1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020-2021 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/types.h> 24 #include <linux/hmm.h> 25 #include <linux/dma-direction.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/migrate.h> 28 #include "amdgpu_sync.h" 29 #include "amdgpu_object.h" 30 #include "amdgpu_vm.h" 31 #include "amdgpu_mn.h" 32 #include "amdgpu_res_cursor.h" 33 #include "kfd_priv.h" 34 #include "kfd_svm.h" 35 #include "kfd_migrate.h" 36 #include "kfd_smi_events.h" 37 38 #ifdef dev_fmt 39 #undef dev_fmt 40 #endif 41 #define dev_fmt(fmt) "kfd_migrate: " fmt 42 43 static uint64_t 44 svm_migrate_direct_mapping_addr(struct amdgpu_device *adev, uint64_t addr) 45 { 46 return addr + amdgpu_ttm_domain_start(adev, TTM_PL_VRAM); 47 } 48 49 static int 50 svm_migrate_gart_map(struct amdgpu_ring *ring, uint64_t npages, 51 dma_addr_t *addr, uint64_t *gart_addr, uint64_t flags) 52 { 53 struct amdgpu_device *adev = ring->adev; 54 struct amdgpu_job *job; 55 unsigned int num_dw, num_bytes; 56 struct dma_fence *fence; 57 uint64_t src_addr, dst_addr; 58 uint64_t pte_flags; 59 void *cpu_addr; 60 int r; 61 62 /* use gart window 0 */ 63 *gart_addr = adev->gmc.gart_start; 64 65 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 66 num_bytes = npages * 8; 67 68 r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, 69 AMDGPU_IB_POOL_DELAYED, &job); 70 if (r) 71 return r; 72 73 src_addr = num_dw * 4; 74 src_addr += job->ibs[0].gpu_addr; 75 76 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 77 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 78 dst_addr, num_bytes, false); 79 80 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 81 WARN_ON(job->ibs[0].length_dw > num_dw); 82 83 pte_flags = AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; 84 pte_flags |= AMDGPU_PTE_SYSTEM | AMDGPU_PTE_SNOOPED; 85 if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO)) 86 pte_flags |= AMDGPU_PTE_WRITEABLE; 87 pte_flags |= adev->gart.gart_pte_flags; 88 89 cpu_addr = &job->ibs[0].ptr[num_dw]; 90 91 amdgpu_gart_map(adev, 0, npages, addr, pte_flags, cpu_addr); 92 r = amdgpu_job_submit(job, &adev->mman.entity, 93 AMDGPU_FENCE_OWNER_UNDEFINED, &fence); 94 if (r) 95 goto error_free; 96 97 dma_fence_put(fence); 98 99 return r; 100 101 error_free: 102 amdgpu_job_free(job); 103 return r; 104 } 105 106 /** 107 * svm_migrate_copy_memory_gart - sdma copy data between ram and vram 108 * 109 * @adev: amdgpu device the sdma ring running 110 * @sys: system DMA pointer to be copied 111 * @vram: vram destination DMA pointer 112 * @npages: number of pages to copy 113 * @direction: enum MIGRATION_COPY_DIR 114 * @mfence: output, sdma fence to signal after sdma is done 115 * 116 * ram address uses GART table continuous entries mapping to ram pages, 117 * vram address uses direct mapping of vram pages, which must have npages 118 * number of continuous pages. 119 * GART update and sdma uses same buf copy function ring, sdma is splited to 120 * multiple GTT_MAX_PAGES transfer, all sdma operations are serialized, wait for 121 * the last sdma finish fence which is returned to check copy memory is done. 122 * 123 * Context: Process context, takes and releases gtt_window_lock 124 * 125 * Return: 126 * 0 - OK, otherwise error code 127 */ 128 129 static int 130 svm_migrate_copy_memory_gart(struct amdgpu_device *adev, dma_addr_t *sys, 131 uint64_t *vram, uint64_t npages, 132 enum MIGRATION_COPY_DIR direction, 133 struct dma_fence **mfence) 134 { 135 const uint64_t GTT_MAX_PAGES = AMDGPU_GTT_MAX_TRANSFER_SIZE; 136 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 137 uint64_t gart_s, gart_d; 138 