1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020-2021 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/types.h> 24 #include <linux/hmm.h> 25 #include <linux/dma-direction.h> 26 #include <linux/dma-mapping.h> 27 #include "amdgpu_sync.h" 28 #include "amdgpu_object.h" 29 #include "amdgpu_vm.h" 30 #include "amdgpu_mn.h" 31 #include "amdgpu_res_cursor.h" 32 #include "kfd_priv.h" 33 #include "kfd_svm.h" 34 #include "kfd_migrate.h" 35 36 #ifdef dev_fmt 37 #undef dev_fmt 38 #endif 39 #define dev_fmt(fmt) "kfd_migrate: %s: " fmt, __func__ 40 41 static uint64_t 42 svm_migrate_direct_mapping_addr(struct amdgpu_device *adev, uint64_t addr) 43 { 44 return addr + amdgpu_ttm_domain_start(adev, TTM_PL_VRAM); 45 } 46 47 static int 48 svm_migrate_gart_map(struct amdgpu_ring *ring, uint64_t npages, 49 dma_addr_t *addr, uint64_t *gart_addr, uint64_t flags) 50 { 51 struct amdgpu_device *adev = ring->adev; 52 struct amdgpu_job *job; 53 unsigned int num_dw, num_bytes; 54 struct dma_fence *fence; 55 uint64_t src_addr, dst_addr; 56 uint64_t pte_flags; 57 void *cpu_addr; 58 int r; 59 60 /* use gart window 0 */ 61 *gart_addr = adev->gmc.gart_start; 62 63 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 64 num_bytes = npages * 8; 65 66 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, 67 AMDGPU_IB_POOL_DELAYED, &job); 68 if (r) 69 return r; 70 71 src_addr = num_dw * 4; 72 src_addr += job->ibs[0].gpu_addr; 73 74 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 75 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 76 dst_addr, num_bytes, false); 77 78 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 79 WARN_ON(job->ibs[0].length_dw > num_dw); 80 81 pte_flags = AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; 82 pte_flags |= AMDGPU_PTE_SYSTEM | AMDGPU_PTE_SNOOPED; 83 if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO)) 84 pte_flags |= AMDGPU_PTE_WRITEABLE; 85 pte_flags |= adev->gart.gart_pte_flags; 86 87 cpu_addr = &job->ibs[0].ptr[num_dw]; 88 89 r = amdgpu_gart_map(adev, 0, npages, addr, pte_flags, cpu_addr); 90 if (r) 91 goto error_free; 92 93 r = amdgpu_job_submit(job, &adev->mman.entity, 94 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 95 if (r) 96 goto error_free; 97 98 dma_fence_put(fence); 99 100 return r; 101 102 error_free: 103 amdgpu_job_free(job); 104 return r; 105 } 106 107 /** 108 * svm_migrate_copy_memory_gart - sdma copy data between ram and vram 109 * 110 * @adev: amdgpu device the sdma ring running 111 * @sys: system DMA pointer to be copied 112 * @vram: vram destination DMA pointer 113 * @npages: number of pages to copy 114 * @direction: enum MIGRATION_COPY_DIR 115 * @mfence: output, sdma fence to signal after sdma is done 116 * 117 * ram address uses GART table continuous entries mapping to ram pages, 118 * vram address uses direct mapping of vram pages, which must have npages 119 * number of continuous pages. 