1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/printk.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_mqd_manager.h"
28 #include "cik_regs.h"
29 #include "../../radeon/cikd.h"
30 #include "../../radeon/cik_reg.h"
31 
32 inline void busy_wait(unsigned long ms)
33 {
34 	while (time_before(jiffies, ms))
35 		cpu_relax();
36 }
37 
38 static inline struct cik_mqd *get_mqd(void *mqd)
39 {
40 	return (struct cik_mqd *)mqd;
41 }
42 
43 static int init_mqd(struct mqd_manager *mm, void **mqd,
44 		struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
45 		struct queue_properties *q)
46 {
47 	uint64_t addr;
48 	struct cik_mqd *m;
49 	int retval;
50 
51 	BUG_ON(!mm || !q || !mqd);
52 
53 	pr_debug("kfd: In func %s\n", __func__);
54 
55 	retval = kfd2kgd->allocate_mem(mm->dev->kgd,
56 					sizeof(struct cik_mqd),
57 					256,
58 					KFD_MEMPOOL_SYSTEM_WRITECOMBINE,
59 					(struct kgd_mem **) mqd_mem_obj);
60 
61 	if (retval != 0)
62 		return -ENOMEM;
63 
64 	m = (struct cik_mqd *) (*mqd_mem_obj)->cpu_ptr;
65 	addr = (*mqd_mem_obj)->gpu_addr;
66 
67 	memset(m, 0, ALIGN(sizeof(struct cik_mqd), 256));
68 
69 	m->header = 0xC0310800;
70 	m->compute_pipelinestat_enable = 1;
71 	m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
72 	m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
73 	m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
74 	m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
75 
76 	/*
77 	 * Make sure to use the last queue state saved on mqd when the cp
78 	 * reassigns the queue, so when queue is switched on/off (e.g over
79 	 * subscription or quantum timeout) the context will be consistent
80 	 */
81 	m->cp_hqd_persistent_state =
82 				DEFAULT_CP_HQD_PERSISTENT_STATE | PRELOAD_REQ;
83 
84 	m->cp_mqd_control             = MQD_CONTROL_PRIV_STATE_EN;
85 	m->cp_mqd_base_addr_lo        = lower_32_bits(addr);
86 	m->cp_mqd_base_addr_hi        = upper_32_bits(addr);
87 
88 	m->cp_hqd_ib_control = DEFAULT_MIN_IB_AVAIL_SIZE | IB_ATC_EN;
89 	/* Although WinKFD writes this, I suspect it should not be necessary */
90 	m->cp_hqd_ib_control = IB_ATC_EN | DEFAULT_MIN_IB_AVAIL_SIZE;
91 
92 	m->cp_hqd_quantum = QUANTUM_EN | QUANTUM_SCALE_1MS |
93 				QUANTUM_DURATION(10);
94 
95 	/*
96 	 * Pipe Priority
97 	 * Identifies the pipe relative priority when this queue is connected
98 	 * to the pipeline. The pipe priority is against the GFX pipe and HP3D.
99 	 * In KFD we are using a fixed pipe priority set to CS_MEDIUM.
100 	 * 0 = CS_LOW (typically below GFX)
101 	 * 1 = CS_MEDIUM (typically between HP3D and GFX
102 	 * 2 = CS_HIGH (typically above HP3D)
103 	 */
104 	m->cp_hqd_pipe_priority = 1;
105 	m->cp_hqd_queue_priority = 15;
106 
107 	*mqd = m;
108 	if (gart_addr != NULL)
109 		*gart_addr = addr;
110 	retval = mm->update_mqd(mm, m, q);
111 
112 	return retval;
113 }
114 
115 static int init_mqd_sdma(struct mqd_manager *mm, void **mqd,
116 			struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
117 			struct queue_properties *q)
118 {
119 	int retval;
120 	struct cik_sdma_rlc_registers *m;
121 
122 	BUG_ON(!mm || !mqd || !mqd_mem_obj);
123 
124 	retval = kfd2kgd->allocate_mem(mm->dev->kgd,
125 					sizeof(struct cik_sdma_rlc_registers),
126 					256,
127 					KFD_MEMPOOL_SYSTEM_WRITECOMBINE,
128 					(struct kgd_mem **) mqd_mem_obj);
129 
130 	if (retval != 0)
131 		return -ENOMEM;
