,
103 	 * in order to achieve two memory types in a single buffer object, we
104 	 * pass a special bo flag AMDGPU_GEM_CREATE_CP_MQD_GFX9 to instruct
105 	 * amdgpu memory functions to do so.
106 	 */
107 	if (kfd->cwsr_enabled && (q->type == KFD_QUEUE_TYPE_COMPUTE)) {
108 		mqd_mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
109 		if (!mqd_mem_obj)
110 			return NULL;
111 		retval = amdgpu_amdkfd_alloc_gtt_mem(kfd->kgd,
112 			ALIGN(q->ctl_stack_size, PAGE_SIZE) +
113 				ALIGN(sizeof(struct v9_mqd), PAGE_SIZE),
114 			&(mqd_mem_obj->gtt_mem),
115 			&(mqd_mem_obj->gpu_addr),
116 			(void *)&(mqd_mem_obj->cpu_ptr), true);
117 	} else {
118 		retval = kfd_gtt_sa_allocate(kfd, sizeof(struct v9_mqd),
119 				&mqd_mem_obj);
120 	}
121 
122 	if (retval) {
123 		kfree(mqd_mem_obj);
124 		return NULL;
125 	}
126 
127 	return mqd_mem_obj;
128 
129 }
130 
131 static void init_mqd(struct mqd_manager *mm, void **mqd,
132 			struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
133 			struct queue_properties *q)
134 {
135 	uint64_t addr;
136 	struct v9_mqd *m;
137 
138 	m = (struct v9_mqd *) mqd_mem_obj->cpu_ptr;
139 	addr = mqd_mem_obj->gpu_addr;
140 
141 	memset(m, 0, sizeof(struct v9_mqd));
142 
143 	m->header = 0xC0310800;
144 	m->compute_pipelinestat_enable = 1;
145 	m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
146 	m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
147 	m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
148 	m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
149 	m->compute_static_thread_mgmt_se4 = 0xFFFFFFFF;
150 	m->compute_static_thread_mgmt_se5 = 0xFFFFFFFF;
151 	m->compute_static_thread_mgmt_se6 = 0xFFFFFFFF;
152 	m->compute_static_thread_mgmt_se7 = 0xFFFFFFFF;
153 
154 	m->cp_hqd_persistent_state = CP_HQD_PERSISTENT_STATE__PRELOAD_REQ_MASK |
155 			0x53 << CP_HQD_PERSISTENT_STATE__PRELOAD_SIZE__SHIFT;
156 
157 	m->cp_mqd_control = 1 << CP_MQD_CONTROL__PRIV_STATE__SHIFT;
158 
159 	m->cp_mqd_base_addr_lo        = lower_32_bits(addr);
160 	m->cp_mqd_base_addr_hi        = upper_32_bits(addr);
161 
162 	m->cp_hqd_quantum = 1 << CP_HQD_QUANTUM__QUANTUM_EN__SHIFT |
163 			1 << CP_HQD_QUANTUM__QUANTUM_SCALE__SHIFT |
164 			1 << CP_HQD_QUANTUM__QUANTUM_DURATION__SHIFT;
165 
166 	if (q->format == KFD_QUEUE_FORMAT_AQL) {
167 		m->cp_hqd_aql_control =
168 			1 << CP_HQD_AQL_CONTROL__CONTROL0__SHIFT;
169 	}
170 
171 	if (q->tba_addr) {
172 		m->compute_pgm_rsrc2 |=
173 			(1 << COMPUTE_PGM_RSRC2__TRAP_PRESENT__SHIFT);
174 	}
175 
176 	if (mm->dev->cwsr_enabled && q->ctx_save_restore_area_address) {
177 		m->cp_hqd_persistent_state |=
178 			(1 << CP_HQD_PERSISTENT_STATE__QSWITCH_MODE__SHIFT);
179 		m->cp_hqd_ctx_save_base_addr_lo =
180 			lower_32_bits(q->ctx_save_restore_area_address);
181 		m->cp_hqd_ctx_save_base_addr_hi =
182 			upper_32_bits(q->ctx_save_restore_area_address);
183 		m->cp_hqd_ctx_save_size = q->ctx_save_restore_area_size;
184 		m->cp_hqd_cntl_stack_size = q->ctl_stack_size;
185 		m->cp_hqd_cntl_stack_offset = q->ctl_stack_size;
186 		m->cp_hqd_wg_state_offset = q->ctl_stack_size;
187 	}
188 
189 	*mqd = m;
190 	if (gart_addr)
191 		*gart_addr = addr;
192 	mm->update_mqd(mm, m, q, NULL);
193 }
194 
195 static int load_mqd(struct mqd_manager *mm, void *mqd,
196 			uint32_t pipe_id, uint32_t queue_id,
197 			struct queue_properties *p, struct mm_struct *mms)
198 {
199 	/* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */
200 	uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0);