120 * GART update and sdma uses same buf copy function ring, sdma is splited to 121 * multiple GTT_MAX_PAGES transfer, all sdma operations are serialized, wait for 122 * the last sdma finish fence which is returned to check copy memory is done. 123 * 124 * Context: Process context, takes and releases gtt_window_lock 125 * 126 * Return: 127 * 0 - OK, otherwise error code 128 */ 129 130 static int 131 svm_migrate_copy_memory_gart(struct amdgpu_device *adev, dma_addr_t *sys, 132 uint64_t *vram, uint64_t npages, 133 enum MIGRATION_COPY_DIR direction, 134 struct dma_fence **mfence) 135 { 136 const uint64_t GTT_MAX_PAGES = AMDGPU_GTT_MAX_TRANSFER_SIZE; 137 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 138 uint64_t gart_s, gart_d; 139 struct dma_fence *next; 140 uint64_t size; 141 int r; 142 143 mutex_lock(&adev->mman.gtt_window_lock); 144 145 while (npages) { 146 size = min(GTT_MAX_PAGES, npages); 147 148 if (direction == FROM_VRAM_TO_RAM) { 149 gart_s = svm_migrate_direct_mapping_addr(adev, *vram); 150 r = svm_migrate_gart_map(ring, size, sys, &gart_d, 0); 151 152 } else if (direction == FROM_RAM_TO_VRAM) { 153 r = svm_migrate_gart_map(ring, size, sys, &gart_s, 154 KFD_IOCTL_SVM_FLAG_GPU_RO); 155 gart_d = svm_migrate_direct_mapping_addr(adev, *vram); 156 } 157 if (r) { 158 dev_err(adev->dev, "fail %d create gart mapping\n", r); 159 goto out_unlock; 160 } 161 162 r = amdgpu_copy_buffer(ring, gart_s, gart_d, size * PAGE_SIZE, 163 NULL, &next, false, true, false); 164 if (r) { 165 dev_err(adev->dev, "fail %d to copy memory\n", r); 166 goto out_unlock; 167 } 168 169 dma_fence_put(*mfence); 170 *mfence = next; 171 npages -= size; 172 if (npages) { 173 sys += size; 174 vram += size; 175 } 176 } 177 178 out_unlock: 179 mutex_unlock(&adev->mman.gtt_window_lock); 180 181 return r; 182 } 183 184 /** 185 * svm_migrate_copy_done - wait for memory copy sdma is done 186 * 187 * @adev: amdgpu device the sdma memory copy is executing on 188 * @mfence: migrate fence 189 * 190 * Wait for dma fence is signaled, if the copy ssplit into multiple sdma 191 * operations, this is the last sdma operation fence. 192 * 193 * Context: called after svm_migrate_copy_memory 194 * 195 * Return: 196 * 0 - success 197 * otherwise - error code from dma fence signal 198 */ 199 static int 200 svm_migrate_copy_done(struct amdgpu_device *adev, struct dma_fence *mfence) 201 { 202 int r = 0; 203 204 if (mfence) { 205 r = dma_fence_wait(mfence, false); 206 dma_fence_put(mfence); 207 pr_debug("sdma copy memory fence done\n"); 208 } 209 210 return r; 211 } 212 213 unsigned long 214 svm_migrate_addr_to_pfn(struct amdgpu_device *adev, unsigned long addr) 215 { 216 return (addr + adev->kfd.dev->pgmap.range.start) >> PAGE_SHIFT; 217 } 218 219 static void 220 svm_migrate_get_vram_page(struct svm_range *prange, unsigned long pfn) 221 { 222 struct page *page; 223 224 page = pfn_to_page(pfn); 225 svm_range_bo_ref(prange->svm_bo); 226 page->zone_device_data = prange->svm_bo; 227 get_page(page); 228 lock_page(page); 229 } 230 231 static void 232 svm_migrate_put_vram_page(struct amdgpu_device *adev, unsigned long addr) 233 { 234 struct page *page; 235 236 page = pfn_to_page(svm_migrate_addr_to_pfn(adev, addr)); 237 unlock_page(page); 238 put_page(page); 239 } 240 241 static unsigned long 242 svm_migrate_addr(struct amdgpu_device *adev, struct page *page) 243 { 244 unsigned long addr; 245 246 addr = page_to_pfn(page) << PAGE_SHIFT; 247 return (addr - adev->kfd.dev->pgmap.range.start); 248 } 249 250 static struct page * 251 svm_migrate_get_sys_page(struct vm_area_struct *vma, unsigned long addr) 252 { 253 struct page *page; 254 255 page = alloc_page_vma(GFP_HIGHUSER, vma, addr); 256 if (page) 257 