1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020-2021 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/types.h> 24 #include <linux/hmm.h> 25 #include <linux/dma-direction.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/migrate.h> 28 #include "amdgpu_sync.h" 29 #include "amdgpu_object.h" 30 #include "amdgpu_vm.h" 31 #include "amdgpu_mn.h" 32 #include "amdgpu_res_cursor.h" 33 #include "kfd_priv.h" 34 #include "kfd_svm.h" 35 #include "kfd_migrate.h" 36 #include "kfd_smi_events.h" 37 38 #ifdef dev_fmt 39 #undef dev_fmt 40 #endif 41 #define dev_fmt(fmt) "kfd_migrate: " fmt 42 43 static uint64_t 44 svm_migrate_direct_mapping_addr(struct amdgpu_device *adev, uint64_t addr) 45 { 46 return addr + amdgpu_ttm_domain_start(adev, TTM_PL_VRAM); 47 } 48 49 static int 50 svm_migrate_gart_map(struct amdgpu_ring *ring, uint64_t npages, 51 dma_addr_t *addr, uint64_t *gart_addr, uint64_t flags) 52 { 53 struct amdgpu_device *adev = ring->adev; 54 struct amdgpu_job *job; 55 unsigned int num_dw, num_bytes; 56 struct dma_fence *fence; 57 uint64_t src_addr, dst_addr; 58 uint64_t pte_flags; 59 void *cpu_addr; 60 int r; 61 62 /* use gart window 0 */ 63 *gart_addr = adev->gmc.gart_start; 64 65 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 66 num_bytes = npages * 8; 67 68 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, 69 AMDGPU_IB_POOL_DELAYED, &job); 70 if (r) 71 return r; 72 73 src_addr = num_dw * 4; 74 src_addr += job->ibs[0].gpu_addr; 75 76 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 77 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 78 dst_addr, num_bytes, false); 79 80 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 81 WARN_ON(job->ibs[0].length_dw > num_dw); 82 83 pte_flags = AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; 84 pte_flags |= AMDGPU_PTE_SYSTEM | AMDGPU_PTE_SNOOPED; 85 if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO)) 86 pte_flags |= AMDGPU_PTE_WRITEABLE; 87 pte_flags |= adev->gart.gart_pte_flags; 88 89 cpu_addr = &job->ibs[0].ptr[num_dw]; 90 91 amdgpu_gart_map(adev, 0, npages, addr, pte_flags, cpu_addr); 92 r = amdgpu_job_submit(job, &adev->mman.entity, 93 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 94 if (r) 95 goto error_free; 96 97 dma_fence_put(fence); 98 99 return r; 100 101 error_free: 102 amdgpu_job_free(job); 103 return r; 104 } 105 106 /** 107 * svm_migrate_copy_memory_gart - sdma copy data between ram and vram 108 * 109 * @adev: amdgpu device the sdma ring running 110 * @sys: system DMA pointer to be copied 111 * @vram: vram destination DMA pointer 112 * @npages: number of pages to copy 113 * @direction: enum MIGRATION_COPY_DIR 114 * @mfence: output, sdma fence to signal after sdma is done 115 * 116 * ram address uses GART table continuous entries mapping to ram pages, 117 * vram address uses direct mapping of vram pages, which must have npages 118 * number of continuous pages. 119 * GART update and sdma uses same buf copy function ring, sdma is splited to 120 * multiple GTT_MAX_PAGES transfer, all sdma operations are serialized, wait for 121 * the last sdma finish fence which is returned to check copy memory is done. 122 * 123 * Context: Process context, takes and releases gtt_window_lock 124 * 125 * Return: 126 * 0 - OK, otherwise error code 127 */ 128 129 static int 130 svm_migrate_copy_memory_gart(struct amdgpu_device *adev, dma_addr_t *sys, 131 uint64_t *vram, uint64_t npages, 132 enum MIGRATION_COPY_DIR direction, 133 struct dma_fence **mfence) 134 { 135 const uint64_t GTT_MAX_PAGES = AMDGPU_GTT_MAX_TRANSFER_SIZE; 136 