1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/printk.h> 25 #include <linux/slab.h> 26 #include <linux/mm_types.h> 27 28 #include "kfd_priv.h" 29 #include "kfd_mqd_manager.h" 30 #include "cik_regs.h" 31 #include "cik_structs.h" 32 #include "oss/oss_2_4_sh_mask.h" 33 34 static inline struct cik_mqd *get_mqd(void *mqd) 35 { 36 return (struct cik_mqd *)mqd; 37 } 38 39 static int init_mqd(struct mqd_manager *mm, void **mqd, 40 struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr, 41 struct queue_properties *q) 42 { 43 uint64_t addr; 44 struct cik_mqd *m; 45 int retval; 46 47 retval = kfd_gtt_sa_allocate(mm->dev, sizeof(struct cik_mqd), 48 mqd_mem_obj); 49 50 if (retval != 0) 51 return -ENOMEM; 52 53 m = (struct cik_mqd *) (*mqd_mem_obj)->cpu_ptr; 54 addr = (*mqd_mem_obj)->gpu_addr; 55 56 memset(m, 0, ALIGN(sizeof(struct cik_mqd), 256)); 57 58 m->header = 0xC0310800; 59 m->compute_pipelinestat_enable = 1; 60 m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF; 61 m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF; 62 m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF; 63 m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF; 64 65 /* 66 * Make sure to use the last queue state saved on mqd when the cp 67 * reassigns the queue, so when queue is switched on/off (e.g over 68 * subscription or quantum timeout) the context will be consistent 69 */ 70 m->cp_hqd_persistent_state = 71 DEFAULT_CP_HQD_PERSISTENT_STATE | PRELOAD_REQ; 72 73 m->cp_mqd_control = MQD_CONTROL_PRIV_STATE_EN; 74 m->cp_mqd_base_addr_lo = lower_32_bits(addr); 75 m->cp_mqd_base_addr_hi = upper_32_bits(addr); 76 77 m->cp_hqd_ib_control = DEFAULT_MIN_IB_AVAIL_SIZE | IB_ATC_EN; 78 /* Although WinKFD writes this, I suspect it should not be necessary */ 79 m->cp_hqd_ib_control = IB_ATC_EN | DEFAULT_MIN_IB_AVAIL_SIZE; 80 81 m->cp_hqd_quantum = QUANTUM_EN | QUANTUM_SCALE_1MS | 82 QUANTUM_DURATION(10); 83 84 /* 85 * Pipe Priority 86 * Identifies the pipe relative priority when this queue is connected 87 * to the pipeline. The pipe priority is against the GFX pipe and HP3D. 88 * In KFD we are using a fixed pipe priority set to CS_MEDIUM. 89 * 0 = CS_LOW (typically below GFX) 90 * 1 = CS_MEDIUM (typically between HP3D and GFX 91 * 2 = CS_HIGH (typically above HP3D) 92 */ 93 m->cp_hqd_pipe_priority = 1; 94 m->cp_hqd_queue_priority = 15; 95 96 if (q->format == KFD_QUEUE_FORMAT_AQL) 97 m->cp_hqd_iq_rptr = AQL_ENABLE; 98 99 *mqd = m; 100 if (gart_addr) 101 *gart_addr = addr; 102 retval = mm->update_mqd(mm, m, q); 103 104 return retval; 105 } 106 107 static int init_mqd_sdma(struct mqd_manager *mm, void **mqd, 108 struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr, 109 struct queue_properties *q) 110 { 111 int retval; 112 struct cik_sdma_rlc_registers *m; 113 114 retval = kfd_gtt_sa_allocate(mm->dev, 115 sizeof(struct cik_sdma_rlc_registers), 116 mqd_mem_obj); 117 118 if (retval != 0) 119 return -ENOMEM; 120 121 m = (struct cik_sdma_rlc_registers *) (*mqd_mem_obj)->cpu_ptr; 122 123 memset(m, 0, sizeof(struct cik_sdma_rlc_registers)); 