lock_page(page); 258 259 return page; 260 } 261 262 static void svm_migrate_put_sys_page(unsigned long addr) 263 { 264 struct page *page; 265 266 page = pfn_to_page(addr >> PAGE_SHIFT); 267 unlock_page(page); 268 put_page(page); 269 } 270 271 static unsigned long svm_migrate_successful_pages(struct migrate_vma *migrate) 272 { 273 unsigned long cpages = 0; 274 unsigned long i; 275 276 for (i = 0; i < migrate->npages; i++) { 277 if (migrate->src[i] & MIGRATE_PFN_VALID && 278 migrate->src[i] & MIGRATE_PFN_MIGRATE) 279 cpages++; 280 } 281 return cpages; 282 } 283 284 static unsigned long svm_migrate_unsuccessful_pages(struct migrate_vma *migrate) 285 { 286 unsigned long upages = 0; 287 unsigned long i; 288 289 for (i = 0; i < migrate->npages; i++) { 290 if (migrate->src[i] & MIGRATE_PFN_VALID && 291 !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 292 upages++; 293 } 294 return upages; 295 } 296 297 static int 298 svm_migrate_copy_to_vram(struct amdgpu_device *adev, struct svm_range *prange, 299 struct migrate_vma *migrate, struct dma_fence **mfence, 300 dma_addr_t *scratch) 301 { 302 uint64_t npages = migrate->cpages; 303 struct device *dev = adev->dev; 304 struct amdgpu_res_cursor cursor; 305 dma_addr_t *src; 306 uint64_t *dst; 307 uint64_t i, j; 308 int r; 309 310 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, 311 prange->last); 312 313 src = scratch; 314 dst = (uint64_t *)(scratch + npages); 315 316 r = svm_range_vram_node_new(adev, prange, true); 317 if (r) { 318 dev_err(adev->dev, "fail %d to alloc vram\n", r); 319 goto out; 320 } 321 322 amdgpu_res_first(prange->ttm_res, prange->offset << PAGE_SHIFT, 323 npages << PAGE_SHIFT, &cursor); 324 for (i = j = 0; i < npages; i++) { 325 struct page *spage; 326 327 spage = migrate_pfn_to_page(migrate->src[i]); 328 if (spage && !is_zone_device_page(spage)) { 329 dst[i] = cursor.start + (j << PAGE_SHIFT); 330 migrate->dst[i] = svm_migrate_addr_to_pfn(adev, dst[i]); 331 svm_migrate_get_vram_page(prange, migrate->dst[i]); 332 migrate->dst[i] = migrate_pfn(migrate->dst[i]); 333 src[i] = dma_map_page(dev, spage, 0, PAGE_SIZE, 334 DMA_TO_DEVICE); 335 r = dma_mapping_error(dev, src[i]); 336 if (r) { 337 dev_err(adev->dev, "fail %d dma_map_page\n", r); 338 goto out_free_vram_pages; 339 } 340 } else { 341 if (j) { 342 r = svm_migrate_copy_memory_gart( 343 adev, src + i - j, 344 dst + i - j, j, 345 FROM_RAM_TO_VRAM, 346 mfence); 347 if (r) 348 goto out_free_vram_pages; 349 amdgpu_res_next(&cursor, j << PAGE_SHIFT); 350 j = 0; 351 } else { 352 amdgpu_res_next(&cursor, PAGE_SIZE); 353 } 354 continue; 355 } 356 357 pr_debug_ratelimited("dma mapping src to 0x%llx, pfn 0x%lx\n", 358 src[i] >> PAGE_SHIFT, page_to_pfn(spage)); 359 360 if (j >= (cursor.size >> PAGE_SHIFT) - 1 && i < npages - 1) { 361 r = svm_migrate_copy_memory_gart(adev, src + i - j, 362 dst + i - j, j + 1, 363 FROM_RAM_TO_VRAM, 364 mfence); 365 if (r) 366 goto out_free_vram_pages; 367 amdgpu_res_next(&cursor, (j + 1) * PAGE_SIZE); 368 j= 0; 369 } else { 370 j++; 371 } 372 } 373 374 r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j, 375 FROM_RAM_TO_VRAM, mfence); 376 377 out_free_vram_pages: 378 if (r) { 379 pr_debug("failed %d to copy memory to vram\n", r); 380 while (i--) { 381 svm_migrate_put_vram_page(adev, dst[i]); 382 migrate->dst[i] = 0; 383 } 