201 
202 	return mm->dev->kfd2kgd->hqd_load(mm->dev->kgd, mqd, pipe_id, queue_id,
203 					  (uint32_t __user *)p->write_ptr,
204 					  wptr_shift, 0, mms);
205 }
206 
207 static int hiq_load_mqd_kiq(struct mqd_manager *mm, void *mqd,
208 			    uint32_t pipe_id, uint32_t queue_id,
209 			    struct queue_properties *p, struct mm_struct *mms)
210 {
211 	return mm->dev->kfd2kgd->hiq_mqd_load(mm->dev->kgd, mqd, pipe_id,
212 					      queue_id, p->doorbell_off);
213 }
214 
215 static void update_mqd(struct mqd_manager *mm, void *mqd,
216 			struct queue_properties *q,
217 			struct mqd_update_info *minfo)
218 {
219 	struct v9_mqd *m;
220 
221 	m = get_mqd(mqd);
222 
223 	m->cp_hqd_pq_control = 5 << CP_HQD_PQ_CONTROL__RPTR_BLOCK_SIZE__SHIFT;
224 	m->cp_hqd_pq_control |= order_base_2(q->queue_size / 4) - 1;
225 	pr_debug("cp_hqd_pq_control 0x%x\n", m->cp_hqd_pq_control);
226 
227 	m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
228 	m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
229 
230 	m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
231 	m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
232 	m->cp_hqd_pq_wptr_poll_addr_lo = lower_32_bits((uint64_t)q->write_ptr);
233 	m->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits((uint64_t)q->write_ptr);
234 
235 	m->cp_hqd_pq_doorbell_control =
236 		q->doorbell_off <<
237 			CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT;
238 	pr_debug("cp_hqd_pq_doorbell_control 0x%x\n",
239 			m->cp_hqd_pq_doorbell_control);
240 
241 	m->cp_hqd_ib_control =
242 		3 << CP_HQD_IB_CONTROL__MIN_IB_AVAIL_SIZE__SHIFT |
243 		1 << CP_HQD_IB_CONTROL__IB_EXE_DISABLE__SHIFT;
244 
245 	/*
246 	 * HW does not clamp this field correctly. Maximum EOP queue size
247 	 * is constrained by per-SE EOP done signal count, which is 8-bit.
248 	 * Limit is 0xFF EOP entries (= 0x7F8 dwords). CP will not submit
249 	 * more than (EOP entry count - 1) so a queue size of 0x800 dwords
250 	 * is safe, giving a maximum field value of 0xA.
251 	 */
252 	m->cp_hqd_eop_control = min(0xA,
253 		order_base_2(q->eop_ring_buffer_size / 4) - 1);
254 	m->cp_hqd_eop_base_addr_lo =
255 			lower_32_bits(q->eop_ring_buffer_address >> 8);
256 	m->cp_hqd_eop_base_addr_hi =
257 			upper_32_bits(q->eop_ring_buffer_address >> 8);
258 
259 	m->cp_hqd_iq_timer = 0;
260 
261 	m->cp_hqd_vmid = q->vmid;
262 
263 	if (q->format == KFD_QUEUE_FORMAT_AQL) {
264 		m->cp_hqd_pq_control |= CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK |
265 				2 << CP_HQD_PQ_CONTROL__SLOT_BASED_WPTR__SHIFT |
266 				1 << CP_HQD_PQ_CONTROL__QUEUE_FULL_EN__SHIFT |
267 				1 << CP_HQD_PQ_CONTROL__WPP_CLAMP_EN__SHIFT;
268 		m->cp_hqd_pq_doorbell_control |= 1 <<
269 			CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_BIF_DROP__SHIFT;
270 	}
271 	if (mm->dev->cwsr_enabled && q->ctx_save_restore_area_address)
272 		m->cp_hqd_ctx_save_control = 0;
273 
274 	update_cu_mask(mm, mqd, minfo);
275 	set_priority(m, q);
276 
277 	q->is_active = QUEUE_IS_ACTIVE(*q);
278 }
279 
280 
281 static uint32_t read_doorbell_id(void *mqd)
282 {
283 	struct v9_mqd *m = (struct v9_mqd *)mqd;
284 
285 	return m->queue_doorbell_id0;
286 }
287 
288 static int destroy_mqd(struct mqd_manager *mm, void *mqd,
289 			enum kfd_preempt_type type,
290 			unsigned int timeout, uint32_t pipe_id,
291 			uint32_t queue_id)
292 {
293 	return mm->dev->kfd2kgd->hqd_destroy
294 		(mm->dev->kgd, mqd, type, timeout,
295 		pipe_id, queue_id);
296 }
297 