124 125 *mqd = m; 126 if (gart_addr) 127 *gart_addr = (*mqd_mem_obj)->gpu_addr; 128 129 retval = mm->update_mqd(mm, m, q); 130 131 return retval; 132 } 133 134 static void uninit_mqd(struct mqd_manager *mm, void *mqd, 135 struct kfd_mem_obj *mqd_mem_obj) 136 { 137 kfd_gtt_sa_free(mm->dev, mqd_mem_obj); 138 } 139 140 static void uninit_mqd_sdma(struct mqd_manager *mm, void *mqd, 141 struct kfd_mem_obj *mqd_mem_obj) 142 { 143 kfd_gtt_sa_free(mm->dev, mqd_mem_obj); 144 } 145 146 static int load_mqd(struct mqd_manager *mm, void *mqd, uint32_t pipe_id, 147 uint32_t queue_id, struct queue_properties *p, 148 struct mm_struct *mms) 149 { 150 /* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */ 151 uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0); 152 uint32_t wptr_mask = (uint32_t)((p->queue_size / sizeof(uint32_t)) - 1); 153 154 return mm->dev->kfd2kgd->hqd_load(mm->dev->kgd, mqd, pipe_id, queue_id, 155 (uint32_t __user *)p->write_ptr, 156 wptr_shift, wptr_mask, mms); 157 } 158 159 static int load_mqd_sdma(struct mqd_manager *mm, void *mqd, 160 uint32_t pipe_id, uint32_t queue_id, 161 struct queue_properties *p, struct mm_struct *mms) 162 { 163 return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->kgd, mqd); 164 } 165 166 static int update_mqd(struct mqd_manager *mm, void *mqd, 167 struct queue_properties *q) 168 { 169 struct cik_mqd *m; 170 171 m = get_mqd(mqd); 172 m->cp_hqd_pq_control = DEFAULT_RPTR_BLOCK_SIZE | 173 DEFAULT_MIN_AVAIL_SIZE | PQ_ATC_EN; 174 175 /* 176 * Calculating queue size which is log base 2 of actual queue size -1 177 * dwords and another -1 for ffs 178 */ 179 m->cp_hqd_pq_control |= ffs(q->queue_size / sizeof(unsigned int)) 180 - 1 - 1; 181 m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8); 182 m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8); 183 m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr); 184 m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr); 185 m->cp_hqd_pq_doorbell_control = DOORBELL_OFFSET(q->doorbell_off); 186 187 m->cp_hqd_vmid = q->vmid; 188 189 if (q->format == KFD_QUEUE_FORMAT_AQL) 190 m->cp_hqd_pq_control |= NO_UPDATE_RPTR; 191 192 q->is_active = false; 193 if (q->queue_size > 0 && 194 q->queue_address != 0 && 195 q->queue_percent > 0) { 196 q->is_active = true; 197 } 198 199 return 0; 200 } 201 202 static int update_mqd_sdma(struct mqd_manager *mm, void *mqd, 203 struct queue_properties *q) 204 { 205 struct cik_sdma_rlc_registers *m; 206 207 m = get_sdma_mqd(mqd); 208 m->sdma_rlc_rb_cntl = ffs(q->queue_size / sizeof(unsigned int)) << 209 SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT | 210 q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT | 211 1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT | 212 6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT; 213 214 m->sdma_rlc_rb_base = lower_32_bits(q->queue_address >> 8); 215 m->sdma_rlc_rb_base_hi = upper_32_bits(q->queue_address >> 8); 216 m->sdma_rlc_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr); 217 m->sdma_rlc_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr); 