1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020-2021 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/types.h> 25 #include <linux/hmm.h> 26 #include <linux/dma-direction.h> 27 #include <linux/dma-mapping.h> 28 #include "amdgpu_sync.h" 29 #include "amdgpu_object.h" 30 #include "amdgpu_vm.h" 31 #include "amdgpu_mn.h" 32 #include "amdgpu_res_cursor.h" 33 #include "kfd_priv.h" 34 #include "kfd_svm.h" 35 #include "kfd_migrate.h" 36 37 static uint64_t 38 svm_migrate_direct_mapping_addr(struct amdgpu_device *adev, uint64_t addr) 39 { 40 return addr + amdgpu_ttm_domain_start(adev, TTM_PL_VRAM); 41 } 42 43 static int 44 svm_migrate_gart_map(struct amdgpu_ring *ring, uint64_t npages, 45 dma_addr_t *addr, uint64_t *gart_addr, uint64_t flags) 46 { 47 struct amdgpu_device *adev = ring->adev; 48 struct amdgpu_job *job; 49 unsigned int num_dw, num_bytes; 50 struct dma_fence *fence; 51 uint64_t src_addr, dst_addr; 52 uint64_t pte_flags; 53 void *cpu_addr; 54 int r; 55 56 /* use gart window 0 */ 57 *gart_addr = adev->gmc.gart_start; 58 59 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 60 num_bytes = npages * 8; 61 62 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, 63 AMDGPU_IB_POOL_DELAYED, &job); 64 if (r) 65 return r; 66 67 src_addr = num_dw * 4; 68 src_addr += job->ibs[0].gpu_addr; 69 70 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 71 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 72 dst_addr, num_bytes, false); 73 74 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 75 WARN_ON(job->ibs[0].length_dw > num_dw); 76 77 pte_flags = AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; 78 pte_flags |= AMDGPU_PTE_SYSTEM | AMDGPU_PTE_SNOOPED; 79 if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO)) 80 pte_flags |= AMDGPU_PTE_WRITEABLE; 81 pte_flags |= adev->gart.gart_pte_flags; 82 83 cpu_addr = &job->ibs[0].ptr[num_dw]; 84 85 r = amdgpu_gart_map(adev, 0, npages, addr, pte_flags, cpu_addr); 86 if (r) 87 goto error_free; 88 89 r = amdgpu_job_submit(job, &adev->mman.entity, 90 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 91 if (r) 92 goto error_free; 93 94 dma_fence_put(fence); 95 96 return r; 97 98 error_free: 99 amdgpu_job_free(job); 100 return r; 101 } 102 103 /** 104 * svm_migrate_copy_memory_gart - sdma copy data between ram and vram 105 * 106 * @adev: amdgpu device the sdma ring running 107 * @src: source page address array 108 * @dst: destination page address array 109 * @npages: number of pages to copy 110 * @direction: enum MIGRATION_COPY_DIR 111 * @mfence: output, sdma fence to signal after sdma is done 112 * 113 * ram address uses GART table continuous entries mapping to ram pages, 114 * vram address uses direct mapping of vram pages, which must have npages 115 * number of continuous pages. 