1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020-2021 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/types.h> 24 #include <linux/hmm.h> 25 #include <linux/dma-direction.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/migrate.h> 28 #include "amdgpu_sync.h" 29 #include "amdgpu_object.h" 30 #include "amdgpu_vm.h" 31 #include "amdgpu_res_cursor.h" 32 #include "kfd_priv.h" 33 #include "kfd_svm.h" 34 #include "kfd_migrate.h" 35 #include "kfd_smi_events.h" 36 37 #ifdef dev_fmt 38 #undef dev_fmt 39 #endif 40 #define dev_fmt(fmt) "kfd_migrate: " fmt 41 42 static uint64_t 43 svm_migrate_direct_mapping_addr(struct amdgpu_device *adev, uint64_t addr) 44 { 45 return addr + amdgpu_ttm_domain_start(adev, TTM_PL_VRAM); 46 } 47 48 static int 49 svm_migrate_gart_map(struct amdgpu_ring *ring, uint64_t npages, 50 dma_addr_t *addr, uint64_t *gart_addr, uint64_t flags) 51 { 52 struct amdgpu_device *adev = ring->adev; 53 struct amdgpu_job *job; 54 unsigned int num_dw, num_bytes; 55 struct dma_fence *fence; 56 uint64_t src_addr, dst_addr; 57 uint64_t pte_flags; 58 void *cpu_addr; 59 int r; 60 61 /* use gart window 0 */ 62 *gart_addr = adev->gmc.gart_start; 63 64 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 65 num_bytes = npages * 8; 66 67 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr, 68 AMDGPU_FENCE_OWNER_UNDEFINED, 69 num_dw * 4 + num_bytes, 70 AMDGPU_IB_POOL_DELAYED, 71 &job); 72 if (r) 73 return r; 74 75 src_addr = num_dw * 4; 76 src_addr += job->ibs[0].gpu_addr; 77 78 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 79 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 80 dst_addr, num_bytes, false); 81 82 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 83 WARN_ON(job->ibs[0].length_dw > num_dw); 84 85 pte_flags = AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; 86 pte_flags |= AMDGPU_PTE_SYSTEM | AMDGPU_PTE_SNOOPED; 87 if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO)) 88 pte_flags |= AMDGPU_PTE_WRITEABLE; 89 pte_flags |= adev->gart.gart_pte_flags; 90 91 cpu_addr = &job->ibs[0].ptr[num_dw]; 92 93 amdgpu_gart_map(adev, 0, npages, addr, pte_flags, cpu_addr); 94 fence = amdgpu_job_submit(job); 95 dma_fence_put(fence); 96 97 return r; 98 } 99 100 /** 101 * svm_migrate_copy_memory_gart - sdma copy data between ram and vram 102 * 103 * @adev: amdgpu device the sdma ring running 104 * @sys: system DMA pointer to be copied 105 * @vram: vram destination DMA pointer 106 * @npages: number of pages to copy 107 * @direction: enum MIGRATION_COPY_DIR 108 * @mfence: output, sdma fence to signal after sdma is done 109 * 110 * ram address uses GART table continuous entries mapping to ram pages, 111 * vram address uses direct mapping of vram pages, which must have npages 112 * number of continuous pages. 113 * GART update and sdma uses same buf copy function ring, sdma is splited to 114 * multiple GTT_MAX_PAGES transfer, all sdma operations are serialized, wait for 115 * the last sdma finish fence which is returned to check copy memory is done. 116 * 117 * Context: Process context, takes and releases gtt_window_lock 118 * 119 * Return: 120 * 0 - OK, otherwise error code 121 */ 122 123 static int 124 svm_migrate_copy_memory_gart(struct amdgpu_device *adev, dma_addr_t *sys, 125 uint64_t *vram, uint64_t npages, 126 enum MIGRATION_COPY_DIR direction, 127 struct dma_fence **mfence) 128 { 129 const uint64_t GTT_MAX_PAGES = AMDGPU_GTT_MAX_TRANSFER_SIZE; 130 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 131 uint64_t gart_s, gart_d; 132 struct dma_fence *next; 133 uint64_t size; 134 int r; 135 136 mutex_lock(&adev->mman.gtt_window_lock); 137 138 while (npages) { 139 size = min(GTT_MAX_PAGES, npages); 140 141 