struct dma_fence *next; 139 uint64_t size; 140 int r; 141 142 mutex_lock(&adev->mman.gtt_window_lock); 143 144 while (npages) { 145 size = min(GTT_MAX_PAGES, npages); 146 147 if (direction == FROM_VRAM_TO_RAM) { 148 gart_s = svm_migrate_direct_mapping_addr(adev, *vram); 149 r = svm_migrate_gart_map(ring, size, sys, &gart_d, 0); 150 151 } else if (direction == FROM_RAM_TO_VRAM) { 152 r = svm_migrate_gart_map(ring, size, sys, &gart_s, 153 KFD_IOCTL_SVM_FLAG_GPU_RO); 154 gart_d = svm_migrate_direct_mapping_addr(adev, *vram); 155 } 156 if (r) { 157 dev_err(adev->dev, "fail %d create gart mapping\n", r); 158 goto out_unlock; 159 } 160 161 r = amdgpu_copy_buffer(ring, gart_s, gart_d, size * PAGE_SIZE, 162 NULL, &next, false, true, false); 163 if (r) { 164 dev_err(adev->dev, "fail %d to copy memory\n", r); 165 goto out_unlock; 166 } 167 168 dma_fence_put(*mfence); 169 *mfence = next; 170 npages -= size; 171 if (npages) { 172 sys += size; 173 vram += size; 174 } 175 } 176 177 out_unlock: 178 mutex_unlock(&adev->mman.gtt_window_lock); 179 180 return r; 181 } 182 183 /** 184 * svm_migrate_copy_done - wait for memory copy sdma is done 185 * 186 * @adev: amdgpu device the sdma memory copy is executing on 187 * @mfence: migrate fence 188 * 189 * Wait for dma fence is signaled, if the copy ssplit into multiple sdma 190 * operations, this is the last sdma operation fence. 191 * 192 * Context: called after svm_migrate_copy_memory 193 * 194 * Return: 195 * 0 - success 196 * otherwise - error code from dma fence signal 197 */ 198 static int 199 svm_migrate_copy_done(struct amdgpu_device *adev, struct dma_fence *mfence) 200 { 201 int r = 0; 202 203 if (mfence) { 204 r = dma_fence_wait(mfence, false); 205 dma_fence_put(mfence); 206 pr_debug("sdma copy memory fence done\n"); 207 } 208 209 return r; 210 } 211 212 unsigned long 213 svm_migrate_addr_to_pfn(struct amdgpu_device *adev, unsigned long addr) 214 { 215 return (addr + adev->kfd.dev->pgmap.range.start) >> PAGE_SHIFT; 216 } 217 218 static void 219 svm_migrate_get_vram_page(struct svm_range *prange, unsigned long pfn) 220 { 221 struct page *page; 222 223 page = pfn_to_page(pfn); 224 svm_range_bo_ref(prange->svm_bo); 225 page->zone_device_data = prange->svm_bo; 226 lock_page(page); 227 } 228 229 static void 230 svm_migrate_put_vram_page(struct amdgpu_device *adev, unsigned long addr) 231 { 232 struct page *page; 233 234 page = pfn_to_page(svm_migrate_addr_to_pfn(adev, addr)); 235 unlock_page(page); 236 put_page(page); 237 } 238 239 static unsigned long 240 svm_migrate_addr(struct amdgpu_device *adev, struct page *page) 241 { 242 unsigned long addr; 243 244 addr = page_to_pfn(page) << PAGE_SHIFT; 245 return (addr - adev->kfd.dev->pgmap.range.start); 246 } 247 248 static struct page * 249 svm_migrate_get_sys_page(struct vm_area_struct *vma, unsigned long addr) 250 { 251 struct page *page; 252 253 page = alloc_page_vma(GFP_HIGHUSER, vma, addr); 254 if (page) 255 lock_page(page); 256 257 return page; 258 } 259 260 static void svm_migrate_put_sys_page(unsigned long addr) 261 { 262 struct page *page; 263 264 page = pfn_to_page(addr >> PAGE_SHIFT); 265 unlock_page(page); 266 put_page(page); 267 } 268 269 static unsigned long svm_migrate_successful_pages(struct migrate_vma *migrate) 270 { 271 unsigned long cpages = 0; 272 unsigned long i; 273 274 for (i = 0; i < migrate->npages; i++) { 275 if (migrate->src[i] & MIGRATE_PFN_VALID && 276 migrate->src[i] & MIGRATE_PFN_MIGRATE) 277 cpages++; 278 } 279 return cpages; 280 } 281 282 static unsigned long svm_migrate_unsuccessful_pages(struct migrate_vma *migrate) 283 { 284 unsigned long upages = 0; 285 unsigned long i; 286 287 for (i = 0; i < migrate->npages; i++) { 288 if (migrate->src[i] & MIGRATE_PFN_VALID && 289 !