116 * GART update and sdma uses same buf copy function ring, sdma is splited to 117 * multiple GTT_MAX_PAGES transfer, all sdma operations are serialized, wait for 118 * the last sdma finish fence which is returned to check copy memory is done. 119 * 120 * Context: Process context, takes and releases gtt_window_lock 121 * 122 * Return: 123 * 0 - OK, otherwise error code 124 */ 125 126 static int 127 svm_migrate_copy_memory_gart(struct amdgpu_device *adev, dma_addr_t *sys, 128 uint64_t *vram, uint64_t npages, 129 enum MIGRATION_COPY_DIR direction, 130 struct dma_fence **mfence) 131 { 132 const uint64_t GTT_MAX_PAGES = AMDGPU_GTT_MAX_TRANSFER_SIZE; 133 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 134 uint64_t gart_s, gart_d; 135 struct dma_fence *next; 136 uint64_t size; 137 int r; 138 139 mutex_lock(&adev->mman.gtt_window_lock); 140 141 while (npages) { 142 size = min(GTT_MAX_PAGES, npages); 143 144 if (direction == FROM_VRAM_TO_RAM) { 145 gart_s = svm_migrate_direct_mapping_addr(adev, *vram); 146 r = svm_migrate_gart_map(ring, size, sys, &gart_d, 0); 147 148 } else if (direction == FROM_RAM_TO_VRAM) { 149 r = svm_migrate_gart_map(ring, size, sys, &gart_s, 150 KFD_IOCTL_SVM_FLAG_GPU_RO); 151 gart_d = svm_migrate_direct_mapping_addr(adev, *vram); 152 } 153 if (r) { 154 pr_debug("failed %d to create gart mapping\n", r); 155 goto out_unlock; 156 } 157 158 r = amdgpu_copy_buffer(ring, gart_s, gart_d, size * PAGE_SIZE, 159 NULL, &next, false, true, false); 160 if (r) { 161 pr_debug("failed %d to copy memory\n", r); 162 goto out_unlock; 163 } 164 165 dma_fence_put(*mfence); 166 *mfence = next; 167 npages -= size; 168 if (npages) { 169 sys += size; 170 vram += size; 171 } 172 } 173 174 out_unlock: 175 mutex_unlock(&adev->mman.gtt_window_lock); 176 177 return r; 178 } 179 180 /** 181 * svm_migrate_copy_done - wait for memory copy sdma is done 182 * 183 * @adev: amdgpu device the sdma memory copy is executing on 184 * @mfence: migrate fence 185 * 186 * Wait for dma fence is signaled, if the copy ssplit into multiple sdma 187 * operations, this is the last sdma operation fence. 188 * 189 * Context: called after svm_migrate_copy_memory 190 * 191 * Return: 192 * 0 - success 193 * otherwise - error code from dma fence signal 194 */ 195 static int 196 svm_migrate_copy_done(struct amdgpu_device *adev, struct dma_fence *mfence) 197 { 198 int r = 0; 199 200 if (mfence) { 201 r = dma_fence_wait(mfence, false); 202 dma_fence_put(mfence); 203 pr_debug("sdma copy memory fence done\n"); 204 } 205 206 return r; 207 } 208 209 unsigned long 210 svm_migrate_addr_to_pfn(struct amdgpu_device *adev, unsigned long addr) 211 { 212 return (addr + adev->kfd.dev->pgmap.range.start) >> PAGE_SHIFT; 213 } 214 215 static void 216 svm_migrate_get_vram_page(struct svm_range *prange, unsigned long pfn) 217 { 218 struct page *page; 219 220 page = pfn_to_page(pfn); 221 svm_range_bo_ref(prange->svm_bo); 222 page->zone_device_data = prange->svm_bo; 223 get_page(page); 224 lock_page(page); 225 } 226 227 static void 228 svm_migrate_put_vram_page(struct amdgpu_device *adev, unsigned long addr) 229 { 230 struct page *page; 231 232 page = pfn_to_page(svm_migrate_addr_to_pfn(adev, addr)); 233 unlock_page(page); 234 put_page(page); 235 } 236 237 static unsigned long 238 svm_migrate_addr(struct amdgpu_device *adev, struct page *page) 239 { 240 unsigned long