218 m->sdma_rlc_doorbell = q->doorbell_off << 219 SDMA0_RLC0_DOORBELL__OFFSET__SHIFT | 220 1 << SDMA0_RLC0_DOORBELL__ENABLE__SHIFT; 221 222 m->sdma_rlc_virtual_addr = q->sdma_vm_addr; 223 224 m->sdma_engine_id = q->sdma_engine_id; 225 m->sdma_queue_id = q->sdma_queue_id; 226 227 q->is_active = false; 228 if (q->queue_size > 0 && 229 q->queue_address != 0 && 230 q->queue_percent > 0) { 231 m->sdma_rlc_rb_cntl |= 232 1 << SDMA0_RLC0_RB_CNTL__RB_ENABLE__SHIFT; 233 234 q->is_active = true; 235 } 236 237 return 0; 238 } 239 240 static int destroy_mqd(struct mqd_manager *mm, void *mqd, 241 enum kfd_preempt_type type, 242 unsigned int timeout, uint32_t pipe_id, 243 uint32_t queue_id) 244 { 245 return mm->dev->kfd2kgd->hqd_destroy(mm->dev->kgd, mqd, type, timeout, 246 pipe_id, queue_id); 247 } 248 249 /* 250 * preempt type here is ignored because there is only one way 251 * to preempt sdma queue 252 */ 253 static int destroy_mqd_sdma(struct mqd_manager *mm, void *mqd, 254 enum kfd_preempt_type type, 255 unsigned int timeout, uint32_t pipe_id, 256 uint32_t queue_id) 257 { 258 return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->kgd, mqd, timeout); 259 } 260 261 static bool is_occupied(struct mqd_manager *mm, void *mqd, 262 uint64_t queue_address, uint32_t pipe_id, 263 uint32_t queue_id) 264 { 265 266 return mm->dev->kfd2kgd->hqd_is_occupied(mm->dev->kgd, queue_address, 267 pipe_id, queue_id); 268 269 } 270 271 static bool is_occupied_sdma(struct mqd_manager *mm, void *mqd, 272 uint64_t queue_address, uint32_t pipe_id, 273 uint32_t queue_id) 274 { 275 return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->kgd, mqd); 276 } 277 278 /* 279 * HIQ MQD Implementation, concrete implementation for HIQ MQD implementation. 280 * The HIQ queue in Kaveri is using the same MQD structure as all the user mode 281 * queues but with different initial values. 282 */ 283 284 static int init_mqd_hiq(struct mqd_manager *mm, void **mqd, 285 struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr, 286 struct queue_properties *q) 287 { 288 uint64_t addr; 289 struct cik_mqd *m; 290 int retval; 291 292 retval = kfd_gtt_sa_allocate(mm->dev, sizeof(struct cik_mqd), 293 mqd_mem_obj); 294 295 if (retval != 0) 296 return -ENOMEM; 297 298 m = (struct cik_mqd *) (*mqd_mem_obj)->cpu_ptr; 299 addr = (*mqd_mem_obj)->gpu_addr; 300 301 memset(m, 0, ALIGN(sizeof(struct cik_mqd), 256)); 302 303 m->header = 0xC0310800; 304 m->compute_pipelinestat_enable = 1; 305 m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF; 306 m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF; 307 m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF; 308 m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF; 309 310 m->cp_hqd_persistent_state = DEFAULT_CP_HQD_PERSISTENT_STATE | 311 PRELOAD_REQ; 312 m->cp_hqd_quantum = QUANTUM_EN | QUANTUM_SCALE_1MS | 313 QUANTUM_DURATION(10); 314 315 m->cp_mqd_control = MQD_CONTROL_PRIV_STATE_EN; 316 m->cp_mqd_base_addr_lo = lower_32_bits(addr); 317 m->cp_mqd_base_addr_hi = upper_32_bits(addr); 318 319 m->cp_hqd_ib_control = DEFAULT_MIN_IB_AVAIL_SIZE; 320 321 /* 322 * Pipe Priority 323 * Identifies the pipe relative priority when this queue is connected 324 * to the pipeline. The pipe priority is against the GFX pipe and HP3D. 325 * In KFD we are using a fixed pipe priority set to CS_MEDIUM. 