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 290 upages++; 291 } 292 return upages; 293 } 294 295 static int 296 svm_migrate_copy_to_vram(struct amdgpu_device *adev, struct svm_range *prange, 297 struct migrate_vma *migrate, struct dma_fence **mfence, 298 dma_addr_t *scratch) 299 { 300 uint64_t npages = migrate->npages; 301 struct device *dev = adev->dev; 302 struct amdgpu_res_cursor cursor; 303 dma_addr_t *src; 304 uint64_t *dst; 305 uint64_t i, j; 306 int r; 307 308 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, 309 prange->last); 310 311 src = scratch; 312 dst = (uint64_t *)(scratch + npages); 313 314 r = svm_range_vram_node_new(adev, prange, true); 315 if (r) { 316 dev_dbg(adev->dev, "fail %d to alloc vram\n", r); 317 goto out; 318 } 319 320 amdgpu_res_first(prange->ttm_res, prange->offset << PAGE_SHIFT, 321 npages << PAGE_SHIFT, &cursor); 322 for (i = j = 0; i < npages; i++) { 323 struct page *spage; 324 325 dst[i] = cursor.start + (j << PAGE_SHIFT); 326 migrate->dst[i] = svm_migrate_addr_to_pfn(adev, dst[i]); 327 svm_migrate_get_vram_page(prange, migrate->dst[i]); 328 migrate->dst[i] = migrate_pfn(migrate->dst[i]); 329 330 spage = migrate_pfn_to_page(migrate->src[i]); 331 if (spage && !is_zone_device_page(spage)) { 332 src[i] = dma_map_page(dev, spage, 0, PAGE_SIZE, 333 DMA_TO_DEVICE); 334 r = dma_mapping_error(dev, src[i]); 335 if (r) { 336 dev_err(adev->dev, "%s: fail %d dma_map_page\n", 337 __func__, r); 338 goto out_free_vram_pages; 339 } 340 } else { 341 if (j) { 342 r = svm_migrate_copy_memory_gart( 343 adev, src + i - j, 344 dst + i - j, j, 345 FROM_RAM_TO_VRAM, 346 mfence); 347 if (r) 348 goto out_free_vram_pages; 349 amdgpu_res_next(&cursor, (j + 1) << PAGE_SHIFT); 350 j = 0; 351 } else { 352 amdgpu_res_next(&cursor, PAGE_SIZE); 353 } 354 continue; 355 } 356 357 pr_debug_ratelimited("dma mapping src to 0x%llx, pfn 0x%lx\n", 358 src[i] >> PAGE_SHIFT, page_to_pfn(spage)); 359 360 if (j >= (cursor.size >> PAGE_SHIFT) - 1 && i < npages - 1) { 361 r = svm_migrate_copy_memory_gart(adev, src + i - j, 362 dst + i - j, j + 1, 363 FROM_RAM_TO_VRAM, 364 mfence); 365 if (r) 366 goto out_free_vram_pages; 367 amdgpu_res_next(&cursor, (j + 1) * PAGE_SIZE); 368 j = 0; 369 } else { 370 j++; 371 } 372 } 373 374 r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j, 375 FROM_RAM_TO_VRAM, mfence); 376 377 out_free_vram_pages: 378 if (r) { 379 pr_debug("failed %d to copy memory to vram\n", r); 380 while (i--) { 381 svm_migrate_put_vram_page(adev, dst[i]); 382 migrate->dst[i] = 0; 383 } 384 } 385 386 #ifdef DEBUG_FORCE_MIXED_DOMAINS 387 for (i = 0, j = 0; i < npages; i += 4, j++) { 388 if (j & 1) 389 continue; 390 svm_migrate_put_vram_page(adev, dst[i]); 391 migrate->dst[i] = 0; 392 svm_migrate_put_vram_page(adev, dst[i + 1]); 393 migrate->dst[i + 1] = 0; 394 svm_migrate_put_vram_page(adev, dst[i + 2]); 395 migrate->dst[i + 2] = 0; 396 svm_migrate_put_vram_page(adev, dst[i + 3]); 397 migrate->dst[i + 3] = 0; 398 } 399 #endif 400 out: 401 return r; 402 } 403 404 static long 405 svm_migrate_vma_to_vram(struct amdgpu_device *adev, struct svm_range *prange, 406 struct vm_area_struct *vma, uint64_t start, 407 uint64_t end, uint32_t trigger) 408 { 409 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 410 uint64_t npages = (end - start) >> PAGE_SHIFT; 411 struct kfd_process_device *pdd; 412 struct dma_fence *mfence = NULL; 413 struct migrate_vma migrate; 414 unsigned long cpages = 0; 415 dma_addr_t *scratch; 416 void *buf; 417 int r = -ENOMEM; 418 419 memset(&migrate, 