addr; 241 242 addr = page_to_pfn(page) << PAGE_SHIFT; 243 return (addr - adev->kfd.dev->pgmap.range.start); 244 } 245 246 static struct page * 247 svm_migrate_get_sys_page(struct vm_area_struct *vma, unsigned long addr) 248 { 249 struct page *page; 250 251 page = alloc_page_vma(GFP_HIGHUSER, vma, addr); 252 if (page) 253 lock_page(page); 254 255 return page; 256 } 257 258 static void svm_migrate_put_sys_page(unsigned long addr) 259 { 260 struct page *page; 261 262 page = pfn_to_page(addr >> PAGE_SHIFT); 263 unlock_page(page); 264 put_page(page); 265 } 266 267 static int 268 svm_migrate_copy_to_vram(struct amdgpu_device *adev, struct svm_range *prange, 269 struct migrate_vma *migrate, struct dma_fence **mfence, 270 dma_addr_t *scratch) 271 { 272 uint64_t npages = migrate->cpages; 273 struct device *dev = adev->dev; 274 struct amdgpu_res_cursor cursor; 275 dma_addr_t *src; 276 uint64_t *dst; 277 uint64_t i, j; 278 int r; 279 280 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, 281 prange->last); 282 283 src = scratch; 284 dst = (uint64_t *)(scratch + npages); 285 286 r = svm_range_vram_node_new(adev, prange, true); 287 if (r) { 288 pr_debug("failed %d get 0x%llx pages from vram\n", r, npages); 289 goto out; 290 } 291 292 amdgpu_res_first(prange->ttm_res, prange->offset << PAGE_SHIFT, 293 npages << PAGE_SHIFT, &cursor); 294 for (i = j = 0; i < npages; i++) { 295 struct page *spage; 296 297 spage = migrate_pfn_to_page(migrate->src[i]); 298 if (spage && !is_zone_device_page(spage)) { 299 dst[i] = cursor.start + (j << PAGE_SHIFT); 300 migrate->dst[i] = svm_migrate_addr_to_pfn(adev, dst[i]); 301 svm_migrate_get_vram_page(prange, migrate->dst[i]); 302 migrate->dst[i] = migrate_pfn(migrate->dst[i]); 303 migrate->dst[i] |= MIGRATE_PFN_LOCKED; 304 src[i] = dma_map_page(dev, spage, 0, PAGE_SIZE, 305 DMA_TO_DEVICE); 306 r = dma_mapping_error(dev, src[i]); 307 if (r) { 308 pr_debug("failed %d dma_map_page\n", r); 309 goto out_free_vram_pages; 310 } 311 } else { 312 if (j) { 313 r = svm_migrate_copy_memory_gart( 314 adev, src + i - j, 315 dst + i - j, j, 316 FROM_RAM_TO_VRAM, 317 mfence); 318 if (r) 319 goto out_free_vram_pages; 320 amdgpu_res_next(&cursor, j << PAGE_SHIFT); 321 j = 0; 322 } else { 323 amdgpu_res_next(&cursor, PAGE_SIZE); 324 } 325 continue; 326 } 327 328 pr_debug("dma mapping src to 0x%llx, page_to_pfn 0x%lx\n", 329 src[i] >> PAGE_SHIFT, page_to_pfn(spage)); 330 331 if (j >= (cursor.size >> PAGE_SHIFT) - 1 && i < npages - 1) { 332 r = svm_migrate_copy_memory_gart(adev, src + i - j, 333 dst + i - j, j + 1, 334 FROM_RAM_TO_VRAM, 335 mfence); 336 if (r) 337 goto out_free_vram_pages; 338 amdgpu_res_next(&cursor, (j + 1) * PAGE_SIZE); 339 j= 0; 340 } else { 341 j++; 342 } 343 } 344 345 r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j, 346 FROM_RAM_TO_VRAM, mfence); 347 348 out_free_vram_pages: 349 if (r) { 350 pr_debug("failed %d to copy memory to vram\n", r); 351 while (i--) { 352 svm_migrate_put_vram_page(adev, dst[i]); 353 migrate->dst[i] = 0; 354 } 355 } 356 357 #ifdef DEBUG_FORCE_MIXED_DOMAINS 358 for (i = 0, j = 0; i < npages; i += 4, j++) { 359 if (j & 1) 360 continue; 361 svm_migrate_put_vram_page(adev, dst[i]); 362 migrate->dst[i] = 0; 363 svm_migrate_put_vram_page(adev, dst[i + 1]); 364 migrate->dst[i + 1] = 0; 365 svm_migrate_put_vram_page(adev, dst[i + 2]); 366 migrate->dst[i + 2] = 0; 367 svm_migrate_put_vram_page(adev, dst[i + 3]); 368 migrate->dst[i + 3] = 0; 369 } 370 #endif 371 out: 372 return r; 373 } 374 375 static int 376 svm_migrate_vma_to_vram(struct amdgpu_device *adev, struct svm_range *prange, 377 struct vm_area_struct *vma, uint64_t start, 378 uint64_t end) 379 { 380 uint64_t npages = (end - start) >> PAGE_SHIFT; 381 struct kfd_process_device *pdd; 382 struct dma_fence *mfence = NULL; 383 struct migrate_vma migrate; 384 dma_addr_t *scratch; 385 size_t size; 386 void *buf; 387 int r = -ENOMEM; 388 389 memset(&migrate, 0, sizeof(migrate)); 390 migrate.vma = vma; 391 migrate.start = start; 392 migrate.end = end; 393 migrate.flags = MIGRATE_VMA_SELECT_SYSTEM; 394 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 395 396 size = 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t); 397 size *= npages; 398 buf = kvmalloc(size, GFP_KERNEL | __GFP_ZERO); 399 if (!buf) 400 goto out; 401 402 migrate.src = buf; 403 migrate.dst = migrate.src + npages; 404 scratch = (dma_addr_t *)(migrate.dst + npages); 405 406 r = migrate_vma_setup(&migrate); 407 if (r) { 408 pr_debug("failed %d prepare migrate svms 0x%p [0x%lx 0x%lx]\n", 409 r, prange->svms, prange->start, prange->last); 410 goto out_free; 411 } 412 if (migrate.cpages != npages) { 413 pr_debug("Partial migration. 0x%lx/0x%llx pages can be migrated\n", 414 migrate.cpages, 415 npages); 416 } 417 418 if (migrate.cpages) { 419 r = svm_migrate_copy_to_vram(adev, prange, &migrate, &mfence, 420 scratch); 421 migrate_vma_pages(&migrate); 422 svm_migrate_copy_done(adev, mfence); 423 migrate_vma_finalize(&migrate); 424 } 425 426 svm_range_dma_unmap(adev->dev, scratch, 0, npages); 427 svm_range_free_dma_mappings(prange); 428 429 out_free: 430 kvfree(buf); 431 out: 432 if (!r) { 433 pdd = svm_range_get_pdd_by_adev(prange, adev); 434 if (pdd) 435 WRITE_ONCE(pdd->page_in, pdd->page_in + migrate.cpages); 436 } 437 438 return r; 439 } 440 441 /** 442 * svm_migrate_ram_to_vram - migrate svm range from system to device 443 * @prange: range structure 444 * @best_loc: the device to migrate to 445 * @mm: the process mm structure 446 * 447 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 448 * 449 * Return: 450 * 0 - OK, otherwise error code 451 */ 452 static int 453 svm_migrate_ram_to_vram(struct svm_range *prange, uint32_t best_loc, 454 struct mm_struct *mm) 455 { 456 unsigned long addr, start, end; 457 struct vm_area_struct *vma; 458 struct amdgpu_device *adev; 459 int r = 0; 460 461 if (prange->actual_loc == best_loc) { 462 pr_debug("svms 0x%p [0x%lx 0x%lx] already on best_loc 0x%x\n", 463 prange->svms, prange->start, prange->last, best_loc); 464 return 0; 465 } 466 467 adev = svm_range_get_adev_by_id(prange, best_loc); 468 if (!adev) { 469 pr_debug("failed to get device by id 