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 137 uint64_t gart_s, gart_d; 138 struct dma_fence *next; 139 uint64_t size; 140 int r; 141 142 mutex_lock(&adev->mman.gtt_window_lock); 143 144 while (npages) { 145 size = min(GTT_MAX_PAGES, npages); 146 147 if (direction == FROM_VRAM_TO_RAM) { 148 gart_s = svm_migrate_direct_mapping_addr(adev, *vram); 149 r = svm_migrate_gart_map(ring, size, sys, &gart_d, 0); 150 151 } else if (direction == FROM_RAM_TO_VRAM) { 152 r = svm_migrate_gart_map(ring, size, sys, &gart_s, 153 KFD_IOCTL_SVM_FLAG_GPU_RO); 154 gart_d = svm_migrate_direct_mapping_addr(adev, *vram); 155 } 156 if (r) { 157 dev_err(adev->dev, "fail %d create gart mapping\n", r); 158 goto out_unlock; 159 } 160 161 r = amdgpu_copy_buffer(ring, gart_s, gart_d, size * PAGE_SIZE, 162 NULL, &next, false, true, false); 163 if (r) { 164 dev_err(adev->dev, "fail %d to copy memory\n", r); 165 goto out_unlock; 166 } 167 168 dma_fence_put(*mfence); 169 *mfence = next; 170 npages -= size; 171 if (npages) { 172 sys += size; 173 vram += size; 174 } 175 } 176 177 out_unlock: 178 mutex_unlock(&adev->mman.gtt_window_lock); 179 180 return r; 181 } 182 183 /** 184 * svm_migrate_copy_done - wait for memory copy sdma is done 185 * 186 * @adev: amdgpu device the sdma memory copy is executing on 187 * @mfence: migrate fence 188 * 189 * Wait for dma fence is signaled, if the copy ssplit into multiple sdma 190 * operations, this is the last sdma operation fence. 191 * 192 * Context: called after svm_migrate_copy_memory 193 * 194 * Return: 195 * 0 - success 196 * otherwise - error code from dma fence signal 197 */ 198 static int 199 svm_migrate_copy_done(struct amdgpu_device *adev, struct dma_fence *mfence) 200 { 201 int r = 0; 202 203 if (mfence) { 204 r = dma_fence_wait(mfence, false); 205 dma_fence_put(mfence); 206 pr_debug("sdma copy memory fence done\n"); 207 } 208 209 return r; 210 } 211 212 unsigned long 213 svm_migrate_addr_to_pfn(struct amdgpu_device *adev, unsigned long addr) 214 { 215 return (addr + adev->kfd.dev->pgmap.range.start) >> PAGE_SHIFT; 216 } 217 218 static void 219 svm_migrate_get_vram_page(struct svm_range *prange, unsigned long pfn) 220 { 221 struct page *page; 222 223 page = pfn_to_page(pfn); 224 svm_range_bo_ref(prange->svm_bo); 225 page->zone_device_data = prange->svm_bo; 226 lock_page(page); 227 } 228 229 static void 230 svm_migrate_put_vram_page(struct amdgpu_device *adev, unsigned long addr) 231 { 232 struct page *page; 233 234 page = pfn_to_page(svm_migrate_addr_to_pfn(adev, addr)); 235 unlock_page(page); 236 put_page(page); 237 } 238 239 static unsigned long 240 svm_migrate_addr(struct amdgpu_device *adev, struct page *page) 241 { 242 unsigned long addr; 243 244 addr = page_to_pfn(page) << PAGE_SHIFT; 245 return (addr - adev->kfd.dev->pgmap.range.start); 246 } 247 248 static struct page * 249 svm_migrate_get_sys_page(struct vm_area_struct *vma, unsigned long addr) 250 { 251 struct page *page; 252 253 page = alloc_page_vma(GFP_HIGHUSER, vma, addr); 254 if (page) 255 lock_page(page); 256 257 return page; 258 } 259 260 static void svm_migrate_put_sys_page(unsigned long addr) 261 { 262 struct page *page; 263 264 page = pfn_to_page(addr >> PAGE_SHIFT); 265 unlock_page(page); 266 put_page(page); 267 } 268 269 static unsigned long svm_migrate_successful_pages(struct migrate_vma *migrate) 270 { 271 unsigned long cpages = 0; 272 unsigned long i; 273 274 for (i = 0; i < migrate->npages; i++) { 275 if (migrate->src[i] & MIGRATE_PFN_VALID && 276 migrate->src[i] & MIGRATE_PFN_MIGRATE) 277 cpages++; 278 } 279 return cpages; 280 } 281 282 static unsigned long svm_migrate_unsuccessful_pages(struct migrate_vma *migrate) 283 { 284 unsigned long upages = 0; 285 unsigned long i; 286 287 for (i = 0; i < migrate->npages; i++) { 288 if (migrate->src[i] & MIGRATE_PFN_VALID && 289 !