if (direction == FROM_VRAM_TO_RAM) { 142 gart_s = svm_migrate_direct_mapping_addr(adev, *vram); 143 r = svm_migrate_gart_map(ring, size, sys, &gart_d, 0); 144 145 } else if (direction == FROM_RAM_TO_VRAM) { 146 r = svm_migrate_gart_map(ring, size, sys, &gart_s, 147 KFD_IOCTL_SVM_FLAG_GPU_RO); 148 gart_d = svm_migrate_direct_mapping_addr(adev, *vram); 149 } 150 if (r) { 151 dev_err(adev->dev, "fail %d create gart mapping\n", r); 152 goto out_unlock; 153 } 154 155 r = amdgpu_copy_buffer(ring, gart_s, gart_d, size * PAGE_SIZE, 156 NULL, &next, false, true, false); 157 if (r) { 158 dev_err(adev->dev, "fail %d to copy memory\n", r); 159 goto out_unlock; 160 } 161 162 dma_fence_put(*mfence); 163 *mfence = next; 164 npages -= size; 165 if (npages) { 166 sys += size; 167 vram += size; 168 } 169 } 170 171 out_unlock: 172 mutex_unlock(&adev->mman.gtt_window_lock); 173 174 return r; 175 } 176 177 /** 178 * svm_migrate_copy_done - wait for memory copy sdma is done 179 * 180 * @adev: amdgpu device the sdma memory copy is executing on 181 * @mfence: migrate fence 182 * 183 * Wait for dma fence is signaled, if the copy ssplit into multiple sdma 184 * operations, this is the last sdma operation fence. 185 * 186 * Context: called after svm_migrate_copy_memory 187 * 188 * Return: 189 * 0 - success 190 * otherwise - error code from dma fence signal 191 */ 192 static int 193 svm_migrate_copy_done(struct amdgpu_device *adev, struct dma_fence *mfence) 194 { 195 int r = 0; 196 197 if (mfence) { 198 r = dma_fence_wait(mfence, false); 199 dma_fence_put(mfence); 200 pr_debug("sdma copy memory fence done\n"); 201 } 202 203 return r; 204 } 205 206 unsigned long 207 svm_migrate_addr_to_pfn(struct amdgpu_device *adev, unsigned long addr) 208 { 209 return (addr + adev->kfd.pgmap.range.start) >> PAGE_SHIFT; 210 } 211 212 static void 213 svm_migrate_get_vram_page(struct svm_range *prange, unsigned long pfn) 214 { 215 struct page *page; 216 217 page = pfn_to_page(pfn); 218 svm_range_bo_ref(prange->svm_bo); 219 page->zone_device_data = prange->svm_bo; 220 zone_device_page_init(page); 221 } 222 223 static void 224 svm_migrate_put_vram_page(struct amdgpu_device *adev, unsigned long addr) 225 { 226 struct page *page; 227 228 page = pfn_to_page(svm_migrate_addr_to_pfn(adev, addr)); 229 unlock_page(page); 230 put_page(page); 231 } 232 233 static unsigned long 234 svm_migrate_addr(struct amdgpu_device *adev, struct page *page) 235 { 236 unsigned long addr; 237 238 addr = page_to_pfn(page) << PAGE_SHIFT; 239 return (addr - adev->kfd.pgmap.range.start); 240 } 241 242 static struct page * 243 svm_migrate_get_sys_page(struct vm_area_struct *vma, unsigned long addr) 244 { 245 struct page *page; 246 247 page = alloc_page_vma(GFP_HIGHUSER, vma, addr); 248 if (page) 249 lock_page(page); 250 251 return page; 252 } 253 254 static void svm_migrate_put_sys_page(unsigned long addr) 255 { 256 struct page *page; 257 258 page = pfn_to_page(addr >> PAGE_SHIFT); 259 unlock_page(page); 260 put_page(page); 261 } 262 263 static unsigned long svm_migrate_successful_pages(struct migrate_vma *migrate) 264 { 265 unsigned long cpages = 0; 266 unsigned long i; 267 268 for (i = 0; i < migrate->npages; i++) { 269 if (migrate->src[i] & MIGRATE_PFN_VALID && 270 migrate->src[i] & MIGRATE_PFN_MIGRATE) 271 cpages++; 272 } 273 return cpages; 274 } 275 276 static unsigned long svm_migrate_unsuccessful_pages(struct migrate_vma *migrate) 277 { 278 unsigned long upages = 0; 279 unsigned long i; 280 281 for (i = 0; i < migrate->npages; i++) { 282 if (migrate->src[i] & MIGRATE_PFN_VALID && 283 !