298 static void free_mqd(struct mqd_manager *mm, void *mqd,
299 			struct kfd_mem_obj *mqd_mem_obj)
300 {
301 	struct kfd_dev *kfd = mm->dev;
302 
303 	if (mqd_mem_obj->gtt_mem) {
304 		amdgpu_amdkfd_free_gtt_mem(kfd->kgd, mqd_mem_obj->gtt_mem);
305 		kfree(mqd_mem_obj);
306 	} else {
307 		kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
308 	}
309 }
310 
311 static bool is_occupied(struct mqd_manager *mm, void *mqd,
312 			uint64_t queue_address,	uint32_t pipe_id,
313 			uint32_t queue_id)
314 {
315 	return mm->dev->kfd2kgd->hqd_is_occupied(
316 		mm->dev->kgd, queue_address,
317 		pipe_id, queue_id);
318 }
319 
320 static int get_wave_state(struct mqd_manager *mm, void *mqd,
321 			  void __user *ctl_stack,
322 			  u32 *ctl_stack_used_size,
323 			  u32 *save_area_used_size)
324 {
325 	struct v9_mqd *m;
326 
327 	/* Control stack is located one page after MQD. */
328 	void *mqd_ctl_stack = (void *)((uintptr_t)mqd + PAGE_SIZE);
329 
330 	m = get_mqd(mqd);
331 
332 	*ctl_stack_used_size = m->cp_hqd_cntl_stack_size -
333 		m->cp_hqd_cntl_stack_offset;
334 	*save_area_used_size = m->cp_hqd_wg_state_offset -
335 		m->cp_hqd_cntl_stack_size;
336 
337 	if (copy_to_user(ctl_stack, mqd_ctl_stack, m->cp_hqd_cntl_stack_size))
338 		return -EFAULT;
339 
340 	return 0;
341 }
342 
343 static void init_mqd_hiq(struct mqd_manager *mm, void **mqd,
344 			struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
345 			struct queue_properties *q)
346 {
347 	struct v9_mqd *m;
348 
349 	init_mqd(mm, mqd, mqd_mem_obj, gart_addr, q);
350 
351 	m = get_mqd(*mqd);
352 
353 	m->cp_hqd_pq_control |= 1 << CP_HQD_PQ_CONTROL__PRIV_STATE__SHIFT |
354 			1 << CP_HQD_PQ_CONTROL__KMD_QUEUE__SHIFT;
355 }
356 
357 static void init_mqd_sdma(struct mqd_manager *mm, void **mqd,
358 		struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
359 		struct queue_properties *q)
360 {
361 	struct v9_sdma_mqd *m;
362 
363 	m = (struct v9_sdma_mqd *) mqd_mem_obj->cpu_ptr;
364 
365 	memset(m, 0, sizeof(struct v9_sdma_mqd));
366 
367 	*mqd = m;
368 	if (gart_addr)
369 		*gart_addr = mqd_mem_obj->gpu_addr;
370 
371 	mm->update_mqd(mm, m, q, NULL);
372 }
373 
374 static int load_mqd_sdma(struct mqd_manager *mm, void *mqd,
375 		uint32_t pipe_id, uint32_t queue_id,
376 		struct queue_properties *p, struct mm_struct *mms)
377 {
378 	return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->kgd, mqd,
379 					       (uint32_t __user *)p->write_ptr,
380 					       mms);
381 }
382 
383 #define SDMA_RLC_DUMMY_DEFAULT 0xf
384 
385 static void update_mqd_sdma(struct mqd_manager *mm, void *mqd,
386 			struct queue_properties *q,
387 			struct mqd_update_info *minfo)
388 {
389 	struct v9_sdma_mqd *m;
390 
391 	m = get_sdma_mqd(mqd);
392 	m->sdmax_rlcx_rb_cntl = order_base_2(q->queue_size / 4)
393 		<< SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
394 		q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT |
395 		1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
396 		6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT;
397 
398 	m->sdmax_rlcx_rb_base = lower_32_bits(q->queue_address >> 8);
399 	m->sdmax_rlcx_rb_base_hi = upper_32_bits(q->queue_address >> 8);
400 	m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
401 	m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
402 	m->sdmax_rlcx_doorbell_offset =
403 		q->doorbell_off << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT;
404 
405 	m->sdma_engine_id = q->sdma_engine_id;
406 	m->sdma_queue_id = q->sdma_queue_id;