132 
133 	m = (struct cik_sdma_rlc_registers *) (*mqd_mem_obj)->cpu_ptr;
134 
135 	memset(m, 0, sizeof(struct cik_sdma_rlc_registers));
136 
137 	*mqd = m;
138 	if (gart_addr != NULL)
139 		*gart_addr = (*mqd_mem_obj)->gpu_addr;
140 
141 	retval = mm->update_mqd(mm, m, q);
142 
143 	return retval;
144 }
145 
146 static void uninit_mqd(struct mqd_manager *mm, void *mqd,
147 			struct kfd_mem_obj *mqd_mem_obj)
148 {
149 	BUG_ON(!mm || !mqd);
150 	kfd2kgd->free_mem(mm->dev->kgd, (struct kgd_mem *) mqd_mem_obj);
151 }
152 
153 static void uninit_mqd_sdma(struct mqd_manager *mm, void *mqd,
154 				struct kfd_mem_obj *mqd_mem_obj)
155 {
156 	BUG_ON(!mm || !mqd);
157 	kfd2kgd->free_mem(mm->dev->kgd, (struct kgd_mem *) mqd_mem_obj);
158 }
159 
160 static int load_mqd(struct mqd_manager *mm, void *mqd, uint32_t pipe_id,
161 			uint32_t queue_id, uint32_t __user *wptr)
162 {
163 	return kfd2kgd->hqd_load(mm->dev->kgd, mqd, pipe_id, queue_id, wptr);
164 }
165 
166 static int load_mqd_sdma(struct mqd_manager *mm, void *mqd,
167 			uint32_t pipe_id, uint32_t queue_id,
168 			uint32_t __user *wptr)
169 {
170 	return kfd2kgd->hqd_sdma_load(mm->dev->kgd, mqd);
171 }
172 
173 static int update_mqd(struct mqd_manager *mm, void *mqd,
174 			struct queue_properties *q)
175 {
176 	struct cik_mqd *m;
177 
178 	BUG_ON(!mm || !q || !mqd);
179 
180 	pr_debug("kfd: In func %s\n", __func__);
181 
182 	m = get_mqd(mqd);
183 	m->cp_hqd_pq_control = DEFAULT_RPTR_BLOCK_SIZE |
184 				DEFAULT_MIN_AVAIL_SIZE | PQ_ATC_EN;
185 
186 	/*
187 	 * Calculating queue size which is log base 2 of actual queue size -1
188 	 * dwords and another -1 for ffs
189 	 */
190 	m->cp_hqd_pq_control |= ffs(q->queue_size / sizeof(unsigned int))
191 								- 1 - 1;
192 	m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
193 	m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
194 	m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
195 	m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
196 	m->cp_hqd_pq_doorbell_control = DOORBELL_EN |
197 					DOORBELL_OFFSET(q->doorbell_off);
198 
199 	m->cp_hqd_vmid = q->vmid;
200 
201 	if (q->format == KFD_QUEUE_FORMAT_AQL) {
202 		m->cp_hqd_iq_rptr = AQL_ENABLE;
203 		m->cp_hqd_pq_control |= NO_UPDATE_RPTR;
204 	}
205 
206 	m->cp_hqd_active = 0;
207 	q->is_active = false;
208 	if (q->queue_size > 0 &&
209 			q->queue_address != 0 &&
210 			q->queue_percent > 0) {
211 		m->cp_hqd_active = 1;
212 		q->is_active = true;
213 	}
214 
215 	return 0;
216 }
217 
218 static int update_mqd_sdma(struct mqd_manager *mm, void *mqd,
219 				struct queue_properties *q)
220 {
221 	struct cik_sdma_rlc_registers *m;
222 
223 	BUG_ON(!mm || !mqd || !q);
224 
225 	m = get_sdma_mqd(mqd);
226 	m->sdma_rlc_rb_cntl =
227 		SDMA_RB_SIZE((ffs(q->queue_size / sizeof(unsigned int)))) |
228 		SDMA_RB_VMID(q->vmid) |
229 		SDMA_RPTR_WRITEBACK_ENABLE |
230 		SDMA_RPTR_WRITEBACK_TIMER(6);
231 
232 	m->sdma_rlc_rb_base = lower_32_bits(q->queue_address >> 8);
233 	m->sdma_rlc_rb_base_hi = upper_32_bits(q->queue_address >> 8);
234 	m->sdma_rlc_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
235 	m->sdma_rlc_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
236 	m->sdma_rlc_doorbell = SDMA_OFFSET(q->doorbell_off) | SDMA_DB_ENABLE;
237 	m->sdma_rlc_virtual_addr = q->sdma_vm_addr;
238 
239 	m->sdma_engine_id = q->sdma_engine_id;