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 284 upages++; 285 } 286 return upages; 287 } 288 289 static int 290 svm_migrate_copy_to_vram(struct kfd_node *node, struct svm_range *prange, 291 struct migrate_vma *migrate, struct dma_fence **mfence, 292 dma_addr_t *scratch, uint64_t ttm_res_offset) 293 { 294 uint64_t npages = migrate->cpages; 295 struct amdgpu_device *adev = node->adev; 296 struct device *dev = adev->dev; 297 struct amdgpu_res_cursor cursor; 298 dma_addr_t *src; 299 uint64_t *dst; 300 uint64_t i, j; 301 int r; 302 303 pr_debug("svms 0x%p [0x%lx 0x%lx 0x%llx]\n", prange->svms, prange->start, 304 prange->last, ttm_res_offset); 305 306 src = scratch; 307 dst = (uint64_t *)(scratch + npages); 308 309 amdgpu_res_first(prange->ttm_res, ttm_res_offset, 310 npages << PAGE_SHIFT, &cursor); 311 for (i = j = 0; i < npages; i++) { 312 struct page *spage; 313 314 dst[i] = cursor.start + (j << PAGE_SHIFT); 315 migrate->dst[i] = svm_migrate_addr_to_pfn(adev, dst[i]); 316 svm_migrate_get_vram_page(prange, migrate->dst[i]); 317 migrate->dst[i] = migrate_pfn(migrate->dst[i]); 318 319 spage = migrate_pfn_to_page(migrate->src[i]); 320 if (spage && !is_zone_device_page(spage)) { 321 src[i] = dma_map_page(dev, spage, 0, PAGE_SIZE, 322 DMA_TO_DEVICE); 323 r = dma_mapping_error(dev, src[i]); 324 if (r) { 325 dev_err(dev, "%s: fail %d dma_map_page\n", 326 __func__, r); 327 goto out_free_vram_pages; 328 } 329 } else { 330 if (j) { 331 r = svm_migrate_copy_memory_gart( 332 adev, src + i - j, 333 dst + i - j, j, 334 FROM_RAM_TO_VRAM, 335 mfence); 336 if (r) 337 goto out_free_vram_pages; 338 amdgpu_res_next(&cursor, (j + 1) << PAGE_SHIFT); 339 j = 0; 340 } else { 341 amdgpu_res_next(&cursor, PAGE_SIZE); 342 } 343 continue; 344 } 345 346 pr_debug_ratelimited("dma mapping src to 0x%llx, pfn 0x%lx\n", 347 src[i] >> PAGE_SHIFT, page_to_pfn(spage)); 348 349 if (j >= (cursor.size >> PAGE_SHIFT) - 1 && i < npages - 1) { 350 r = svm_migrate_copy_memory_gart(adev, src + i - j, 351 dst + i - j, j + 1, 352 FROM_RAM_TO_VRAM, 353 mfence); 354 if (r) 355 goto out_free_vram_pages; 356 amdgpu_res_next(&cursor, (j + 1) * PAGE_SIZE); 357 j = 0; 358 } else { 359 j++; 360 } 361 } 362 363 r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j, 364 FROM_RAM_TO_VRAM, mfence); 365 366 out_free_vram_pages: 367 if (r) { 368 pr_debug("failed %d to copy memory to vram\n", r); 369 while (i--) { 370 svm_migrate_put_vram_page(adev, dst[i]); 371 migrate->dst[i] = 0; 372 } 373 } 374 375 #ifdef DEBUG_FORCE_MIXED_DOMAINS 376 for (i = 0, j = 0; i < npages; i += 4, j++) { 377 if (j & 1) 378 continue; 379 svm_migrate_put_vram_page(adev, dst[i]); 380 migrate->dst[i] = 0; 381 svm_migrate_put_vram_page(adev, dst[i + 1]); 382 migrate->dst[i + 1] = 0; 383 svm_migrate_put_vram_page(adev, dst[i + 2]); 384 migrate->dst[i + 2] = 0; 385 svm_migrate_put_vram_page(adev, dst[i + 3]); 386 migrate->dst[i + 3] = 0; 387 } 388 #endif 389 390 return r; 391 } 392 393 static long 394 svm_migrate_vma_to_vram(struct kfd_node *node, struct svm_range *prange, 395 struct vm_area_struct *vma, uint64_t start, 396 uint64_t end, uint32_t trigger, uint64_t ttm_res_offset) 397 { 398 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 399 uint64_t npages = (end - start) >> PAGE_SHIFT; 400 struct amdgpu_device *adev = node->adev; 401 struct kfd_process_device *pdd; 402 struct dma_fence *mfence = NULL; 403 struct migrate_vma migrate = { 0 }; 404 unsigned long cpages = 0; 405 dma_addr_t *scratch; 406 void *buf; 407 int r = -ENOMEM; 408 409 memset(&migrate, 0, sizeof(migrate)); 410 migrate.vma = vma; 411 migrate.start = start; 412 migrate.end = end; 413 migrate.flags = MIGRATE_VMA_SELECT_SYSTEM; 414 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 415 416 buf = kvcalloc(npages, 417 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t), 