326 * 0 = CS_LOW (typically below GFX) 327 * 1 = CS_MEDIUM (typically between HP3D and GFX 328 * 2 = CS_HIGH (typically above HP3D) 329 */ 330 m->cp_hqd_pipe_priority = 1; 331 m->cp_hqd_queue_priority = 15; 332 333 *mqd = m; 334 if (gart_addr) 335 *gart_addr = addr; 336 retval = mm->update_mqd(mm, m, q); 337 338 return retval; 339 } 340 341 static int update_mqd_hiq(struct mqd_manager *mm, void *mqd, 342 struct queue_properties *q) 343 { 344 struct cik_mqd *m; 345 346 m = get_mqd(mqd); 347 m->cp_hqd_pq_control = DEFAULT_RPTR_BLOCK_SIZE | 348 DEFAULT_MIN_AVAIL_SIZE | 349 PRIV_STATE | 350 KMD_QUEUE; 351 352 /* 353 * Calculating queue size which is log base 2 of actual queue 354 * size -1 dwords 355 */ 356 m->cp_hqd_pq_control |= ffs(q->queue_size / sizeof(unsigned int)) 357 - 1 - 1; 358 m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8); 359 m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8); 360 m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr); 361 m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr); 362 m->cp_hqd_pq_doorbell_control = DOORBELL_EN | 363 DOORBELL_OFFSET(q->doorbell_off); 364 365 m->cp_hqd_vmid = q->vmid; 366 367 m->cp_hqd_active = 0; 368 q->is_active = false; 369 if (q->queue_size > 0 && 370 q->queue_address != 0 && 371 q->queue_percent > 0) { 372 m->cp_hqd_active = 1; 373 q->is_active = true; 374 } 375 376 return 0; 377 } 378 379 struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd) 380 { 381 struct cik_sdma_rlc_registers *m; 382 383 m = (struct cik_sdma_rlc_registers *)mqd; 384 385 return m; 386 } 387 388 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, 389 struct kfd_dev *dev) 390 { 391 struct mqd_manager *mqd; 392 393 if (WARN_ON(type >= KFD_MQD_TYPE_MAX)) 394 return NULL; 395 396 mqd = kzalloc(sizeof(*mqd), GFP_KERNEL); 397 if (!mqd) 398 return NULL; 399 400 mqd->dev = dev; 401 402 switch (type) { 403 case KFD_MQD_TYPE_CP: 404 case KFD_MQD_TYPE_COMPUTE: 405 mqd->init_mqd = init_mqd; 406 mqd->uninit_mqd = uninit_mqd; 407 mqd->load_mqd = load_mqd; 408 mqd->update_mqd = update_mqd; 409 mqd->destroy_mqd = destroy_mqd; 410 mqd->is_occupied = is_occupied; 411 break; 412 case KFD_MQD_TYPE_HIQ: 413 mqd->init_mqd = init_mqd_hiq; 414 mqd->uninit_mqd = uninit_mqd; 415 mqd->load_mqd = load_mqd; 416 mqd->update_mqd = update_mqd_hiq; 417 mqd->destroy_mqd = destroy_mqd; 418 mqd->is_occupied = is_occupied; 419 break; 420 case KFD_MQD_TYPE_SDMA: 421 mqd->init_mqd = init_mqd_sdma; 422 mqd->uninit_mqd = uninit_mqd_sdma; 423 mqd->load_mqd = load_mqd_sdma; 424 mqd->update_mqd = update_mqd_sdma; 425 mqd->destroy_mqd = destroy_mqd_sdma; 426 mqd->is_occupied = is_occupied_sdma; 427 break; 428 default: 429 kfree(mqd); 430 return NULL; 431 } 432 433 return mqd; 434 } 435 436