384 } 385 386 #ifdef DEBUG_FORCE_MIXED_DOMAINS 387 for (i = 0, j = 0; i < npages; i += 4, j++) { 388 if (j & 1) 389 continue; 390 svm_migrate_put_vram_page(adev, dst[i]); 391 migrate->dst[i] = 0; 392 svm_migrate_put_vram_page(adev, dst[i + 1]); 393 migrate->dst[i + 1] = 0; 394 svm_migrate_put_vram_page(adev, dst[i + 2]); 395 migrate->dst[i + 2] = 0; 396 svm_migrate_put_vram_page(adev, dst[i + 3]); 397 migrate->dst[i + 3] = 0; 398 } 399 #endif 400 out: 401 return r; 402 } 403 404 static long 405 svm_migrate_vma_to_vram(struct amdgpu_device *adev, struct svm_range *prange, 406 struct vm_area_struct *vma, uint64_t start, 407 uint64_t end) 408 { 409 uint64_t npages = (end - start) >> PAGE_SHIFT; 410 struct kfd_process_device *pdd; 411 struct dma_fence *mfence = NULL; 412 struct migrate_vma migrate; 413 unsigned long cpages = 0; 414 dma_addr_t *scratch; 415 size_t size; 416 void *buf; 417 int r = -ENOMEM; 418 419 memset(&migrate, 0, sizeof(migrate)); 420 migrate.vma = vma; 421 migrate.start = start; 422 migrate.end = end; 423 migrate.flags = MIGRATE_VMA_SELECT_SYSTEM; 424 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 425 426 size = 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t); 427 size *= npages; 428 buf = kvmalloc(size, GFP_KERNEL | __GFP_ZERO); 429 if (!buf) 430 goto out; 431 432 migrate.src = buf; 433 migrate.dst = migrate.src + npages; 434 scratch = (dma_addr_t *)(migrate.dst + npages); 435 436 r = migrate_vma_setup(&migrate); 437 if (r) { 438 dev_err(adev->dev, "vma setup fail %d range [0x%lx 0x%lx]\n", r, 439 prange->start, prange->last); 440 goto out_free; 441 } 442 443 cpages = migrate.cpages; 444 if (!cpages) { 445 pr_debug("failed collect migrate sys pages [0x%lx 0x%lx]\n", 446 prange->start, prange->last); 447 goto out_free; 448 } 449 if (cpages != npages) 450 pr_debug("partial migration, 0x%lx/0x%llx pages migrated\n", 451 cpages, npages); 452 else 453 pr_debug("0x%lx pages migrated\n", cpages); 454 455 r = svm_migrate_copy_to_vram(adev, prange, &migrate, &mfence, scratch); 456 migrate_vma_pages(&migrate); 457 458 pr_debug("successful/cpages/npages 0x%lx/0x%lx/0x%lx\n", 459 svm_migrate_successful_pages(&migrate), cpages, migrate.npages); 460 461 svm_migrate_copy_done(adev, mfence); 462 migrate_vma_finalize(&migrate); 463 464 svm_range_dma_unmap(adev->dev, scratch, 0, npages); 465 svm_range_free_dma_mappings(prange); 466 467 out_free: 468 kvfree(buf); 469 out: 470 if (!r && cpages) { 471 pdd = svm_range_get_pdd_by_adev(prange, adev); 472 if (pdd) 473 WRITE_ONCE(pdd->page_in, pdd->page_in + cpages); 474 475 return cpages; 476 } 477 return r; 478 } 479 480 /** 481 * svm_migrate_ram_to_vram - migrate svm range from system to device 482 * @prange: range structure 483 * @best_loc: the device to migrate to 484 * @mm: the process mm structure 485 * 486 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 487 * 488 * Return: 489 * 0 - OK, otherwise error code 490 */ 491 static int 492 svm_migrate_ram_to_vram(struct svm_range *prange, uint32_t best_loc, 493 struct mm_struct *mm) 494 { 495 unsigned long addr, start, end; 496 struct vm_area_struct *vma; 497 struct amdgpu_device *adev; 498 unsigned long cpages = 0; 499 long r = 0; 500 501 if (prange->actual_loc == best_loc) { 502 pr_debug("svms 0x%p [0x%lx 0x%lx] already on best_loc 0x%x\n", 