418 GFP_KERNEL); 419 if (!buf) 420 goto out; 421 422 migrate.src = buf; 423 migrate.dst = migrate.src + npages; 424 scratch = (dma_addr_t *)(migrate.dst + npages); 425 426 kfd_smi_event_migration_start(node, p->lead_thread->pid, 427 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 428 0, node->id, prange->prefetch_loc, 429 prange->preferred_loc, trigger); 430 431 r = migrate_vma_setup(&migrate); 432 if (r) { 433 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", 434 __func__, r, prange->start, prange->last); 435 goto out_free; 436 } 437 438 cpages = migrate.cpages; 439 if (!cpages) { 440 pr_debug("failed collect migrate sys pages [0x%lx 0x%lx]\n", 441 prange->start, prange->last); 442 goto out_free; 443 } 444 if (cpages != npages) 445 pr_debug("partial migration, 0x%lx/0x%llx pages migrated\n", 446 cpages, npages); 447 else 448 pr_debug("0x%lx pages migrated\n", cpages); 449 450 r = svm_migrate_copy_to_vram(node, prange, &migrate, &mfence, scratch, ttm_res_offset); 451 migrate_vma_pages(&migrate); 452 453 pr_debug("successful/cpages/npages 0x%lx/0x%lx/0x%lx\n", 454 svm_migrate_successful_pages(&migrate), cpages, migrate.npages); 455 456 svm_migrate_copy_done(adev, mfence); 457 migrate_vma_finalize(&migrate); 458 459 kfd_smi_event_migration_end(node, p->lead_thread->pid, 460 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 461 0, node->id, trigger); 462 463 svm_range_dma_unmap(adev->dev, scratch, 0, npages); 464 svm_range_free_dma_mappings(prange); 465 466 out_free: 467 kvfree(buf); 468 out: 469 if (!r && cpages) { 470 pdd = svm_range_get_pdd_by_node(prange, node); 471 if (pdd) 472 WRITE_ONCE(pdd->page_in, pdd->page_in + cpages); 473 474 return cpages; 475 } 476 return r; 477 } 478 479 /** 480 * svm_migrate_ram_to_vram - migrate svm range from system to device 481 * @prange: range structure 482 * @best_loc: the device to migrate to 483 * @mm: the process mm structure 484 * @trigger: reason of migration 485 * 486 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 487 * 488 * Return: 489 * 0 - OK, otherwise error code 490 */ 491 static int 492 svm_migrate_ram_to_vram(struct svm_range *prange, uint32_t best_loc, 493 struct mm_struct *mm, uint32_t trigger) 494 { 495 unsigned long addr, start, end; 496 struct vm_area_struct *vma; 497 uint64_t ttm_res_offset; 498 struct kfd_node *node; 499 unsigned long cpages = 0; 500 long r = 0; 501 502 if (prange->actual_loc == best_loc) { 503 pr_debug("svms 0x%p [0x%lx 0x%lx] already on best_loc 0x%x\n", 504 prange->svms, prange->start, prange->last, best_loc); 505 return 0; 506 } 507 508 node = svm_range_get_node_by_id(prange, best_loc); 509 if (!node) { 510 pr_debug("failed to get kfd node by id 0x%x\n", best_loc); 511 return -ENODEV; 512 } 513 514 pr_debug("svms 0x%p [0x%lx 0x%lx] to gpu 0x%x\n", prange->svms, 515 prange->start, prange->last, best_loc); 516 517 start = prange->start << PAGE_SHIFT; 518 end = (prange->last + 1) << PAGE_SHIFT; 519 520 r = svm_range_vram_node_new(node, prange, true); 521 if (r) { 522 dev_dbg(node->adev->dev, "fail %ld to alloc vram\n", r); 523 return r; 524 } 525 ttm_res_offset = prange->offset << PAGE_SHIFT; 526 527 for (addr = start; addr < end;) { 528 unsigned long next; 529 530 vma = vma_lookup(mm, addr); 531 if (!vma) 532 break; 533 534 next = min(vma->vm_end, end); 535 r = svm_migrate_vma_to_vram(node, prange, vma, addr, next, trigger, ttm_res_offset); 536 if (r < 0) { 537 pr_debug("failed %ld to migrate\n", r); 538 break; 539 } else { 540 cpages += r; 541 } 542 ttm_res_offset += next - addr; 543 addr = next; 544 } 545 546 if (cpages) 547 prange->actual_loc = best_loc; 548 else 549 svm_range_vram_node_free(prange); 550 551 return r < 0 ? r : 0; 552 } 553 