240 	m->sdma_queue_id = q->sdma_queue_id;
241 
242 	q->is_active = false;
243 	if (q->queue_size > 0 &&
244 			q->queue_address != 0 &&
245 			q->queue_percent > 0) {
246 		m->sdma_rlc_rb_cntl |= SDMA_RB_ENABLE;
247 		q->is_active = true;
248 	}
249 
250 	return 0;
251 }
252 
253 static int destroy_mqd(struct mqd_manager *mm, void *mqd,
254 			enum kfd_preempt_type type,
255 			unsigned int timeout, uint32_t pipe_id,
256 			uint32_t queue_id)
257 {
258 	return kfd2kgd->hqd_destroy(mm->dev->kgd, type, timeout,
259 					pipe_id, queue_id);
260 }
261 
262 /*
263  * preempt type here is ignored because there is only one way
264  * to preempt sdma queue
265  */
266 static int destroy_mqd_sdma(struct mqd_manager *mm, void *mqd,
267 				enum kfd_preempt_type type,
268 				unsigned int timeout, uint32_t pipe_id,
269 				uint32_t queue_id)
270 {
271 	return kfd2kgd->hqd_sdma_destroy(mm->dev->kgd, mqd, timeout);
272 }
273 
274 static bool is_occupied(struct mqd_manager *mm, void *mqd,
275 			uint64_t queue_address,	uint32_t pipe_id,
276 			uint32_t queue_id)
277 {
278 
279 	return kfd2kgd->hqd_is_occupies(mm->dev->kgd, queue_address,
280 					pipe_id, queue_id);
281 
282 }
283 
284 static bool is_occupied_sdma(struct mqd_manager *mm, void *mqd,
285 			uint64_t queue_address,	uint32_t pipe_id,
286 			uint32_t queue_id)
287 {
288 	return kfd2kgd->hqd_sdma_is_occupied(mm->dev->kgd, mqd);
289 }
290 
291 /*
292  * HIQ MQD Implementation, concrete implementation for HIQ MQD implementation.
293  * The HIQ queue in Kaveri is using the same MQD structure as all the user mode
294  * queues but with different initial values.
295  */
296 
297 static int init_mqd_hiq(struct mqd_manager *mm, void **mqd,
298 		struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
299 		struct queue_properties *q)
300 {
301 	uint64_t addr;
302 	struct cik_mqd *m;
303 	int retval;
304 
305 	BUG_ON(!mm || !q || !mqd || !mqd_mem_obj);
306 
307 	pr_debug("kfd: In func %s\n", __func__);
308 
309 	retval = kfd2kgd->allocate_mem(mm->dev->kgd,
310 					sizeof(struct cik_mqd),
311 					256,
312 					KFD_MEMPOOL_SYSTEM_WRITECOMBINE,
313 					(struct kgd_mem **) mqd_mem_obj);
314 
315 	if (retval != 0)
316 		return -ENOMEM;
317 
318 	m = (struct cik_mqd *) (*mqd_mem_obj)->cpu_ptr;
319 	addr = (*mqd_mem_obj)->gpu_addr;
320 
321 	memset(m, 0, ALIGN(sizeof(struct cik_mqd), 256));
322 
323 	m->header = 0xC0310800;
324 	m->compute_pipelinestat_enable = 1;
325 	m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
326 	m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
327 	m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
328 	m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
329 
330 	m->cp_hqd_persistent_state = DEFAULT_CP_HQD_PERSISTENT_STATE |
331 					PRELOAD_REQ;
332 	m->cp_hqd_quantum = QUANTUM_EN | QUANTUM_SCALE_1MS |
333 				QUANTUM_DURATION(10);
334 
335 	m->cp_mqd_control             = MQD_CONTROL_PRIV_STATE_EN;
336 	m->cp_mqd_base_addr_lo        = lower_32_bits(addr);
337 	m->cp_mqd_base_addr_hi        = upper_32_bits(addr);
338 
339 	m->cp_hqd_ib_control = DEFAULT_MIN_IB_AVAIL_SIZE;
340 
341 	/*
342 	 * Pipe Priority
343 	 * Identifies the pipe relative priority when this queue is connected
344 	 * to the pipeline. The pipe priority is against the GFX pipe and HP3D.
345 	 * In KFD we are using a fixed pipe priority set to CS_MEDIUM.