503 prange->svms, prange->start, prange->last, best_loc); 504 return 0; 505 } 506 507 adev = svm_range_get_adev_by_id(prange, best_loc); 508 if (!adev) { 509 pr_debug("failed to get device by id 0x%x\n", best_loc); 510 return -ENODEV; 511 } 512 513 pr_debug("svms 0x%p [0x%lx 0x%lx] to gpu 0x%x\n", prange->svms, 514 prange->start, prange->last, best_loc); 515 516 /* FIXME: workaround for page locking bug with invalid pages */ 517 svm_range_prefault(prange, mm, SVM_ADEV_PGMAP_OWNER(adev)); 518 519 start = prange->start << PAGE_SHIFT; 520 end = (prange->last + 1) << PAGE_SHIFT; 521 522 for (addr = start; addr < end;) { 523 unsigned long next; 524 525 vma = find_vma(mm, addr); 526 if (!vma || addr < vma->vm_start) 527 break; 528 529 next = min(vma->vm_end, end); 530 r = svm_migrate_vma_to_vram(adev, prange, vma, addr, next); 531 if (r < 0) { 532 pr_debug("failed %ld to migrate\n", r); 533 break; 534 } else { 535 cpages += r; 536 } 537 addr = next; 538 } 539 540 if (cpages) 541 prange->actual_loc = best_loc; 542 543 return r < 0 ? r : 0; 544 } 545 546 static void svm_migrate_page_free(struct page *page) 547 { 548 struct svm_range_bo *svm_bo = page->zone_device_data; 549 550 if (svm_bo) { 551 pr_debug_ratelimited("ref: %d\n", kref_read(&svm_bo->kref)); 552 svm_range_bo_unref_async(svm_bo); 553 } 554 } 555 556 static int 557 svm_migrate_copy_to_ram(struct amdgpu_device *adev, struct svm_range *prange, 558 struct migrate_vma *migrate, struct dma_fence **mfence, 559 dma_addr_t *scratch, uint64_t npages) 560 { 561 struct device *dev = adev->dev; 562 uint64_t *src; 563 dma_addr_t *dst; 564 struct page *dpage; 565 uint64_t i = 0, j; 566 uint64_t addr; 567 int r = 0; 568 569 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, 570 prange->last); 571 572 addr = prange->start << PAGE_SHIFT; 573 574 src = (uint64_t *)(scratch + npages); 575 dst = scratch; 576 577 for (i = 0, j = 0; i < npages; i++, addr += PAGE_SIZE) { 578 struct page *spage; 579 580 spage = migrate_pfn_to_page(migrate->src[i]); 581 if (!spage || !is_zone_device_page(spage)) { 582 pr_debug("invalid page. Could be in CPU already svms 0x%p [0x%lx 0x%lx]\n", 583 prange->svms, prange->start, prange->last); 584 if (j) { 585 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 586 src + i - j, j, 587 FROM_VRAM_TO_RAM, 588 mfence); 589 if (r) 590 goto out_oom; 591 j = 0; 592 } 593 continue; 594 } 595 src[i] = svm_migrate_addr(adev, spage); 596 if (i > 0 && src[i] != src[i - 1] + PAGE_SIZE) { 597 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 598 src + i - j, j, 599 FROM_VRAM_TO_RAM, 600 mfence); 601 if (r) 602 goto out_oom; 603 j = 0; 604 } 605 606 dpage = svm_migrate_get_sys_page(migrate->vma, addr); 607 if (!dpage) { 608 pr_debug("failed get page svms 0x%p [0x%lx 0x%lx]\n", 609 prange->svms, prange->start, prange->last); 610 r = -ENOMEM; 611 goto out_oom; 612 } 613 614 dst[i] = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_FROM_DEVICE); 615 r = dma_mapping_error(dev, dst[i]); 616 if (r) { 617 dev_err(adev->dev, "fail %d dma_map_page\n", r); 618 goto out_oom; 619 } 620 621 pr_debug_ratelimited("dma mapping dst to 0x%llx, pfn 0x%lx\n", 622 dst[i] >> PAGE_SHIFT, page_to_pfn(dpage)); 623 624 migrate->dst[i] = migrate_pfn(page_to_pfn(dpage)); 625 j++; 626 } 627 628 