554 static void svm_migrate_page_free(struct page *page) 555 { 556 struct svm_range_bo *svm_bo = page->zone_device_data; 557 558 if (svm_bo) { 559 pr_debug_ratelimited("ref: %d\n", kref_read(&svm_bo->kref)); 560 svm_range_bo_unref_async(svm_bo); 561 } 562 } 563 564 static int 565 svm_migrate_copy_to_ram(struct amdgpu_device *adev, struct svm_range *prange, 566 struct migrate_vma *migrate, struct dma_fence **mfence, 567 dma_addr_t *scratch, uint64_t npages) 568 { 569 struct device *dev = adev->dev; 570 uint64_t *src; 571 dma_addr_t *dst; 572 struct page *dpage; 573 uint64_t i = 0, j; 574 uint64_t addr; 575 int r = 0; 576 577 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, 578 prange->last); 579 580 addr = prange->start << PAGE_SHIFT; 581 582 src = (uint64_t *)(scratch + npages); 583 dst = scratch; 584 585 for (i = 0, j = 0; i < npages; i++, addr += PAGE_SIZE) { 586 struct page *spage; 587 588 spage = migrate_pfn_to_page(migrate->src[i]); 589 if (!spage || !is_zone_device_page(spage)) { 590 pr_debug("invalid page. Could be in CPU already svms 0x%p [0x%lx 0x%lx]\n", 591 prange->svms, prange->start, prange->last); 592 if (j) { 593 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 594 src + i - j, j, 595 FROM_VRAM_TO_RAM, 596 mfence); 597 if (r) 598 goto out_oom; 599 j = 0; 600 } 601 continue; 602 } 603 src[i] = svm_migrate_addr(adev, spage); 604 if (j > 0 && src[i] != src[i - 1] + PAGE_SIZE) { 605 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 606 src + i - j, j, 607 FROM_VRAM_TO_RAM, 608 mfence); 609 if (r) 610 goto out_oom; 611 j = 0; 612 } 613 614 dpage = svm_migrate_get_sys_page(migrate->vma, addr); 615 if (!dpage) { 616 pr_debug("failed get page svms 0x%p [0x%lx 0x%lx]\n", 617 prange->svms, prange->start, prange->last); 618 r = -ENOMEM; 619 goto out_oom; 620 } 621 622 dst[i] = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_FROM_DEVICE); 623 r = dma_mapping_error(dev, dst[i]); 624 if (r) { 625 dev_err(adev->dev, "%s: fail %d dma_map_page\n", __func__, r); 626 goto out_oom; 627 } 628 629 pr_debug_ratelimited("dma mapping dst to 0x%llx, pfn 0x%lx\n", 630 dst[i] >> PAGE_SHIFT, page_to_pfn(dpage)); 631 632 migrate->dst[i] = migrate_pfn(page_to_pfn(dpage)); 633 j++; 634 } 635 636 r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j, 637 FROM_VRAM_TO_RAM, mfence); 638 639 out_oom: 640 if (r) { 641 pr_debug("failed %d copy to ram\n", r); 642 while (i--) { 643 svm_migrate_put_sys_page(dst[i]); 644 migrate->dst[i] = 0; 645 } 646 } 647 648 return r; 649 } 650 651 /** 652 * svm_migrate_vma_to_ram - migrate range inside one vma from device to system 653 * 654 * @prange: svm range structure 655 * @vma: vm_area_struct that range [start, end] belongs to 656 * @start: range start virtual address in pages 657 * @end: range end virtual address in pages 658 * @node: kfd node device to migrate from 659 * @trigger: reason of migration 660 * @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback 661 * 662 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex 663 * 664 * Return: 665 * 0 - success with all pages migrated 666 * negative values - indicate error 667 * positive values - partial migration, number of pages not migrated 668 */ 669 static long 670 svm_migrate_vma_to_ram(struct kfd_node *node, struct svm_range *prange, 671 struct vm_area_struct *vma, uint64_t start, uint64_t end, 672 uint32_t trigger, struct page *fault_page) 673 { 674 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 675 uint64_t npages = (end - start) >> PAGE_SHIFT; 676 unsigned long upages = npages; 677 unsigned long cpages = 0; 678 struct amdgpu_device *adev = node->adev; 679 struct kfd_process_device *pdd; 680 struct dma_fence *mfence = NULL; 681 