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 290 upages++; 291 } 292 return upages; 293 } 294 295 static int 296 svm_migrate_copy_to_vram(struct amdgpu_device *adev, struct svm_range *prange, 297 struct migrate_vma *migrate, struct dma_fence **mfence, 298 dma_addr_t *scratch) 299 { 300 uint64_t npages = migrate->npages; 301 struct device *dev = adev->dev; 302 struct amdgpu_res_cursor cursor; 303 dma_addr_t *src; 304 uint64_t *dst; 305 uint64_t i, j; 306 int r; 307 308 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, 309 prange->last); 310 311 src = scratch; 312 dst = (uint64_t *)(scratch + npages); 313 314 r = svm_range_vram_node_new(adev, prange, true); 315 if (r) { 316 dev_dbg(adev->dev, "fail %d to alloc vram\n", r); 317 goto out; 318 } 319 320 amdgpu_res_first(prange->ttm_res, prange->offset << PAGE_SHIFT, 321 npages << PAGE_SHIFT, &cursor); 322 for (i = j = 0; i < npages; i++) { 323 struct page *spage; 324 325 spage = migrate_pfn_to_page(migrate->src[i]); 326 if (spage && !is_zone_device_page(spage)) { 327 dst[i] = cursor.start + (j << PAGE_SHIFT); 328 migrate->dst[i] = svm_migrate_addr_to_pfn(adev, dst[i]); 329 svm_migrate_get_vram_page(prange, migrate->dst[i]); 330 migrate->dst[i] = migrate_pfn(migrate->dst[i]); 331 src[i] = dma_map_page(dev, spage, 0, PAGE_SIZE, 332 DMA_TO_DEVICE); 333 r = dma_mapping_error(dev, src[i]); 334 if (r) { 335 dev_err(adev->dev, "%s: fail %d dma_map_page\n", 336 __func__, r); 337 goto out_free_vram_pages; 338 } 339 } else { 340 if (j) { 341 r = svm_migrate_copy_memory_gart( 342 adev, src + i - j, 343 dst + i - j, j, 344 FROM_RAM_TO_VRAM, 345 mfence); 346 if (r) 347 goto out_free_vram_pages; 348 amdgpu_res_next(&cursor, (j + 1) << PAGE_SHIFT); 349 j = 0; 350 } else { 351 amdgpu_res_next(&cursor, PAGE_SIZE); 352 } 353 continue; 354 } 355 356 pr_debug_ratelimited("dma mapping src to 0x%llx, pfn 0x%lx\n", 357 src[i] >> PAGE_SHIFT, page_to_pfn(spage)); 358 359 if (j >= (cursor.size >> PAGE_SHIFT) - 1 && i < npages - 1) { 360 r = svm_migrate_copy_memory_gart(adev, src + i - j, 361 dst + i - j, j + 1, 362 FROM_RAM_TO_VRAM, 363 mfence); 364 if (r) 365 goto out_free_vram_pages; 366 amdgpu_res_next(&cursor, (j + 1) * PAGE_SIZE); 367 j = 0; 368 } else { 369 j++; 370 } 371 } 372 373 r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j, 374 FROM_RAM_TO_VRAM, mfence); 375 376 out_free_vram_pages: 377 if (r) { 378 pr_debug("failed %d to copy memory to vram\n", r); 379 while (i--) { 380 svm_migrate_put_vram_page(adev, dst[i]); 381 migrate->dst[i] = 0; 382 } 383 } 384 385 #ifdef DEBUG_FORCE_MIXED_DOMAINS 386 for (i = 0, j = 0; i < npages; i += 4, j++) { 387 if (j & 1) 388 continue; 389 svm_migrate_put_vram_page(adev, dst[i]); 390 migrate->dst[i] = 0; 391 svm_migrate_put_vram_page(adev, dst[i + 1]); 392 migrate->dst[i + 1] = 0; 393 svm_migrate_put_vram_page(adev, dst[i + 2]); 394 migrate->dst[i + 2] = 0; 395 svm_migrate_put_vram_page(adev, dst[i + 3]); 396 migrate->dst[i + 3] = 0; 397 } 398 #endif 399 out: 400 return r; 401 } 402 403 static long 404 svm_migrate_vma_to_vram(struct amdgpu_device *adev, struct svm_range *prange, 405 struct vm_area_struct *vma, uint64_t start, 406 uint64_t end, uint32_t trigger) 407 { 408 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 409 uint64_t npages = (end - start) >> PAGE_SHIFT; 410 struct kfd_process_device *pdd; 411 struct dma_fence *mfence = NULL; 412 struct migrate_vma migrate; 413 unsigned long cpages = 0; 414 dma_addr_t *scratch; 415 void *buf; 416 int r = -ENOMEM; 417 418 memset(&migrate, 0, sizeof(migrate)); 419 migrate.vma = vma; 420 migrate.start = start; 421 migrate.end = end; 422 migrate.flags = MIGRATE_VMA_SELECT_SYSTEM; 423 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 424 425 buf = kvcalloc(npages, 426 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t), 427 GFP_KERNEL); 428 if (!buf) 429 goto out; 430 431 migrate.src = buf; 432 migrate.dst = migrate.src + npages; 433 scratch = (dma_addr_t *)(migrate.dst + npages); 434 435 kfd_smi_event_migration_start(adev->kfd.dev, p->lead_thread->pid, 436 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 437 0, adev->kfd.dev->id, prange->prefetch_loc, 438 prange->preferred_loc, trigger); 439 440 r = migrate_vma_setup(&migrate); 441 if (r) { 442 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", 443 __func__, r, prange->start, prange->last); 444 goto out_free; 445 } 446 447 cpages = migrate.cpages; 448 if (!cpages) { 449 pr_debug("failed collect migrate sys pages [0x%lx 0x%lx]\n", 450 prange->start, prange->last); 451 goto out_free; 452 } 453 if (cpages != npages) 454 pr_debug("partial migration, 0x%lx/0x%llx pages migrated\n", 455 cpages, npages); 456 else 457 pr_debug("0x%lx pages migrated\n", cpages); 458 459 r = svm_migrate_copy_to_vram(adev, prange, &migrate, &mfence, scratch); 460 migrate_vma_pages(&migrate); 461 462 pr_debug("successful/cpages/npages 0x%lx/0x%lx/0x%lx\n", 463 svm_migrate_successful_pages(&migrate), cpages, migrate.npages); 464 465 svm_migrate_copy_done(adev, mfence); 466 migrate_vma_finalize(&migrate); 467 468 kfd_smi_event_migration_end(adev->kfd.dev, p->lead_thread->pid, 469 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 470 0, adev->kfd.dev->id, trigger); 471 472 svm_range_dma_unmap(adev->dev, scratch, 0, npages); 473 svm_range_free_dma_mappings(prange); 474 475 out_free: 476 kvfree(buf); 477 out: 478 if (!r && cpages) { 479 pdd = svm_range_get_pdd_by_adev(prange, adev); 480 if (pdd) 481 WRITE_ONCE(pdd->page_in, pdd->page_in + cpages); 482 483 return cpages; 484 } 485 return r; 486 } 487 488 /** 489 * svm_migrate_ram_to_vram - migrate svm range from system to device 490 * @prange: range structure 491 * @best_loc: the device to migrate to 492 * @mm: the process mm structure 493 * @trigger: reason of migration 494 * 495 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 496 * 497 * Return: 498 * 0 - OK, otherwise error code 499 */ 500 static int 501 svm_migrate_ram_to_vram(struct svm_range *prange, uint32_t best_loc, 502 struct mm_struct *mm, uint32_t trigger) 503 { 504 unsigned long addr, start, end; 505 struct vm_area_struct *vma; 506 struct amdgpu_device *adev; 507 unsigned long cpages = 0; 508 long r = 0; 509 510 if (prange->actual_loc == best_loc) { 511 pr_debug("svms 0x%p [0x%lx 0x%lx] already on best_loc 0x%x\n", 512 prange->svms, prange->start, prange->last, best_loc); 513 return 0; 514 } 515 516 adev = svm_range_get_adev_by_id(prange, best_loc); 517 if (!adev) { 518 pr_debug("failed to get device by id 0x%x\n", best_loc); 519 return -ENODEV; 520 } 521 522 pr_debug("svms 0x%p [0x%lx 0x%lx] to gpu 0x%x\n", prange->svms, 523 prange->start, prange->last, best_loc); 524 525 /* FIXME: workaround for page locking bug with invalid pages */ 526 svm_range_prefault(prange, mm, SVM_ADEV_PGMAP_OWNER(adev)); 527 528 start = prange->start << PAGE_SHIFT; 529 end = (prange->last + 1) << PAGE_SHIFT; 530 531 for (addr = start; addr < end;) { 532 unsigned long