r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j, 629 FROM_VRAM_TO_RAM, mfence); 630 631 out_oom: 632 if (r) { 633 pr_debug("failed %d copy to ram\n", r); 634 while (i--) { 635 svm_migrate_put_sys_page(dst[i]); 636 migrate->dst[i] = 0; 637 } 638 } 639 640 return r; 641 } 642 643 static long 644 svm_migrate_vma_to_ram(struct amdgpu_device *adev, struct svm_range *prange, 645 struct vm_area_struct *vma, uint64_t start, uint64_t end) 646 { 647 uint64_t npages = (end - start) >> PAGE_SHIFT; 648 unsigned long upages = npages; 649 unsigned long cpages = 0; 650 struct kfd_process_device *pdd; 651 struct dma_fence *mfence = NULL; 652 struct migrate_vma migrate; 653 dma_addr_t *scratch; 654 size_t size; 655 void *buf; 656 int r = -ENOMEM; 657 658 memset(&migrate, 0, sizeof(migrate)); 659 migrate.vma = vma; 660 migrate.start = start; 661 migrate.end = end; 662 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; 663 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 664 665 size = 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t); 666 size *= npages; 667 buf = kvmalloc(size, GFP_KERNEL | __GFP_ZERO); 668 if (!buf) 669 goto out; 670 671 migrate.src = buf; 672 migrate.dst = migrate.src + npages; 673 scratch = (dma_addr_t *)(migrate.dst + npages); 674 675 r = migrate_vma_setup(&migrate); 676 if (r) { 677 dev_err(adev->dev, "vma setup fail %d range [0x%lx 0x%lx]\n", r, 678 prange->start, prange->last); 679 goto out_free; 680 } 681 682 cpages = migrate.cpages; 683 if (!cpages) { 684 pr_debug("failed collect migrate device pages [0x%lx 0x%lx]\n", 685 prange->start, prange->last); 686 upages = svm_migrate_unsuccessful_pages(&migrate); 687 goto out_free; 688 } 689 if (cpages != npages) 690 pr_debug("partial migration, 0x%lx/0x%llx pages migrated\n", 691 cpages, npages); 692 else 693 pr_debug("0x%lx pages migrated\n", cpages); 694 695 r = svm_migrate_copy_to_ram(adev, prange, &migrate, &mfence, 696 scratch, npages); 697 migrate_vma_pages(&migrate); 698 699 upages = svm_migrate_unsuccessful_pages(&migrate); 700 pr_debug("unsuccessful/cpages/npages 0x%lx/0x%lx/0x%lx\n", 701 upages, cpages, migrate.npages); 702 703 svm_migrate_copy_done(adev, mfence); 704 migrate_vma_finalize(&migrate); 705 svm_range_dma_unmap(adev->dev, scratch, 0, npages); 706 707 out_free: 708 kvfree(buf); 709 out: 710 if (!r && cpages) { 711 pdd = svm_range_get_pdd_by_adev(prange, adev); 712 if (pdd) 713 WRITE_ONCE(pdd->page_out, pdd->page_out + cpages); 714 715 return upages; 716 } 717 return r ? r : upages; 718 } 719 720 /** 721 * svm_migrate_vram_to_ram - migrate svm range from device to system 722 * @prange: range structure 723 * @mm: process mm, use current->mm if NULL 724 * 725 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 726 * 727 * Return: 728 * 0 - OK, otherwise error code 729 */ 730 int svm_migrate_vram_to_ram(struct svm_range *prange, struct mm_struct *mm) 731 { 732 struct amdgpu_device *adev; 733 struct vm_area_struct *vma; 734 unsigned long addr; 735 unsigned long start; 736 unsigned long end; 737 unsigned long upages = 0; 738 long r = 0; 739 740 if (!prange->actual_loc) { 741 pr_debug("[0x%lx 0x%lx] already migrated to ram\n", 742 prange->start, prange->last); 743 return 0; 744 } 745 746 adev = svm_range_get_adev_by_id(prange, prange->actual_loc); 747 if (!adev) { 748 pr_debug("failed to get