struct migrate_vma migrate = { 0 }; 682 dma_addr_t *scratch; 683 void *buf; 684 int r = -ENOMEM; 685 686 memset(&migrate, 0, sizeof(migrate)); 687 migrate.vma = vma; 688 migrate.start = start; 689 migrate.end = end; 690 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 691 if (adev->gmc.xgmi.connected_to_cpu) 692 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_COHERENT; 693 else 694 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; 695 696 buf = kvcalloc(npages, 697 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t), 698 GFP_KERNEL); 699 if (!buf) 700 goto out; 701 702 migrate.src = buf; 703 migrate.dst = migrate.src + npages; 704 migrate.fault_page = fault_page; 705 scratch = (dma_addr_t *)(migrate.dst + npages); 706 707 kfd_smi_event_migration_start(node, p->lead_thread->pid, 708 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 709 node->id, 0, prange->prefetch_loc, 710 prange->preferred_loc, trigger); 711 712 r = migrate_vma_setup(&migrate); 713 if (r) { 714 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", 715 __func__, r, prange->start, prange->last); 716 goto out_free; 717 } 718 719 cpages = migrate.cpages; 720 if (!cpages) { 721 pr_debug("failed collect migrate device pages [0x%lx 0x%lx]\n", 722 prange->start, prange->last); 723 upages = svm_migrate_unsuccessful_pages(&migrate); 724 goto out_free; 725 } 726 if (cpages != npages) 727 pr_debug("partial migration, 0x%lx/0x%llx pages migrated\n", 728 cpages, npages); 729 else 730 pr_debug("0x%lx pages migrated\n", cpages); 731 732 r = svm_migrate_copy_to_ram(adev, prange, &migrate, &mfence, 733 scratch, npages); 734 migrate_vma_pages(&migrate); 735 736 upages = svm_migrate_unsuccessful_pages(&migrate); 737 pr_debug("unsuccessful/cpages/npages 0x%lx/0x%lx/0x%lx\n", 738 upages, cpages, migrate.npages); 739 740 svm_migrate_copy_done(adev, mfence); 741 migrate_vma_finalize(&migrate); 742 743 kfd_smi_event_migration_end(node, p->lead_thread->pid, 744 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 745 node->id, 0, trigger); 746 747 svm_range_dma_unmap(adev->dev, scratch, 0, npages); 748 749 out_free: 750 kvfree(buf); 751 out: 752 if (!r && cpages) { 753 pdd = svm_range_get_pdd_by_node(prange, node); 754 if (pdd) 755 WRITE_ONCE(pdd->page_out, pdd->page_out + cpages); 756 } 757 return r ? r : upages; 758 } 759 760 /** 761 * svm_migrate_vram_to_ram - migrate svm range from device to system 762 * @prange: range structure 763 * @mm: process mm, use current->mm if NULL 764 * @trigger: reason of migration 765 * @fault_page: is from vmf->page, svm_migrate_to_ram(), this is CPU page fault callback 766 * 767 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex 768 * 769 * Return: 770 * 0 - OK, otherwise error code 771 */ 772 int svm_migrate_vram_to_ram(struct svm_range *prange, struct mm_struct *mm, 773 uint32_t trigger, struct page *fault_page) 774 { 775 struct kfd_node *node; 776 struct vm_area_struct *vma; 777 unsigned long addr; 778 unsigned long start; 779 unsigned long end; 780 unsigned long upages = 0; 781 long r = 0; 782 783 if (!prange->actual_loc) { 784 pr_debug("[0x%lx 0x%lx] already migrated to ram\n", 785 prange->start, prange->last); 786 return 0; 787 } 788 789 node = svm_range_get_node_by_id(prange, prange->actual_loc); 790 if (!node) { 791 pr_debug("failed to get kfd node by id 0x%x\n", prange->actual_loc); 792 return -ENODEV; 793 } 794 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] from gpu 0x%x to ram\n", 795 prange->svms, prange, prange->start, prange->last, 796 prange->actual_loc); 797 798 start = prange->start << PAGE_SHIFT; 799 end = (prange->last + 1) << PAGE_SHIFT; 800 801 for (addr = start; addr < end;) { 802 unsigned long next; 803 