0x%x\n", best_loc); 470 return -ENODEV; 471 } 472 473 pr_debug("svms 0x%p [0x%lx 0x%lx] to gpu 0x%x\n", prange->svms, 474 prange->start, prange->last, best_loc); 475 476 /* FIXME: workaround for page locking bug with invalid pages */ 477 svm_range_prefault(prange, mm, SVM_ADEV_PGMAP_OWNER(adev)); 478 479 start = prange->start << PAGE_SHIFT; 480 end = (prange->last + 1) << PAGE_SHIFT; 481 482 for (addr = start; addr < end;) { 483 unsigned long next; 484 485 vma = find_vma(mm, addr); 486 if (!vma || addr < vma->vm_start) 487 break; 488 489 next = min(vma->vm_end, end); 490 r = svm_migrate_vma_to_vram(adev, prange, vma, addr, next); 491 if (r) { 492 pr_debug("failed to migrate\n"); 493 break; 494 } 495 addr = next; 496 } 497 498 if (!r) 499 prange->actual_loc = best_loc; 500 501 return r; 502 } 503 504 static void svm_migrate_page_free(struct page *page) 505 { 506 struct svm_range_bo *svm_bo = page->zone_device_data; 507 508 if (svm_bo) { 509 pr_debug("svm_bo ref left: %d\n", kref_read(&svm_bo->kref)); 510 svm_range_bo_unref(svm_bo); 511 } 512 } 513 514 static int 515 svm_migrate_copy_to_ram(struct amdgpu_device *adev, struct svm_range *prange, 516 struct migrate_vma *migrate, struct dma_fence **mfence, 517 dma_addr_t *scratch, uint64_t npages) 518 { 519 struct device *dev = adev->dev; 520 uint64_t *src; 521 dma_addr_t *dst; 522 struct page *dpage; 523 uint64_t i = 0, j; 524 uint64_t addr; 525 int r = 0; 526 527 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, 528 prange->last); 529 530 addr = prange->start << PAGE_SHIFT; 531 532 src = (uint64_t *)(scratch + npages); 533 dst = scratch; 534 535 for (i = 0, j = 0; i < npages; i++, addr += PAGE_SIZE) { 536 struct page *spage; 537 538 spage = migrate_pfn_to_page(migrate->src[i]); 539 if (!spage || !is_zone_device_page(spage)) { 540 pr_debug("invalid page. Could be in CPU already svms 0x%p [0x%lx 0x%lx]\n", 541 prange->svms, prange->start, prange->last); 542 if (j) { 543 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 544 src + i - j, j, 545 FROM_VRAM_TO_RAM, 546 mfence); 547 if (r) 548 goto out_oom; 549 j = 0; 550 } 551 continue; 552 } 553 src[i] = svm_migrate_addr(adev, spage); 554 if (i > 0 && src[i] != src[i - 1] + PAGE_SIZE) { 555 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 556 src + i - j, j, 557 FROM_VRAM_TO_RAM, 558 mfence); 559 if (r) 560 goto out_oom; 561 j = 0; 562 } 563 564 dpage = svm_migrate_get_sys_page(migrate->vma, addr); 565 if (!dpage) { 566 pr_debug("failed get page svms 0x%p [0x%lx 0x%lx]\n", 567 prange->svms, prange->start, prange->last); 568 r = -ENOMEM; 569 goto out_oom; 570 } 571 572 dst[i] = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_FROM_DEVICE); 573 r = dma_mapping_error(dev, dst[i]); 574 if (r) { 575 pr_debug("failed %d dma_map_page\n", r); 576 goto out_oom; 577 } 578 579 pr_debug("dma mapping dst to 0x%llx, page_to_pfn 0x%lx\n", 580 dst[i] >> PAGE_SHIFT, page_to_pfn(dpage)); 581 582 migrate->dst[i] = migrate_pfn(page_to_pfn(dpage)); 583 migrate->dst[i] |= MIGRATE_PFN_LOCKED; 584 j++; 585 } 586 587 r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j, 