device by id 0x%x\n", 749 prange->actual_loc); 750 return -ENODEV; 751 } 752 753 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] from gpu 0x%x to ram\n", 754 prange->svms, prange, prange->start, prange->last, 755 prange->actual_loc); 756 757 start = prange->start << PAGE_SHIFT; 758 end = (prange->last + 1) << PAGE_SHIFT; 759 760 for (addr = start; addr < end;) { 761 unsigned long next; 762 763 vma = find_vma(mm, addr); 764 if (!vma || addr < vma->vm_start) 765 break; 766 767 next = min(vma->vm_end, end); 768 r = svm_migrate_vma_to_ram(adev, prange, vma, addr, next); 769 if (r < 0) { 770 pr_debug("failed %ld to migrate\n", r); 771 break; 772 } else { 773 upages += r; 774 } 775 addr = next; 776 } 777 778 if (!upages) { 779 svm_range_vram_node_free(prange); 780 prange->actual_loc = 0; 781 } 782 783 return r < 0 ? r : 0; 784 } 785 786 /** 787 * svm_migrate_vram_to_vram - migrate svm range from device to device 788 * @prange: range structure 789 * @best_loc: the device to migrate to 790 * @mm: process mm, use current->mm if NULL 791 * 792 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 793 * 794 * Return: 795 * 0 - OK, otherwise error code 796 */ 797 static int 798 svm_migrate_vram_to_vram(struct svm_range *prange, uint32_t best_loc, 799 struct mm_struct *mm) 800 { 801 int r, retries = 3; 802 803 /* 804 * TODO: for both devices with PCIe large bar or on same xgmi hive, skip 805 * system memory as migration bridge 806 */ 807 808 pr_debug("from gpu 0x%x to gpu 0x%x\n", prange->actual_loc, best_loc); 809 810 do { 811 r = svm_migrate_vram_to_ram(prange, mm); 812 if (r) 813 return r; 814 } while (prange->actual_loc && --retries); 815 816 if (prange->actual_loc) 817 return -EDEADLK; 818 819 return svm_migrate_ram_to_vram(prange, best_loc, mm); 820 } 821 822 int 823 svm_migrate_to_vram(struct svm_range *prange, uint32_t best_loc, 824 struct mm_struct *mm) 825 { 826 if (!prange->actual_loc) 827 return svm_migrate_ram_to_vram(prange, best_loc, mm); 828 else 829 return svm_migrate_vram_to_vram(prange, best_loc, mm); 830 831 } 832 833 /** 834 * svm_migrate_to_ram - CPU page fault handler 835 * @vmf: CPU vm fault vma, address 836 * 837 * Context: vm fault handler, caller holds the mmap read lock 838 * 839 * Return: 840 * 0 - OK 841 * VM_FAULT_SIGBUS - notice application to have SIGBUS page fault 842 */ 843 static vm_fault_t svm_migrate_to_ram(struct vm_fault *vmf) 844 { 845 unsigned long addr = vmf->address; 846 struct vm_area_struct *vma; 847 enum svm_work_list_ops op; 848 struct svm_range *parent; 849 struct svm_range *prange; 850 struct kfd_process *p; 851 struct mm_struct *mm; 852 int r = 0; 853 854 vma = vmf->vma; 855 mm = vma->vm_mm; 856 857 p = kfd_lookup_process_by_mm(vma->vm_mm); 858 if (!p) { 859 pr_debug("failed find process at fault address 0x%lx\n", addr); 860 return VM_FAULT_SIGBUS; 861 } 862 if (READ_ONCE(p->svms.faulting_task) == current) { 863 pr_debug("skipping ram migration\n"); 864 kfd_unref_process(p); 865 return 0; 866 } 867 addr >>= PAGE_SHIFT; 868 pr_debug("CPU page fault svms 0x%p address 0x%lx\n", &p->svms, addr); 869 870 mutex_lock(&p->svms.lock); 871 872 prange = svm_range_from_addr(&p->svms, addr, &parent); 873 if (!prange) { 874 pr_debug("cannot find svm range at 0x%lx\n", addr); 875 r = -EFAULT; 876 goto out; 877 } 878 879 