804 vma = vma_lookup(mm, addr); 805 if (!vma) { 806 pr_debug("failed to find vma for prange %p\n", prange); 807 r = -EFAULT; 808 break; 809 } 810 811 next = min(vma->vm_end, end); 812 r = svm_migrate_vma_to_ram(node, prange, vma, addr, next, trigger, 813 fault_page); 814 if (r < 0) { 815 pr_debug("failed %ld to migrate prange %p\n", r, prange); 816 break; 817 } else { 818 upages += r; 819 } 820 addr = next; 821 } 822 823 if (r >= 0 && !upages) { 824 svm_range_vram_node_free(prange); 825 prange->actual_loc = 0; 826 } 827 828 return r < 0 ? r : 0; 829 } 830 831 /** 832 * svm_migrate_vram_to_vram - migrate svm range from device to device 833 * @prange: range structure 834 * @best_loc: the device to migrate to 835 * @mm: process mm, use current->mm if NULL 836 * @trigger: reason of migration 837 * 838 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 839 * 840 * Return: 841 * 0 - OK, otherwise error code 842 */ 843 static int 844 svm_migrate_vram_to_vram(struct svm_range *prange, uint32_t best_loc, 845 struct mm_struct *mm, uint32_t trigger) 846 { 847 int r, retries = 3; 848 849 /* 850 * TODO: for both devices with PCIe large bar or on same xgmi hive, skip 851 * system memory as migration bridge 852 */ 853 854 pr_debug("from gpu 0x%x to gpu 0x%x\n", prange->actual_loc, best_loc); 855 856 do { 857 r = svm_migrate_vram_to_ram(prange, mm, trigger, NULL); 858 if (r) 859 return r; 860 } while (prange->actual_loc && --retries); 861 862 if (prange->actual_loc) 863 return -EDEADLK; 864 865 return svm_migrate_ram_to_vram(prange, best_loc, mm, trigger); 866 } 867 868 int 869 svm_migrate_to_vram(struct svm_range *prange, uint32_t best_loc, 870 struct mm_struct *mm, uint32_t trigger) 871 { 872 if (!prange->actual_loc) 873 return svm_migrate_ram_to_vram(prange, best_loc, mm, trigger); 874 else 875 return svm_migrate_vram_to_vram(prange, best_loc, mm, trigger); 876 877 } 878 879 /** 880 * svm_migrate_to_ram - CPU page fault handler 881 * @vmf: CPU vm fault vma, address 882 * 883 * Context: vm fault handler, caller holds the mmap read lock 884 * 885 * Return: 886 * 0 - OK 887 * VM_FAULT_SIGBUS - notice application to have SIGBUS page fault 888 */ 889 static vm_fault_t svm_migrate_to_ram(struct vm_fault *vmf) 890 { 891 unsigned long addr = vmf->address; 892 struct svm_range_bo *svm_bo; 893 enum svm_work_list_ops op; 894 struct svm_range *parent; 895 struct svm_range *prange; 896 struct kfd_process *p; 897 struct mm_struct *mm; 898 int r = 0; 899 900 svm_bo = vmf->page->zone_device_data; 901 if (!svm_bo) { 902 pr_debug("failed get device page at addr 0x%lx\n", addr); 903 return VM_FAULT_SIGBUS; 904 } 905 if (!mmget_not_zero(svm_bo->eviction_fence->mm)) { 906 pr_debug("addr 0x%lx of process mm is destroyed\n", addr); 907 return VM_FAULT_SIGBUS; 908 } 909 910 mm = svm_bo->eviction_fence->mm; 911 if (mm != vmf->vma->vm_mm) 912 pr_debug("addr 0x%lx is COW mapping in child process\n", addr); 913 914 p = kfd_lookup_process_by_mm(mm); 915 if (!p) { 916 pr_debug("failed find process at fault address 0x%lx\n", addr); 917 r = VM_FAULT_SIGBUS; 918 goto out_mmput; 919 } 920 if (READ_ONCE(p->svms.faulting_task) == current) { 921 pr_debug("skipping ram migration\n"); 922 r = 0; 923 goto out_unref_process; 924 } 925 926 pr_debug("CPU page fault svms 0x%p address 0x%lx\n", &p->svms, addr); 927 addr >>= PAGE_SHIFT; 928 929 mutex_lock(&p->svms.lock); 930 931 prange = svm_range_from_addr(&p->svms, addr, &parent); 932 if (!prange) { 933 pr_debug("failed get range svms 0x%p addr 0x%lx\n", &p->svms, addr); 934 r = -EFAULT; 935 goto out_unlock_svms; 936 } 937 938 mutex_lock(&parent->migrate_mutex); 939 if (prange != parent) 940 mutex_lock_nested(&prange->migrate_mutex, 1); 941 942 