next; 533 534 vma = find_vma(mm, addr); 535 if (!vma || addr < vma->vm_start) 536 break; 537 538 next = min(vma->vm_end, end); 539 r = svm_migrate_vma_to_vram(adev, prange, vma, addr, next, trigger); 540 if (r < 0) { 541 pr_debug("failed %ld to migrate\n", r); 542 break; 543 } else { 544 cpages += r; 545 } 546 addr = next; 547 } 548 549 if (cpages) 550 prange->actual_loc = best_loc; 551 552 return r < 0 ? r : 0; 553 } 554 555 static void svm_migrate_page_free(struct page *page) 556 { 557 struct svm_range_bo *svm_bo = page->zone_device_data; 558 559 if (svm_bo) { 560 pr_debug_ratelimited("ref: %d\n", kref_read(&svm_bo->kref)); 561 svm_range_bo_unref_async(svm_bo); 562 } 563 } 564 565 static int 566 svm_migrate_copy_to_ram(struct amdgpu_device *adev, struct svm_range *prange, 567 struct migrate_vma *migrate, struct dma_fence **mfence, 568 dma_addr_t *scratch, uint64_t npages) 569 { 570 struct device *dev = adev->dev; 571 uint64_t *src; 572 dma_addr_t *dst; 573 struct page *dpage; 574 uint64_t i = 0, j; 575 uint64_t addr; 576 int r = 0; 577 578 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, 579 prange->last); 580 581 addr = prange->start << PAGE_SHIFT; 582 583 src = (uint64_t *)(scratch + npages); 584 dst = scratch; 585 586 for (i = 0, j = 0; i < npages; i++, addr += PAGE_SIZE) { 587 struct page *spage; 588 589 spage = migrate_pfn_to_page(migrate->src[i]); 590 if (!spage || !is_zone_device_page(spage)) { 591 pr_debug("invalid page. Could be in CPU already svms 0x%p [0x%lx 0x%lx]\n", 592 prange->svms, prange->start, prange->last); 593 if (j) { 594 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 595 src + i - j, j, 596 FROM_VRAM_TO_RAM, 597 mfence); 598 if (r) 599 goto out_oom; 600 j = 0; 601 } 602 continue; 603 } 604 src[i] = svm_migrate_addr(adev, spage); 605 if (j > 0 && src[i] != src[i - 1] + PAGE_SIZE) { 606 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 607 src + i - j, j, 608 FROM_VRAM_TO_RAM, 609 mfence); 610 if (r) 611 goto out_oom; 612 j = 0; 613 } 614 615 dpage = svm_migrate_get_sys_page(migrate->vma, addr); 616 if (!dpage) { 617 pr_debug("failed get page svms 0x%p [0x%lx 0x%lx]\n", 618 prange->svms, prange->start, prange->last); 619 r = -ENOMEM; 620 goto out_oom; 621 } 622 623 dst[i] = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_FROM_DEVICE); 624 r = dma_mapping_error(dev, dst[i]); 625 if (r) { 626 dev_err(adev->dev, "%s: fail %d dma_map_page\n", __func__, r); 627 goto out_oom; 628 } 629 630 pr_debug_ratelimited("dma mapping dst to 0x%llx, pfn 0x%lx\n", 631 dst[i] >> PAGE_SHIFT, page_to_pfn(dpage)); 632 633 migrate->dst[i] = migrate_pfn(page_to_pfn(dpage)); 634 j++; 635 } 636 637 r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j, 638 FROM_VRAM_TO_RAM, mfence); 639 640 out_oom: 641 if (r) { 642 pr_debug("failed %d copy to ram\n", r); 643 while (i--) { 644 svm_migrate_put_sys_page(dst[i]); 645 migrate->dst[i] = 0; 646 } 647 } 648 649 return r; 650 } 651 652 /** 653 * svm_migrate_vma_to_ram - migrate range inside one vma from device to system 654 * 655 * @adev: amdgpu device to migrate from 656 * @prange: svm range structure 657 * @vma: vm_area_struct that range [start, end] belongs to 658 * @start: range start virtual address in pages 659 * @end: range end virtual address in pages 660 * 661 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex 662 * 663 * Return: 664 * 0 - success with all pages migrated 665 * negative values - indicate error 666 * positive values - partial migration, number of pages not migrated 667 */ 668 static long 669 svm_migrate_vma_to_ram(struct amdgpu_device *adev, struct svm_range *prange, 670 struct vm_area_struct *vma, uint64_t start, uint64_t end, 671 uint32_t trigger) 672 { 673 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 674 uint64_t npages = (end - start) >> PAGE_SHIFT; 675 unsigned long upages = npages; 676 unsigned long cpages = 0; 677 struct kfd_process_device *pdd; 678 struct dma_fence *mfence = NULL; 679 struct migrate_vma migrate; 680 dma_addr_t *scratch; 681 void *buf; 682 int r = -ENOMEM; 683 684 memset(&migrate, 0, sizeof(migrate)); 685 migrate.vma = vma; 686 migrate.start = start; 687 migrate.end = end; 688 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 689 if (adev->gmc.xgmi.connected_to_cpu) 690 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_COHERENT; 691 else 692 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; 693 694 buf = kvcalloc(npages, 695 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t), 696 GFP_KERNEL); 697 if (!buf) 698 goto out; 699 700 migrate.src = buf; 701 migrate.dst = migrate.src + npages; 702 scratch = (dma_addr_t *)(migrate.dst + npages); 703 704 kfd_smi_event_migration_start(adev->kfd.dev, p->lead_thread->pid, 705 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 706 adev->kfd.dev->id, 0, prange->prefetch_loc, 707 prange->preferred_loc, trigger); 708 709 r = migrate_vma_setup(&migrate); 710 if (r) { 711 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", 712 __func__, r, prange->start, prange->last); 713 goto out_free; 714 } 715 716 cpages = migrate.cpages; 717 if (!cpages) { 718 pr_debug("failed collect migrate device pages [0x%lx 0x%lx]\n", 719 prange->start, prange->last); 720 upages = svm_migrate_unsuccessful_pages(&migrate); 721 goto out_free; 722 } 723 if (cpages != npages) 724 pr_debug("partial migration, 0x%lx/0x%llx pages migrated\n", 725 cpages, npages); 726 else 727 pr_debug("0x%lx pages migrated\n", cpages); 728 729 r = svm_migrate_copy_to_ram(adev, prange, &migrate, &mfence, 730 scratch, npages); 731 migrate_vma_pages(&migrate); 732 733 upages = svm_migrate_unsuccessful_pages(&migrate); 734 pr_debug("unsuccessful/cpages/npages 0x%lx/0x%lx/0x%lx\n", 735 upages, cpages, migrate.npages); 736 737 svm_migrate_copy_done(adev, mfence); 738 migrate_vma_finalize(&migrate); 739 740 kfd_smi_event_migration_end(adev->kfd.dev, p->lead_thread->pid, 741 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 742 adev->kfd.dev->id, 0, trigger); 743 744 svm_range_dma_unmap(adev->dev, scratch, 0, npages); 745 746 out_free: 747 kvfree(buf); 748 out: 749 if (!r && cpages) { 750 pdd = svm_range_get_pdd_by_adev(prange, adev); 751 if (pdd) 752 WRITE_ONCE(pdd->page_out, pdd->page_out + cpages); 753 } 754 return r ? r : upages; 755 } 756 757 /** 758 * svm_migrate_vram_to_ram - migrate svm range from device to system 759 * @prange: range structure 760 * @mm: process mm, use current->mm if NULL 761 * @trigger: reason of migration 762 * 763 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex 764 * 765 * Return: 766 * 0 - OK, otherwise error code 767 */ 768 int svm_migrate_vram_to_ram(struct svm_range *prange, struct mm_struct *mm, 769 uint32_t trigger) 770 { 771 struct amdgpu_device *adev; 772 struct vm_area_struct *vma; 773 unsigned long addr; 774 unsigned long start; 775 unsigned long end; 776 unsigned long upages = 0; 777 long r = 0; 778 779 if (!prange->actual_loc) { 780 pr_debug("[0x%lx 0x%lx] already migrated to ram\n", 781 prange->start, prange->last); 782 return 0; 783 } 784 785 adev = svm_range_get_adev_by_id(prange, prange->actual_loc); 786 if (!adev) { 787 pr_debug("failed to get device by id 0x%x\n", 788 