mutex_lock(&parent->migrate_mutex); 880 if (prange != parent) 881 mutex_lock_nested(&prange->migrate_mutex, 1); 882 883 if (!prange->actual_loc) 884 goto out_unlock_prange; 885 886 svm_range_lock(parent); 887 if (prange != parent) 888 mutex_lock_nested(&prange->lock, 1); 889 r = svm_range_split_by_granularity(p, mm, addr, parent, prange); 890 if (prange != parent) 891 mutex_unlock(&prange->lock); 892 svm_range_unlock(parent); 893 if (r) { 894 pr_debug("failed %d to split range by granularity\n", r); 895 goto out_unlock_prange; 896 } 897 898 r = svm_migrate_vram_to_ram(prange, mm); 899 if (r) 900 pr_debug("failed %d migrate 0x%p [0x%lx 0x%lx] to ram\n", r, 901 prange, prange->start, prange->last); 902 903 /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */ 904 if (p->xnack_enabled && parent == prange) 905 op = SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP; 906 else 907 op = SVM_OP_UPDATE_RANGE_NOTIFIER; 908 svm_range_add_list_work(&p->svms, parent, mm, op); 909 schedule_deferred_list_work(&p->svms); 910 911 out_unlock_prange: 912 if (prange != parent) 913 mutex_unlock(&prange->migrate_mutex); 914 mutex_unlock(&parent->migrate_mutex); 915 out: 916 mutex_unlock(&p->svms.lock); 917 kfd_unref_process(p); 918 919 pr_debug("CPU fault svms 0x%p address 0x%lx done\n", &p->svms, addr); 920 921 return r ? VM_FAULT_SIGBUS : 0; 922 } 923 924 static const struct dev_pagemap_ops svm_migrate_pgmap_ops = { 925 .page_free = svm_migrate_page_free, 926 .migrate_to_ram = svm_migrate_to_ram, 927 }; 928 929 /* Each VRAM page uses sizeof(struct page) on system memory */ 930 #define SVM_HMM_PAGE_STRUCT_SIZE(size) ((size)/PAGE_SIZE * sizeof(struct page)) 931 932 int svm_migrate_init(struct amdgpu_device *adev) 933 { 934 struct kfd_dev *kfddev = adev->kfd.dev; 935 struct dev_pagemap *pgmap; 936 struct resource *res; 937 unsigned long size; 938 void *r; 939 940 /* Page migration works on Vega10 or newer */ 941 if (!KFD_IS_SOC15(kfddev)) 942 return -EINVAL; 943 944 pgmap = &kfddev->pgmap; 945 memset(pgmap, 0, sizeof(*pgmap)); 946 947 /* TODO: register all vram to HMM for now. 948 * should remove reserved size 949 */ 950 size = ALIGN(adev->gmc.real_vram_size, 2ULL << 20); 951 res = devm_request_free_mem_region(adev->dev, &iomem_resource, size); 952 if (IS_ERR(res)) 953 return -ENOMEM; 954 955 pgmap->type = MEMORY_DEVICE_PRIVATE; 956 pgmap->nr_range = 1; 957 pgmap->range.start = res->start; 958 pgmap->range.end = res->end; 959 pgmap->ops = &svm_migrate_pgmap_ops; 960 pgmap->owner = SVM_ADEV_PGMAP_OWNER(adev); 961 pgmap->flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; 962 963 /* Device manager releases device-specific resources, memory region and 964 * pgmap when driver disconnects from device. 965 */ 966 r = devm_memremap_pages(adev->dev, pgmap); 967 if (IS_ERR(r)) { 968 pr_err("failed to register HMM device memory\n"); 969 970 /* Disable SVM support capability */ 971 pgmap->type = 0; 972 devm_release_mem_region(adev->dev, res->start, resource_size(res)); 973 return PTR_ERR(r); 974 } 975 976 pr_debug("reserve %ldMB system memory for VRAM pages struct\n", 977 SVM_HMM_PAGE_STRUCT_SIZE(size) >> 20); 978 979 amdgpu_amdkfd_reserve_system_mem(SVM_HMM_PAGE_STRUCT_SIZE(size)); 980 981 pr_info("HMM registered %ldMB device memory\n", size >> 20); 982 983 return 0; 984 } 985