0, sizeof(migrate)); 420 migrate.vma = vma; 421 migrate.start = start; 422 migrate.end = end; 423 migrate.flags = MIGRATE_VMA_SELECT_SYSTEM; 424 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 425 426 buf = kvcalloc(npages, 427 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t), 428 GFP_KERNEL); 429 if (!buf) 430 goto out; 431 432 migrate.src = buf; 433 migrate.dst = migrate.src + npages; 434 scratch = (dma_addr_t *)(migrate.dst + npages); 435 436 kfd_smi_event_migration_start(adev->kfd.dev, p->lead_thread->pid, 437 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 438 0, adev->kfd.dev->id, prange->prefetch_loc, 439 prange->preferred_loc, trigger); 440 441 r = migrate_vma_setup(&migrate); 442 if (r) { 443 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", 444 __func__, r, prange->start, prange->last); 445 goto out_free; 446 } 447 448 cpages = migrate.cpages; 449 if (!cpages) { 450 pr_debug("failed collect migrate sys pages [0x%lx 0x%lx]\n", 451 prange->start, prange->last); 452 goto out_free; 453 } 454 if (cpages != npages) 455 pr_debug("partial migration, 0x%lx/0x%llx pages migrated\n", 456 cpages, npages); 457 else 458 pr_debug("0x%lx pages migrated\n", cpages); 459 460 r = svm_migrate_copy_to_vram(adev, prange, &migrate, &mfence, scratch); 461 migrate_vma_pages(&migrate); 462 463 pr_debug("successful/cpages/npages 0x%lx/0x%lx/0x%lx\n", 464 svm_migrate_successful_pages(&migrate), cpages, migrate.npages); 465 466 svm_migrate_copy_done(adev, mfence); 467 migrate_vma_finalize(&migrate); 468 469 kfd_smi_event_migration_end(adev->kfd.dev, p->lead_thread->pid, 470 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 471 0, adev->kfd.dev->id, trigger); 472 473 svm_range_dma_unmap(adev->dev, scratch, 0, npages); 474 svm_range_free_dma_mappings(prange); 475 476 out_free: 477 kvfree(buf); 478 out: 479 if (!r && cpages) { 480 pdd = svm_range_get_pdd_by_adev(prange, adev); 481 if (pdd) 482 WRITE_ONCE(pdd->page_in, pdd->page_in + cpages); 483 484 return cpages; 485 } 486 return r; 487 } 488 489 /** 490 * svm_migrate_ram_to_vram - migrate svm range from system to device 491 * @prange: range structure 492 * @best_loc: the device to migrate to 493 * @mm: the process mm structure 494 * @trigger: reason of migration 495 * 496 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 497 * 498 * Return: 499 * 0 - OK, otherwise error code 500 */ 501 static int 502 svm_migrate_ram_to_vram(struct svm_range *prange, uint32_t best_loc, 503 struct mm_struct *mm, uint32_t trigger) 504 { 505 unsigned long addr, start, end; 506 struct vm_area_struct *vma; 507 struct amdgpu_device *adev; 508 unsigned long cpages = 0; 509 long r = 0; 510 511 if (prange->actual_loc == best_loc) { 512 pr_debug("svms 0x%p [0x%lx 0x%lx] already on best_loc 0x%x\n", 513 prange->svms, prange->start, prange->last, best_loc); 514 return 0; 515 } 516 517 adev = svm_range_get_adev_by_id(prange, best_loc); 518 if (!adev) { 519 pr_debug("failed to get device by id 0x%x\n", best_loc); 520 return -ENODEV; 521 } 522 523 pr_debug("svms 0x%p [0x%lx 0x%lx] to gpu 0x%x\n", prange->svms, 524 prange->start, prange->last, best_loc); 525 526 start = prange->start << PAGE_SHIFT; 527 end = (prange->last + 1) << PAGE_SHIFT; 528 529 for (addr = start; addr < end;) { 530 unsigned long next; 531 532 vma = find_vma(mm, addr); 533 if (!vma || addr < vma->vm_start) 534 break; 535 536 next = min(vma->vm_end, end); 537 r = svm_migrate_vma_to_vram(adev, prange, vma, addr, next, trigger); 538 if (r < 0) { 539 pr_debug("failed %ld to migrate\n", r); 540 break; 541 } else { 542 cpages += r; 543 } 544 addr = next; 545 } 546 547 if (cpages) 