prange->actual_loc); 789 return -ENODEV; 790 } 791 792 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] from gpu 0x%x to ram\n", 793 prange->svms, prange, prange->start, prange->last, 794 prange->actual_loc); 795 796 start = prange->start << PAGE_SHIFT; 797 end = (prange->last + 1) << PAGE_SHIFT; 798 799 for (addr = start; addr < end;) { 800 unsigned long next; 801 802 vma = find_vma(mm, addr); 803 if (!vma || addr < vma->vm_start) { 804 pr_debug("failed to find vma for prange %p\n", prange); 805 r = -EFAULT; 806 break; 807 } 808 809 next = min(vma->vm_end, end); 810 r = svm_migrate_vma_to_ram(adev, prange, vma, addr, next, trigger); 811 if (r < 0) { 812 pr_debug("failed %ld to migrate prange %p\n", r, prange); 813 break; 814 } else { 815 upages += r; 816 } 817 addr = next; 818 } 819 820 if (r >= 0 && !upages) { 821 svm_range_vram_node_free(prange); 822 prange->actual_loc = 0; 823 } 824 825 return r < 0 ? r : 0; 826 } 827 828 /** 829 * svm_migrate_vram_to_vram - migrate svm range from device to device 830 * @prange: range structure 831 * @best_loc: the device to migrate to 832 * @mm: process mm, use current->mm if NULL 833 * @trigger: reason of migration 834 * 835 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 836 * 837 * Return: 838 * 0 - OK, otherwise error code 839 */ 840 static int 841 svm_migrate_vram_to_vram(struct svm_range *prange, uint32_t best_loc, 842 struct mm_struct *mm, uint32_t trigger) 843 { 844 int r, retries = 3; 845 846 /* 847 * TODO: for both devices with PCIe large bar or on same xgmi hive, skip 848 * system memory as migration bridge 849 */ 850 851 pr_debug("from gpu 0x%x to gpu 0x%x\n", prange->actual_loc, best_loc); 852 853 do { 854 r = svm_migrate_vram_to_ram(prange, mm, trigger); 855 if (r) 856 return r; 857 } while (prange->actual_loc && --retries); 858 859 if (prange->actual_loc) 860 return -EDEADLK; 861 862 return svm_migrate_ram_to_vram(prange, best_loc, mm, trigger); 863 } 864 865 int 866 svm_migrate_to_vram(struct svm_range *prange, uint32_t best_loc, 867 struct mm_struct *mm, uint32_t trigger) 868 { 869 if (!prange->actual_loc) 870 return svm_migrate_ram_to_vram(prange, best_loc, mm, trigger); 871 else 872 return svm_migrate_vram_to_vram(prange, best_loc, mm, trigger); 873 874 } 875 876 /** 877 * svm_migrate_to_ram - CPU page fault handler 878 * @vmf: CPU vm fault vma, address 879 * 880 * Context: vm fault handler, caller holds the mmap read lock 881 * 882 * Return: 883 * 0 - OK 884 * VM_FAULT_SIGBUS - notice application to have SIGBUS page fault 885 */ 886 static vm_fault_t svm_migrate_to_ram(struct vm_fault *vmf) 887 { 888 unsigned long addr = vmf->address; 889 struct vm_area_struct *vma; 890 enum svm_work_list_ops op; 891 struct svm_range *parent; 892 struct svm_range *prange; 893 struct kfd_process *p; 894 struct mm_struct *mm; 895 int r = 0; 896 897 vma = vmf->vma; 898 mm = vma->vm_mm; 899 900 p = kfd_lookup_process_by_mm(vma->vm_mm); 901 if (!p) { 902 pr_debug("failed find process at fault address 0x%lx\n", addr); 903 return VM_FAULT_SIGBUS; 904 } 905 if (READ_ONCE(p->svms.faulting_task) == current) { 906 pr_debug("skipping ram migration\n"); 907 kfd_unref_process(p); 908 return 0; 909 } 910 addr >>= PAGE_SHIFT; 911 pr_debug("CPU page fault svms 0x%p address 0x%lx\n", &p->svms, addr); 912 913 mutex_lock(&p->svms.lock); 914 915 prange = svm_range_from_addr(&p->svms, addr, &parent); 916 if (!prange) { 917 pr_debug("cannot find svm range at 0x%lx\n", addr); 918 r = -EFAULT; 919 goto out; 920 } 921 922 mutex_lock(&parent->migrate_mutex); 923 if (prange != parent) 924 