588 FROM_VRAM_TO_RAM, mfence); 589 590 out_oom: 591 if (r) { 592 pr_debug("failed %d copy to ram\n", r); 593 while (i--) { 594 svm_migrate_put_sys_page(dst[i]); 595 migrate->dst[i] = 0; 596 } 597 } 598 599 return r; 600 } 601 602 static int 603 svm_migrate_vma_to_ram(struct amdgpu_device *adev, struct svm_range *prange, 604 struct vm_area_struct *vma, uint64_t start, uint64_t end) 605 { 606 uint64_t npages = (end - start) >> PAGE_SHIFT; 607 struct kfd_process_device *pdd; 608 struct dma_fence *mfence = NULL; 609 struct migrate_vma migrate; 610 dma_addr_t *scratch; 611 size_t size; 612 void *buf; 613 int r = -ENOMEM; 614 615 memset(&migrate, 0, sizeof(migrate)); 616 migrate.vma = vma; 617 migrate.start = start; 618 migrate.end = end; 619 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; 620 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 621 622 size = 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t); 623 size *= npages; 624 buf = kvmalloc(size, GFP_KERNEL | __GFP_ZERO); 625 if (!buf) 626 goto out; 627 628 migrate.src = buf; 629 migrate.dst = migrate.src + npages; 630 scratch = (dma_addr_t *)(migrate.dst + npages); 631 632 r = migrate_vma_setup(&migrate); 633 if (r) { 634 pr_debug("failed %d prepare migrate svms 0x%p [0x%lx 0x%lx]\n", 635 r, prange->svms, prange->start, prange->last); 636 goto out_free; 637 } 638 639 pr_debug("cpages %ld\n", migrate.cpages); 640 641 if (migrate.cpages) { 642 r = svm_migrate_copy_to_ram(adev, prange, &migrate, &mfence, 643 scratch, npages); 644 migrate_vma_pages(&migrate); 645 svm_migrate_copy_done(adev, mfence); 646 migrate_vma_finalize(&migrate); 647 } else { 648 pr_debug("failed collect migrate device pages [0x%lx 0x%lx]\n", 649 prange->start, prange->last); 650 } 651 652 svm_range_dma_unmap(adev->dev, scratch, 0, npages); 653 654 out_free: 655 kvfree(buf); 656 out: 657 if (!r) { 658 pdd = svm_range_get_pdd_by_adev(prange, adev); 659 if (pdd) 660 WRITE_ONCE(pdd->page_out, 661 pdd->page_out + migrate.cpages); 662 } 663 return r; 664 } 665 666 /** 667 * svm_migrate_vram_to_ram - migrate svm range from device to system 668 * @prange: range structure 669 * @mm: process mm, use current->mm if NULL 670 * 671 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 672 * 673 * Return: 674 * 0 - OK, otherwise error code 675 */ 676 int svm_migrate_vram_to_ram(struct svm_range *prange, struct mm_struct *mm) 677 { 678 struct amdgpu_device *adev; 679 struct vm_area_struct *vma; 680 unsigned long addr; 681 unsigned long start; 682 unsigned long end; 683 int r = 0; 684 685 if (!prange->actual_loc) { 686 pr_debug("[0x%lx 0x%lx] already migrated to ram\n", 687 prange->start, prange->last); 688 return 0; 689 } 690 691 adev = svm_range_get_adev_by_id(prange, prange->actual_loc); 692 if (!adev) { 693 pr_debug("failed to get device by id 0x%x\n", 694 prange->actual_loc); 695 return -ENODEV; 696 } 697 698 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] from gpu 0x%x to ram\n", 699 prange->svms, prange, prange->start, prange->last, 700 prange->actual_loc); 701 702 start = prange->start << PAGE_SHIFT; 703 end = (prange->last + 1) << PAGE_SHIFT; 704 705 for (addr = start; addr < end;) { 706 unsigned long next; 707 708 vma = find_vma(mm, addr); 709 if (!vma || addr < vma->vm_start) 710 break; 711 712 next = min(vma->vm_end, end); 713 r = svm_migrate_vma_to_ram(adev, prange, vma, addr, next); 714 if (r) { 715 pr_debug("failed %d to migrate\n", r); 716 break; 717 } 718 addr = next; 719 } 720 721 if (!r) { 722 svm_range_vram_node_free(prange); 723 prange->actual_loc = 0; 724 } 725 return r; 726 } 727 728 /** 729 * svm_migrate_vram_to_vram - migrate svm range from device to device 730 * @prange: range structure 731 * @best_loc: the device to migrate to 732 * @mm: process mm, use current->mm if NULL 733 * 734 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 735 * 736 * Return: 737 * 0 - OK, otherwise error code 738 */ 739 static int 740 svm_migrate_vram_to_vram(struct svm_range *prange, uint32_t best_loc, 741 struct mm_struct *mm) 742 { 743 int r; 744 745 /* 746 * TODO: for both devices with PCIe large bar or on same xgmi hive, skip 747 * system memory as migration bridge 748 */ 749 750 pr_debug("from gpu 0x%x to gpu 0x%x\n", prange->actual_loc, best_loc); 751 752 r = svm_migrate_vram_to_ram(prange, mm); 753 if (r) 754 return r; 755 756 return svm_migrate_ram_to_vram(prange, best_loc, mm); 757 } 758 759 int 760 svm_migrate_to_vram(struct svm_range *prange, uint32_t best_loc, 761 struct mm_struct *mm) 762 { 763 if (!prange->actual_loc) 764 return svm_migrate_ram_to_vram(prange, best_loc, mm); 765 else 766 return svm_migrate_vram_to_vram(prange, best_loc, mm); 767 768 } 769 770 /** 771 * svm_migrate_to_ram - CPU page fault handler 772 * @vmf: CPU vm fault vma, address 773 * 774 * Context: vm fault handler, caller holds the mmap read lock 775 * 776 * Return: 777 * 0 - OK 778 * VM_FAULT_SIGBUS - notice application to have SIGBUS page fault 779 */ 780 static vm_fault_t svm_migrate_to_ram(struct vm_fault *vmf) 781 { 782 unsigned long addr = vmf->address; 783 struct vm_area_struct *vma; 784 enum svm_work_list_ops op; 785 struct svm_range *parent; 786 struct svm_range *prange; 787 struct kfd_process *p; 788 struct mm_struct *mm; 789 int r = 0; 790 791 vma = vmf->vma; 792 mm = vma->vm_mm; 793 794 p = kfd_lookup_process_by_mm(vma->vm_mm); 795 if (!p) { 796 pr_debug("failed find process at fault address 0x%lx\n", addr); 797 return VM_FAULT_SIGBUS; 798 } 799 addr >>= PAGE_SHIFT; 800 pr_debug("CPU page fault svms 0x%p address 0x%lx\n", &p->svms, addr); 801 802 mutex_lock(&p->svms.lock); 803 804 prange = svm_range_from_addr(&p->svms, addr, &parent); 805 if (!prange) { 806 pr_debug("cannot find svm range at 0x%lx\n", addr); 807 r = -EFAULT; 808 goto out; 809 } 810 811 mutex_lock(&parent->migrate_mutex); 812 if (prange != parent) 813 mutex_lock_nested(&prange->migrate_mutex, 1); 814 815 if (!prange->actual_loc) 816 goto out_unlock_prange; 817 818 svm_range_lock(parent); 819 if (prange != parent) 820 mutex_lock_nested(&prange->lock, 1); 821 r = svm_range_split_by_granularity(p, mm, addr, parent, prange); 822 if (prange != parent) 823 mutex_unlock(&prange->lock); 824 svm_range_unlock(parent); 825 if (r) { 826 pr_debug("failed %d to split range by granularity\n", r); 827 goto out_unlock_prange; 828 } 829 830 r = svm_migrate_vram_to_ram(prange, mm); 831 if (r) 832 pr_debug("failed %d migrate 0x%p [0x%lx 0x%lx] to ram\n", r, 833 prange, prange->start, prange->last); 834 835 /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */ 836 if (p->xnack_enabled && parent == prange) 837 op = SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP; 838 else 839 op = SVM_OP_UPDATE_RANGE_NOTIFIER; 840 svm_range_add_list_work(&p->svms, parent, mm, op); 841 schedule_deferred_list_work(&p->svms); 842 843 out_unlock_prange: 844 if (prange != parent) 845 mutex_unlock(&prange->migrate_mutex); 846 mutex_unlock(&parent->migrate_mutex); 847 out: 848 mutex_unlock(&p->svms.lock); 849 kfd_unref_process(p); 850 851 pr_debug("CPU fault svms 0x%p address 0x%lx done\n", &p->svms, addr); 852 853 return r ? VM_FAULT_SIGBUS : 0; 854 } 855 856 static const struct dev_pagemap_ops svm_migrate_pgmap_ops = { 857 .page_free = svm_migrate_page_free, 858 .migrate_to_ram = svm_migrate_to_ram, 859 }; 860 861 /* Each VRAM page uses sizeof(struct page) on system memory */ 862 #define SVM_HMM_PAGE_STRUCT_SIZE(size) ((size)/PAGE_SIZE * sizeof(struct page)) 863 864 int svm_migrate_init(struct amdgpu_device *adev) 865 { 866 struct kfd_dev *kfddev = adev->kfd.dev; 867 struct dev_pagemap *pgmap; 868 struct resource *res; 869 unsigned long size; 870 void *r; 871 872 /* Page migration works on Vega10 or newer */ 873 if (kfddev->device_info->asic_family < CHIP_VEGA10) 874 return -EINVAL; 875 876 pgmap = &kfddev->pgmap; 877 memset(pgmap, 0, sizeof(*pgmap)); 878 879 /* TODO: register all vram to HMM for now. 880 * should remove reserved size 881 */ 882 size = ALIGN(adev->gmc.real_vram_size, 2ULL << 20); 883 res = devm_request_free_mem_region(adev->dev, &iomem_resource, size); 884 if (IS_ERR(res)) 885 return -ENOMEM; 886 887 pgmap->type = MEMORY_DEVICE_PRIVATE; 888 pgmap->nr_range = 1; 889 pgmap->range.start = res->start; 890 pgmap->range.end = res->end; 891 pgmap->ops = &svm_migrate_pgmap_ops; 892 pgmap->owner = SVM_ADEV_PGMAP_OWNER(adev); 893 pgmap->flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; 894 r = devm_memremap_pages(adev->dev, pgmap); 895 if (IS_ERR(r)) { 896 pr_err("failed to register HMM device memory\n"); 897 devm_release_mem_region(adev->dev, res->start, 898 res->end - res->start + 1); 899 return PTR_ERR(r); 900 } 901 902 pr_debug("reserve %ldMB system memory for VRAM pages struct\n", 903 SVM_HMM_PAGE_STRUCT_SIZE(size) >> 20); 904 905 amdgpu_amdkfd_reserve_system_mem(SVM_HMM_PAGE_STRUCT_SIZE(size)); 906 907 pr_info("HMM registered %ldMB device memory\n", size >> 20); 908 909 return 0; 910 } 911 912 void svm_migrate_fini(struct amdgpu_device *adev) 913 { 914 struct dev_pagemap *pgmap = &adev->kfd.dev->pgmap; 915 916 devm_memunmap_pages(adev->dev, pgmap); 917 devm_release_mem_region(adev->dev, pgmap->range.start, 918 pgmap->range.end - pgmap->range.start + 1); 919 } 920