548 prange->actual_loc = best_loc; 549 550 return r < 0 ? r : 0; 551 } 552 553 static void svm_migrate_page_free(struct page *page) 554 { 555 struct svm_range_bo *svm_bo = page->zone_device_data; 556 557 if (svm_bo) { 558 pr_debug_ratelimited("ref: %d\n", kref_read(&svm_bo->kref)); 559 svm_range_bo_unref_async(svm_bo); 560 } 561 } 562 563 static int 564 svm_migrate_copy_to_ram(struct amdgpu_device *adev, struct svm_range *prange, 565 struct migrate_vma *migrate, struct dma_fence **mfence, 566 dma_addr_t *scratch, uint64_t npages) 567 { 568 struct device *dev = adev->dev; 569 uint64_t *src; 570 dma_addr_t *dst; 571 struct page *dpage; 572 uint64_t i = 0, j; 573 uint64_t addr; 574 int r = 0; 575 576 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, 577 prange->last); 578 579 addr = prange->start << PAGE_SHIFT; 580 581 src = (uint64_t *)(scratch + npages); 582 dst = scratch; 583 584 for (i = 0, j = 0; i < npages; i++, addr += PAGE_SIZE) { 585 struct page *spage; 586 587 spage = migrate_pfn_to_page(migrate->src[i]); 588 if (!spage || !is_zone_device_page(spage)) { 589 pr_debug("invalid page. Could be in CPU already svms 0x%p [0x%lx 0x%lx]\n", 590 prange->svms, prange->start, prange->last); 591 if (j) { 592 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 593 src + i - j, j, 594 FROM_VRAM_TO_RAM, 595 mfence); 596 if (r) 597 goto out_oom; 598 j = 0; 599 } 600 continue; 601 } 602 src[i] = svm_migrate_addr(adev, spage); 603 if (j > 0 && src[i] != src[i - 1] + PAGE_SIZE) { 604 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 605 src + i - j, j, 606 FROM_VRAM_TO_RAM, 607 mfence); 608 if (r) 609 goto out_oom; 610 j = 0; 611 } 612 613 dpage = svm_migrate_get_sys_page(migrate->vma, addr); 614 if (!dpage) { 615 pr_debug("failed get page svms 0x%p [0x%lx 0x%lx]\n", 616 prange->svms, prange->start, prange->last); 617 r = -ENOMEM; 618 goto out_oom; 619 } 620 621 dst[i] = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_FROM_DEVICE); 622 r = dma_mapping_error(dev, dst[i]); 623 if (r) { 624 dev_err(adev->dev, "%s: fail %d dma_map_page\n", __func__, r); 625 goto out_oom; 626 } 627 628 pr_debug_ratelimited("dma mapping dst to 0x%llx, pfn 0x%lx\n", 629 dst[i] >> PAGE_SHIFT, page_to_pfn(dpage)); 630 631 migrate->dst[i] = migrate_pfn(page_to_pfn(dpage)); 632 j++; 633 } 634 635 r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j, 636 FROM_VRAM_TO_RAM, mfence); 637 638 out_oom: 639 if (r) { 640 pr_debug("failed %d copy to ram\n", r); 641 while (i--) { 642 svm_migrate_put_sys_page(dst[i]); 643 migrate->dst[i] = 0; 644 } 645 } 646 647 return r; 648 } 649 650 /** 651 * svm_migrate_vma_to_ram - migrate range inside one vma from device to system 652 * 653 * @adev: amdgpu device to migrate from 654 * @prange: svm range structure 655 * @vma: vm_area_struct that range [start, end] belongs to 656 * @start: range start virtual address in pages 657 * @end: range end virtual address in pages 658 * 659 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex 660 * 661 * Return: 662 * 0 - success with all pages migrated 663 * negative values - indicate error 664 * positive values - partial migration, number of pages not migrated 665 */ 666 static long 667 svm_migrate_vma_to_ram(struct amdgpu_device *adev, struct svm_range *prange, 668 struct vm_area_struct *vma, uint64_t start, uint64_t end, 669 uint32_t trigger) 670 { 671 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 672 uint64_t npages = (end - start) >> PAGE_SHIFT; 673 unsigned long upages = npages; 674 unsigned long cpages = 0; 675 struct kfd_process_device *pdd; 676 struct dma_fence *mfence = NULL; 677 struct migrate_vma migrate; 