mutex_lock_nested(&prange->migrate_mutex, 1); 925 926 if (!prange->actual_loc) 927 goto out_unlock_prange; 928 929 svm_range_lock(parent); 930 if (prange != parent) 931 mutex_lock_nested(&prange->lock, 1); 932 r = svm_range_split_by_granularity(p, mm, addr, parent, prange); 933 if (prange != parent) 934 mutex_unlock(&prange->lock); 935 svm_range_unlock(parent); 936 if (r) { 937 pr_debug("failed %d to split range by granularity\n", r); 938 goto out_unlock_prange; 939 } 940 941 r = svm_migrate_vram_to_ram(prange, mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_CPU); 942 if (r) 943 pr_debug("failed %d migrate 0x%p [0x%lx 0x%lx] to ram\n", r, 944 prange, prange->start, prange->last); 945 946 /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */ 947 if (p->xnack_enabled && parent == prange) 948 op = SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP; 949 else 950 op = SVM_OP_UPDATE_RANGE_NOTIFIER; 951 svm_range_add_list_work(&p->svms, parent, mm, op); 952 schedule_deferred_list_work(&p->svms); 953 954 out_unlock_prange: 955 if (prange != parent) 956 mutex_unlock(&prange->migrate_mutex); 957 mutex_unlock(&parent->migrate_mutex); 958 out: 959 mutex_unlock(&p->svms.lock); 960 kfd_unref_process(p); 961 962 pr_debug("CPU fault svms 0x%p address 0x%lx done\n", &p->svms, addr); 963 964 return r ? VM_FAULT_SIGBUS : 0; 965 } 966 967 static const struct dev_pagemap_ops svm_migrate_pgmap_ops = { 968 .page_free = svm_migrate_page_free, 969 .migrate_to_ram = svm_migrate_to_ram, 970 }; 971 972 /* Each VRAM page uses sizeof(struct page) on system memory */ 973 #define SVM_HMM_PAGE_STRUCT_SIZE(size) ((size)/PAGE_SIZE * sizeof(struct page)) 974 975 int svm_migrate_init(struct amdgpu_device *adev) 976 { 977 struct kfd_dev *kfddev = adev->kfd.dev; 978 struct dev_pagemap *pgmap; 979 struct resource *res = NULL; 980 unsigned long size; 981 void *r; 982 983 /* Page migration works on Vega10 or newer */ 984 if (!KFD_IS_SOC15(kfddev)) 985 return -EINVAL; 986 987 pgmap = &kfddev->pgmap; 988 memset(pgmap, 0, sizeof(*pgmap)); 989 990 /* TODO: register all vram to HMM for now. 991 * should remove reserved size 992 */ 993 size = ALIGN(adev->gmc.real_vram_size, 2ULL << 20); 994 if (adev->gmc.xgmi.connected_to_cpu) { 995 pgmap->range.start = adev->gmc.aper_base; 996 pgmap->range.end = adev->gmc.aper_base + adev->gmc.aper_size - 1; 997 pgmap->type = MEMORY_DEVICE_COHERENT; 998 } else { 999 res = devm_request_free_mem_region(adev->dev, &iomem_resource, size); 1000 if (IS_ERR(res)) 1001 return -ENOMEM; 1002 pgmap->range.start = res->start; 1003 pgmap->range.end = res->end; 1004 pgmap->type = MEMORY_DEVICE_PRIVATE; 1005 } 1006 1007 pgmap->nr_range = 1; 1008 pgmap->ops = &svm_migrate_pgmap_ops; 1009 pgmap->owner = SVM_ADEV_PGMAP_OWNER(adev); 1010 pgmap->flags = 0; 1011 /* Device manager releases device-specific resources, memory region and 1012 * pgmap when driver disconnects from device. 1013 */ 1014 r = devm_memremap_pages(adev->dev, pgmap); 1015 if (IS_ERR(r)) { 1016 pr_err("failed to register HMM device memory\n"); 1017 /* Disable SVM support capability */ 1018 pgmap->type = 0; 1019 if (pgmap->type == MEMORY_DEVICE_PRIVATE) 1020 devm_release_mem_region(adev->dev, res->start, 1021 res->end - res->start + 1); 1022 return PTR_ERR(r); 1023 } 1024 1025 pr_debug("reserve %ldMB system memory for VRAM pages struct\n", 1026 SVM_HMM_PAGE_STRUCT_SIZE(size) >> 20); 1027 1028 amdgpu_amdkfd_reserve_system_mem(SVM_HMM_PAGE_STRUCT_SIZE(size)); 1029 1030 svm_range_set_max_pages(adev); 1031 1032 pr_info("HMM registered %ldMB device memory\n", size >> 20); 1033 1034 return 0; 1035 } 1036