407 	m->sdmax_rlcx_dummy_reg = SDMA_RLC_DUMMY_DEFAULT;
408 
409 	q->is_active = QUEUE_IS_ACTIVE(*q);
410 }
411 
412 /*
413  *  * preempt type here is ignored because there is only one way
414  *  * to preempt sdma queue
415  */
416 static int destroy_mqd_sdma(struct mqd_manager *mm, void *mqd,
417 		enum kfd_preempt_type type,
418 		unsigned int timeout, uint32_t pipe_id,
419 		uint32_t queue_id)
420 {
421 	return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->kgd, mqd, timeout);
422 }
423 
424 static bool is_occupied_sdma(struct mqd_manager *mm, void *mqd,
425 		uint64_t queue_address, uint32_t pipe_id,
426 		uint32_t queue_id)
427 {
428 	return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->kgd, mqd);
429 }
430 
431 #if defined(CONFIG_DEBUG_FS)
432 
433 static int debugfs_show_mqd(struct seq_file *m, void *data)
434 {
435 	seq_hex_dump(m, "    ", DUMP_PREFIX_OFFSET, 32, 4,
436 		     data, sizeof(struct v9_mqd), false);
437 	return 0;
438 }
439 
440 static int debugfs_show_mqd_sdma(struct seq_file *m, void *data)
441 {
442 	seq_hex_dump(m, "    ", DUMP_PREFIX_OFFSET, 32, 4,
443 		     data, sizeof(struct v9_sdma_mqd), false);
444 	return 0;
445 }
446 
447 #endif
448 
449 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
450 		struct kfd_dev *dev)
451 {
452 	struct mqd_manager *mqd;
453 
454 	if (WARN_ON(type >= KFD_MQD_TYPE_MAX))
455 		return NULL;
456 
457 	mqd = kzalloc(sizeof(*mqd), GFP_KERNEL);
458 	if (!mqd)
459 		return NULL;
460 
461 	mqd->dev = dev;
462 
463 	switch (type) {
464 	case KFD_MQD_TYPE_CP:
465 		mqd->allocate_mqd = allocate_mqd;
466 		mqd->init_mqd = init_mqd;
467 		mqd->free_mqd = free_mqd;
468 		mqd->load_mqd = load_mqd;
469 		mqd->update_mqd = update_mqd;
470 		mqd->destroy_mqd = destroy_mqd;
471 		mqd->is_occupied = is_occupied;
472 		mqd->get_wave_state = get_wave_state;
473 		mqd->mqd_size = sizeof(struct v9_mqd);
474 #if defined(CONFIG_DEBUG_FS)
475 		mqd->debugfs_show_mqd = debugfs_show_mqd;
476 #endif
477 		break;
478 	case KFD_MQD_TYPE_HIQ:
479 		mqd->allocate_mqd = allocate_hiq_mqd;
480 		mqd->init_mqd = init_mqd_hiq;
481 		mqd->free_mqd = free_mqd_hiq_sdma;
482 		mqd->load_mqd = hiq_load_mqd_kiq;
483 		mqd->update_mqd = update_mqd;
484 		mqd->destroy_mqd = destroy_mqd;
485 		mqd->is_occupied = is_occupied;
486 		mqd->mqd_size = sizeof(struct v9_mqd);
487 #if defined(CONFIG_DEBUG_FS)
488 		mqd->debugfs_show_mqd = debugfs_show_mqd;
489 #endif
490 		mqd->read_doorbell_id = read_doorbell_id;
491 		break;
492 	case KFD_MQD_TYPE_DIQ:
493 		mqd->allocate_mqd = allocate_mqd;
494 		mqd->init_mqd = init_mqd_hiq;
495 		mqd->free_mqd = free_mqd;
496 		mqd->load_mqd = load_mqd;
497 		mqd->update_mqd = update_mqd;
498 		mqd->destroy_mqd = destroy_mqd;
499 		mqd->is_occupied = is_occupied;
500 		mqd->mqd_size = sizeof(struct v9_mqd);
501 #if defined(CONFIG_DEBUG_FS)
502 		mqd->debugfs_show_mqd = debugfs_show_mqd;
503 #endif
504 		break;
505 	case KFD_MQD_TYPE_SDMA:
506 		mqd->allocate_mqd = allocate_sdma_mqd;
507 		mqd->init_mqd = init_mqd_sdma;
508 		mqd->free_mqd = free_mqd_hiq_sdma;
509 		mqd->load_mqd = load_mqd_sdma;
510 		mqd->update_mqd = update_mqd_sdma;
511 		mqd->destroy_mqd = destroy_mqd_sdma;
512 		mqd->is_occupied = is_occupied_sdma;
513 		mqd->mqd_size = sizeof(struct v9_sdma_mqd);
514 #if defined(CONFIG_DEBUG_FS)
515 		mqd->debugfs_show_mqd = debugfs_show_mqd_sdma;
516 #endif
517 		break;
518 	default:
519 		kfree(mqd);
520 		return NULL;
521 	}
522 
523 	return mqd;
524 }
525