678 dma_addr_t *scratch; 679 void *buf; 680 int r = -ENOMEM; 681 682 memset(&migrate, 0, sizeof(migrate)); 683 migrate.vma = vma; 684 migrate.start = start; 685 migrate.end = end; 686 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 687 if (adev->gmc.xgmi.connected_to_cpu) 688 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_COHERENT; 689 else 690 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; 691 692 buf = kvcalloc(npages, 693 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t), 694 GFP_KERNEL); 695 if (!buf) 696 goto out; 697 698 migrate.src = buf; 699 migrate.dst = migrate.src + npages; 700 scratch = (dma_addr_t *)(migrate.dst + npages); 701 702 kfd_smi_event_migration_start(adev->kfd.dev, p->lead_thread->pid, 703 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 704 adev->kfd.dev->id, 0, prange->prefetch_loc, 705 prange->preferred_loc, trigger); 706 707 r = migrate_vma_setup(&migrate); 708 if (r) { 709 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", 710 __func__, r, prange->start, prange->last); 711 goto out_free; 712 } 713 714 cpages = migrate.cpages; 715 if (!cpages) { 716 pr_debug("failed collect migrate device pages [0x%lx 0x%lx]\n", 717 prange->start, prange->last); 718 upages = svm_migrate_unsuccessful_pages(&migrate); 719 goto out_free; 720 } 721 if (cpages != npages) 722 pr_debug("partial migration, 0x%lx/0x%llx pages migrated\n", 723 cpages, npages); 724 else 725 pr_debug("0x%lx pages migrated\n", cpages); 726 727 r = svm_migrate_copy_to_ram(adev, prange, &migrate, &mfence, 728 scratch, npages); 729 migrate_vma_pages(&migrate); 730 731 upages = svm_migrate_unsuccessful_pages(&migrate); 732 pr_debug("unsuccessful/cpages/npages 0x%lx/0x%lx/0x%lx\n", 733 upages, cpages, migrate.npages); 734 735 svm_migrate_copy_done(adev, mfence); 736 migrate_vma_finalize(&migrate); 737 738 kfd_smi_event_migration_end(adev->kfd.dev, p->lead_thread->pid, 739 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 740 adev->kfd.dev->id, 0, trigger); 741 742 svm_range_dma_unmap(adev->dev, scratch, 0, npages); 743 744 out_free: 745 kvfree(buf); 746 out: 747 if (!r && cpages) { 748 pdd = svm_range_get_pdd_by_adev(prange, adev); 749 if (pdd) 750 WRITE_ONCE(pdd->page_out, pdd->page_out + cpages); 751 } 752 return r ? r : upages; 753 } 754 755 /** 756 * svm_migrate_vram_to_ram - migrate svm range from device to system 757 * @prange: range structure 758 * @mm: process mm, use current->mm if NULL 759 * @trigger: reason of migration 760 * 761 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex 762 * 763 * Return: 764 * 0 - OK, otherwise error code 765 */ 766 int svm_migrate_vram_to_ram(struct svm_range *prange, struct mm_struct *mm, 767 uint32_t trigger) 768 { 769 struct amdgpu_device *adev; 770 struct vm_area_struct *vma; 771 unsigned long addr; 772 unsigned long start; 773 unsigned long end; 774 unsigned long upages = 0; 775 long r = 0; 776 777 if (!prange->actual_loc) { 778 pr_debug("[0x%lx 0x%lx] already migrated to ram\n", 779 prange->start, prange->last); 780 return 0; 781 } 782 783 adev = svm_range_get_adev_by_id(prange, prange->actual_loc); 784 if (!adev) { 785 pr_debug("failed to get device by id 0x%x\n", 786 prange->actual_loc); 787 return -ENODEV; 788 } 789 790 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] from gpu 0x%x to ram\n", 791 prange->svms, prange, prange->start, prange->last, 792 prange->actual_loc); 793 794 start = prange->start << PAGE_SHIFT; 795 end = (prange->last + 1) << PAGE_SHIFT; 796 797 for (addr = start; addr < end;) { 798 unsigned long next; 799 800 vma = find_vma(mm, addr); 801 if (!vma || addr < vma->vm_start) { 802 