if (!prange->actual_loc) 943 goto out_unlock_prange; 944 945 svm_range_lock(parent); 946 if (prange != parent) 947 mutex_lock_nested(&prange->lock, 1); 948 r = svm_range_split_by_granularity(p, mm, addr, parent, prange); 949 if (prange != parent) 950 mutex_unlock(&prange->lock); 951 svm_range_unlock(parent); 952 if (r) { 953 pr_debug("failed %d to split range by granularity\n", r); 954 goto out_unlock_prange; 955 } 956 957 r = svm_migrate_vram_to_ram(prange, vmf->vma->vm_mm, 958 KFD_MIGRATE_TRIGGER_PAGEFAULT_CPU, 959 vmf->page); 960 if (r) 961 pr_debug("failed %d migrate svms 0x%p range 0x%p [0x%lx 0x%lx]\n", 962 r, prange->svms, prange, prange->start, prange->last); 963 964 /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */ 965 if (p->xnack_enabled && parent == prange) 966 op = SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP; 967 else 968 op = SVM_OP_UPDATE_RANGE_NOTIFIER; 969 svm_range_add_list_work(&p->svms, parent, mm, op); 970 schedule_deferred_list_work(&p->svms); 971 972 out_unlock_prange: 973 if (prange != parent) 974 mutex_unlock(&prange->migrate_mutex); 975 mutex_unlock(&parent->migrate_mutex); 976 out_unlock_svms: 977 mutex_unlock(&p->svms.lock); 978 out_unref_process: 979 pr_debug("CPU fault svms 0x%p address 0x%lx done\n", &p->svms, addr); 980 kfd_unref_process(p); 981 out_mmput: 982 mmput(mm); 983 return r ? VM_FAULT_SIGBUS : 0; 984 } 985 986 static const struct dev_pagemap_ops svm_migrate_pgmap_ops = { 987 .page_free = svm_migrate_page_free, 988 .migrate_to_ram = svm_migrate_to_ram, 989 }; 990 991 /* Each VRAM page uses sizeof(struct page) on system memory */ 992 #define SVM_HMM_PAGE_STRUCT_SIZE(size) ((size)/PAGE_SIZE * sizeof(struct page)) 993 994 int kgd2kfd_init_zone_device(struct amdgpu_device *adev) 995 { 996 struct amdgpu_kfd_dev *kfddev = &adev->kfd; 997 struct dev_pagemap *pgmap; 998 struct resource *res = NULL; 999 unsigned long size; 1000 void *r; 1001 1002 /* Page migration works on gfx9 or newer */ 1003 if (adev->ip_versions[GC_HWIP][0] < IP_VERSION(9, 0, 1)) 1004 return -EINVAL; 1005 1006 if (adev->gmc.is_app_apu) 1007 return 0; 1008 1009 pgmap = &kfddev->pgmap; 1010 memset(pgmap, 0, sizeof(*pgmap)); 1011 1012 /* TODO: register all vram to HMM for now. 1013 * should remove reserved size 1014 */ 1015 size = ALIGN(adev->gmc.real_vram_size, 2ULL << 20); 1016 if (adev->gmc.xgmi.connected_to_cpu) { 1017 pgmap->range.start = adev->gmc.aper_base; 1018 pgmap->range.end = adev->gmc.aper_base + adev->gmc.aper_size - 1; 1019 pgmap->type = MEMORY_DEVICE_COHERENT; 1020 } else { 1021 res = devm_request_free_mem_region(adev->dev, &iomem_resource, size); 1022 if (IS_ERR(res)) 1023 return -ENOMEM; 1024 pgmap->range.start = res->start; 1025 pgmap->range.end = res->end; 1026 pgmap->type = MEMORY_DEVICE_PRIVATE; 1027 } 1028 1029 pgmap->nr_range = 1; 1030 pgmap->ops = &svm_migrate_pgmap_ops; 1031 pgmap->owner = SVM_ADEV_PGMAP_OWNER(adev); 1032 pgmap->flags = 0; 1033 /* Device manager releases device-specific resources, memory region and 1034 * pgmap when driver disconnects from device. 1035 */ 1036 r = devm_memremap_pages(adev->dev, pgmap); 1037 if (IS_ERR(r)) { 1038 pr_err("failed to register HMM device memory\n"); 1039 /* Disable SVM support capability */ 1040 pgmap->type = 0; 1041 if (pgmap->type == MEMORY_DEVICE_PRIVATE) 1042 devm_release_mem_region(adev->dev, res->start, resource_size(res)); 1043 return PTR_ERR(r); 1044 } 1045 1046 pr_debug("reserve %ldMB system memory for VRAM pages struct\n", 1047 SVM_HMM_PAGE_STRUCT_SIZE(size) >> 20); 1048 1049 amdgpu_amdkfd_reserve_system_mem(SVM_HMM_PAGE_STRUCT_SIZE(size)); 1050 1051 pr_info("HMM registered %ldMB device memory\n", size >> 20); 1052 1053 return 0; 1054 } 1055