346 	 * 0 = CS_LOW (typically below GFX)
347 	 * 1 = CS_MEDIUM (typically between HP3D and GFX
348 	 * 2 = CS_HIGH (typically above HP3D)
349 	 */
350 	m->cp_hqd_pipe_priority = 1;
351 	m->cp_hqd_queue_priority = 15;
352 
353 	*mqd = m;
354 	if (gart_addr)
355 		*gart_addr = addr;
356 	retval = mm->update_mqd(mm, m, q);
357 
358 	return retval;
359 }
360 
361 static int update_mqd_hiq(struct mqd_manager *mm, void *mqd,
362 				struct queue_properties *q)
363 {
364 	struct cik_mqd *m;
365 
366 	BUG_ON(!mm || !q || !mqd);
367 
368 	pr_debug("kfd: In func %s\n", __func__);
369 
370 	m = get_mqd(mqd);
371 	m->cp_hqd_pq_control = DEFAULT_RPTR_BLOCK_SIZE |
372 				DEFAULT_MIN_AVAIL_SIZE |
373 				PRIV_STATE |
374 				KMD_QUEUE;
375 
376 	/*
377 	 * Calculating queue size which is log base 2 of actual queue
378 	 * size -1 dwords
379 	 */
380 	m->cp_hqd_pq_control |= ffs(q->queue_size / sizeof(unsigned int))
381 								- 1 - 1;
382 	m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
383 	m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
384 	m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
385 	m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
386 	m->cp_hqd_pq_doorbell_control = DOORBELL_EN |
387 					DOORBELL_OFFSET(q->doorbell_off);
388 
389 	m->cp_hqd_vmid = q->vmid;
390 
391 	m->cp_hqd_active = 0;
392 	q->is_active = false;
393 	if (q->queue_size > 0 &&
394 			q->queue_address != 0 &&
395 			q->queue_percent > 0) {
396 		m->cp_hqd_active = 1;
397 		q->is_active = true;
398 	}
399 
400 	return 0;
401 }
402 
403 /*
404  * SDMA MQD Implementation
405  */
406 
407 struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
408 {
409 	struct cik_sdma_rlc_registers *m;
410 
411 	BUG_ON(!mqd);
412 
413 	m = (struct cik_sdma_rlc_registers *)mqd;
414 
415 	return m;
416 }
417 
418 struct mqd_manager *mqd_manager_init(enum KFD_MQD_TYPE type,
419 					struct kfd_dev *dev)
420 {
421 	struct mqd_manager *mqd;
422 
423 	BUG_ON(!dev);
424 	BUG_ON(type >= KFD_MQD_TYPE_MAX);
425 
426 	pr_debug("kfd: In func %s\n", __func__);
427 
428 	mqd = kzalloc(sizeof(struct mqd_manager), GFP_KERNEL);
429 	if (!mqd)
430 		return NULL;
431 
432 	mqd->dev = dev;
433 
434 	switch (type) {
435 	case KFD_MQD_TYPE_CIK_CP:
436 	case KFD_MQD_TYPE_CIK_COMPUTE:
437 		mqd->init_mqd = init_mqd;
438 		mqd->uninit_mqd = uninit_mqd;
439 		mqd->load_mqd = load_mqd;
440 		mqd->update_mqd = update_mqd;
441 		mqd->destroy_mqd = destroy_mqd;
442 		mqd->is_occupied = is_occupied;
443 		break;
444 	case KFD_MQD_TYPE_CIK_HIQ:
445 		mqd->init_mqd = init_mqd_hiq;
446 		mqd->uninit_mqd = uninit_mqd;
447 		mqd->load_mqd = load_mqd;
448 		mqd->update_mqd = update_mqd_hiq;
449 		mqd->destroy_mqd = destroy_mqd;
450 		mqd->is_occupied = is_occupied;
451 		break;
452 	case KFD_MQD_TYPE_CIK_SDMA:
453 		mqd->init_mqd = init_mqd_sdma;
454 		mqd->uninit_mqd = uninit_mqd_sdma;
455 		mqd->load_mqd = load_mqd_sdma;
456 		mqd->update_mqd = update_mqd_sdma;
457 		mqd->destroy_mqd = destroy_mqd_sdma;
458 		mqd->is_occupied = is_occupied_sdma;
459 		break;
460 	default:
461 		kfree(mqd);
462 		return NULL;
463 	}
464 
465 	return mqd;
466 }
467 
468 /* SDMA queues should be implemented here when the cp will supports them */
469