pr_debug("failed to find vma for prange %p\n", prange); 803 r = -EFAULT; 804 break; 805 } 806 807 next = min(vma->vm_end, end); 808 r = svm_migrate_vma_to_ram(adev, prange, vma, addr, next, trigger); 809 if (r < 0) { 810 pr_debug("failed %ld to migrate prange %p\n", r, prange); 811 break; 812 } else { 813 upages += r; 814 } 815 addr = next; 816 } 817 818 if (r >= 0 && !upages) { 819 svm_range_vram_node_free(prange); 820 prange->actual_loc = 0; 821 } 822 823 return r < 0 ? r : 0; 824 } 825 826 /** 827 * svm_migrate_vram_to_vram - migrate svm range from device to device 828 * @prange: range structure 829 * @best_loc: the device to migrate to 830 * @mm: process mm, use current->mm if NULL 831 * @trigger: reason of migration 832 * 833 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 834 * 835 * Return: 836 * 0 - OK, otherwise error code 837 */ 838 static int 839 svm_migrate_vram_to_vram(struct svm_range *prange, uint32_t best_loc, 840 struct mm_struct *mm, uint32_t trigger) 841 { 842 int r, retries = 3; 843 844 /* 845 * TODO: for both devices with PCIe large bar or on same xgmi hive, skip 846 * system memory as migration bridge 847 */ 848 849 pr_debug("from gpu 0x%x to gpu 0x%x\n", prange->actual_loc, best_loc); 850 851 do { 852 r = svm_migrate_vram_to_ram(prange, mm, trigger); 853 if (r) 854 return r; 855 } while (prange->actual_loc && --retries); 856 857 if (prange->actual_loc) 858 return -EDEADLK; 859 860 return svm_migrate_ram_to_vram(prange, best_loc, mm, trigger); 861 } 862 863 int 864 svm_migrate_to_vram(struct svm_range *prange, uint32_t best_loc, 865 struct mm_struct *mm, uint32_t trigger) 866 { 867 if (!prange->actual_loc) 868 return svm_migrate_ram_to_vram(prange, best_loc, mm, trigger); 869 else 870 return svm_migrate_vram_to_vram(prange, best_loc, mm, trigger); 871 872 } 873 874 /** 875 * svm_migrate_to_ram - CPU page fault handler 876 * @vmf: CPU vm fault vma, address 877 * 878 * Context: vm fault handler, caller holds the mmap read lock 879 * 880 * Return: 881 * 0 - OK 882 * VM_FAULT_SIGBUS - notice application to have SIGBUS page fault 883 */ 884 static vm_fault_t svm_migrate_to_ram(struct vm_fault *vmf) 885 { 886 unsigned long addr = vmf->address; 887 struct svm_range_bo *svm_bo; 888 enum svm_work_list_ops op; 889 struct svm_range *parent; 890 struct svm_range *prange; 891 struct kfd_process *p; 892 struct mm_struct *mm; 893 int r = 0; 894 895 svm_bo = vmf->page->zone_device_data; 896 if (!svm_bo) { 897 pr_debug("failed get device page at addr 0x%lx\n", addr); 898 return VM_FAULT_SIGBUS; 899 } 900 if (!mmget_not_zero(svm_bo->eviction_fence->mm)) { 901 pr_debug("addr 0x%lx of process mm is destroyed\n", addr); 902 return VM_FAULT_SIGBUS; 903 } 904 905 mm = svm_bo->eviction_fence->mm; 906 if (mm != vmf->vma->vm_mm) 907 pr_debug("addr 0x%lx is COW mapping in child process\n", addr); 908 909 p = kfd_lookup_process_by_mm(mm); 910 if (!p) { 911 pr_debug("failed find process at fault address 0x%lx\n", addr); 912 r = VM_FAULT_SIGBUS; 913 goto out_mmput; 914 } 915 if (READ_ONCE(p->svms.faulting_task) == current) { 916 pr_debug("skipping ram migration\n"); 917 r = 0; 918 goto out_unref_process; 919 } 920 921 pr_debug("CPU page fault svms 0x%p address 0x%lx\n", &p->svms, addr); 922 addr >>= PAGE_SHIFT; 923 924 mutex_lock(&p->svms.lock); 925 926 prange = svm_range_from_addr(&p->svms, addr, &parent); 927 if (!prange) { 928 pr_debug("failed get range svms 0x%p addr 0x%lx\n", &p->svms, addr); 929 r = -EFAULT; 930 goto out_unlock_svms; 931 } 932 933 mutex_lock(&parent->migrate_mutex); 934 if (prange != parent) 935 mutex_lock_nested(&prange->migrate_mutex, 1); 936 937 if (!prange->actual_loc) 938 goto out_unlock_prange; 939 940 svm_range_lock(parent); 941 if (prange != parent) 942 mutex_lock_nested(&prange->lock, 1); 943 r = svm_range_split_by_granularity(p, mm, addr, parent, prange); 944 if (prange != parent) 945 mutex_unlock(&prange->lock); 946 svm_range_unlock(parent); 947 if (r) { 948 pr_debug("failed %d to split range by granularity\n", r); 949 goto out_unlock_prange; 950 } 951 952 r = svm_migrate_vram_to_ram(prange, vmf->vma->vm_mm, 953 KFD_MIGRATE_TRIGGER_PAGEFAULT_CPU); 954 if (r) 955 pr_debug("failed %d migrate svms 0x%p range 0x%p [0x%lx 0x%lx]\n", 956 r, prange->svms, prange, prange->start, prange->last); 957 958 /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */ 959 if (p->xnack_enabled && parent == prange) 960 op = SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP; 961 else 962 op = SVM_OP_UPDATE_RANGE_NOTIFIER; 963 svm_range_add_list_work(&p->svms, parent, mm, op); 964 schedule_deferred_list_work(&p->svms); 965 966 out_unlock_prange: 967 if (prange != parent) 968 mutex_unlock(&prange->migrate_mutex); 969 mutex_unlock(&parent->migrate_mutex); 970 out_unlock_svms: 971 mutex_unlock(&p->svms.lock); 972 out_unref_process: 973 kfd_unref_process(p); 974 out_mmput: 975 mmput(mm); 976 977 pr_debug("CPU fault svms 0x%p address 0x%lx done\n", &p->svms, addr); 978 979 return r ? VM_FAULT_SIGBUS : 0; 980 } 981 982 static const struct dev_pagemap_ops svm_migrate_pgmap_ops = { 983 .page_free = svm_migrate_page_free, 984 .migrate_to_ram = svm_migrate_to_ram, 985 }; 986 987 /* Each VRAM page uses sizeof(struct page) on system memory */ 988 #define SVM_HMM_PAGE_STRUCT_SIZE(size) ((size)/PAGE_SIZE * sizeof(struct page)) 989 990 int svm_migrate_init(struct amdgpu_device *adev) 991 { 992 struct kfd_dev *kfddev = adev->kfd.dev; 993 struct dev_pagemap *pgmap; 994 struct resource *res = NULL; 995 unsigned long size; 996 void *r; 997 998 /* Page migration works on Vega10 or newer */ 999 if (!KFD_IS_SOC15(kfddev)) 1000 return -EINVAL; 1001 1002 pgmap = &kfddev->pgmap; 1003 memset(pgmap, 0, sizeof(*pgmap)); 1004 1005 /* TODO: register all vram to HMM for now. 1006 * should remove reserved size 1007 */ 1008 size = ALIGN(adev->gmc.real_vram_size, 2ULL << 20); 1009 if (adev->gmc.xgmi.connected_to_cpu) { 1010 pgmap->range.start = adev->gmc.aper_base; 1011 pgmap->range.end = adev->gmc.aper_base + adev->gmc.aper_size - 1; 1012 pgmap->type = MEMORY_DEVICE_COHERENT; 1013 } else { 1014 res = devm_request_free_mem_region(adev->dev, &iomem_resource, size); 1015 if (IS_ERR(res)) 1016 return -ENOMEM; 1017 pgmap->range.start = res->start; 1018 pgmap->range.end = res->end; 1019 pgmap->type = MEMORY_DEVICE_PRIVATE; 1020 } 1021 1022 pgmap->nr_range = 1; 1023 pgmap->ops = &svm_migrate_pgmap_ops; 1024 pgmap->owner = SVM_ADEV_PGMAP_OWNER(adev); 1025 pgmap->flags = 0; 1026 /* Device manager releases device-specific resources, memory region and 1027 * pgmap when driver disconnects from device. 1028 */ 1029 r = devm_memremap_pages(adev->dev, pgmap); 1030 if (IS_ERR(r)) { 1031 pr_err("failed to register HMM device memory\n"); 1032 /* Disable SVM support capability */ 1033 pgmap->type = 0; 1034 if (pgmap->type == MEMORY_DEVICE_PRIVATE) 1035 devm_release_mem_region(adev->dev, res->start, 1036 res->end - res->start + 1); 1037 return PTR_ERR(r); 1038 } 1039 1040 pr_debug("reserve %ldMB system memory for VRAM pages struct\n", 1041 SVM_HMM_PAGE_STRUCT_SIZE(size) >> 20); 1042 1043 amdgpu_amdkfd_reserve_system_mem(SVM_HMM_PAGE_STRUCT_SIZE(size)); 1044 1045 svm_range_set_max_pages(adev); 1046 1047 pr_info("HMM registered %ldMB device memory\n", size >> 20); 1048 1049 return 0; 1050 } 1051