1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2020-2021 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 #include <linux/types.h> 24 #include <linux/hmm.h> 25 #include <linux/dma-direction.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/migrate.h> 28 #include "amdgpu_sync.h" 29 #include "amdgpu_object.h" 30 #include "amdgpu_vm.h" 31 #include "amdgpu_res_cursor.h" 32 #include "kfd_priv.h" 33 #include "kfd_svm.h" 34 #include "kfd_migrate.h" 35 #include "kfd_smi_events.h" 36 37 #ifdef dev_fmt 38 #undef dev_fmt 39 #endif 40 #define dev_fmt(fmt) "kfd_migrate: " fmt 41 42 static uint64_t 43 svm_migrate_direct_mapping_addr(struct amdgpu_device *adev, uint64_t addr) 44 { 45 return addr + amdgpu_ttm_domain_start(adev, TTM_PL_VRAM); 46 } 47 48 static int 49 svm_migrate_gart_map(struct amdgpu_ring *ring, uint64_t npages, 50 dma_addr_t *addr, uint64_t *gart_addr, uint64_t flags) 51 { 52 struct amdgpu_device *adev = ring->adev; 53 struct amdgpu_job *job; 54 unsigned int num_dw, num_bytes; 55 struct dma_fence *fence; 56 uint64_t src_addr, dst_addr; 57 uint64_t pte_flags; 58 void *cpu_addr; 59 int r; 60 61 /* use gart window 0 */ 62 *gart_addr = adev->gmc.gart_start; 63 64 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8); 65 num_bytes = npages * 8; 66 67 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity, 68 AMDGPU_FENCE_OWNER_UNDEFINED, 69 num_dw * 4 + num_bytes, 70 AMDGPU_IB_POOL_DELAYED, 71 &job); 72 if (r) 73 return r; 74 75 src_addr = num_dw * 4; 76 src_addr += job->ibs[0].gpu_addr; 77 78 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo); 79 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, 80 dst_addr, num_bytes, false); 81 82 amdgpu_ring_pad_ib(ring, &job->ibs[0]); 83 WARN_ON(job->ibs[0].length_dw > num_dw); 84 85 pte_flags = AMDGPU_PTE_VALID | AMDGPU_PTE_READABLE; 86 pte_flags |= AMDGPU_PTE_SYSTEM | AMDGPU_PTE_SNOOPED; 87 if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO)) 88 pte_flags |= AMDGPU_PTE_WRITEABLE; 89 pte_flags |= adev->gart.gart_pte_flags; 90 91 cpu_addr = &job->ibs[0].ptr[num_dw]; 92 93 amdgpu_gart_map(adev, 0, npages, addr, pte_flags, cpu_addr); 94 fence = amdgpu_job_submit(job); 95 dma_fence_put(fence); 96 97 return r; 98 } 99 100 /** 101 * svm_migrate_copy_memory_gart - sdma copy data between ram and vram 102 * 103 * @adev: amdgpu device the sdma ring running 104 * @sys: system DMA pointer to be copied 105 * @vram: vram destination DMA pointer 106 * @npages: number of pages to copy 107 * @direction: enum MIGRATION_COPY_DIR 108 * @mfence: output, sdma fence to signal after sdma is done 109 * 110 * ram address uses GART table continuous entries mapping to ram pages, 111 * vram address uses direct mapping of vram pages, which must have npages 112 * number of continuous pages. 113 * GART update and sdma uses same buf copy function ring, sdma is splited to 114 * multiple GTT_MAX_PAGES transfer, all sdma operations are serialized, wait for 115 * the last sdma finish fence which is returned to check copy memory is done. 116 * 117 * Context: Process context, takes and releases gtt_window_lock 118 * 119 * Return: 120 * 0 - OK, otherwise error code 121 */ 122 123 static int 124 svm_migrate_copy_memory_gart(struct amdgpu_device *adev, dma_addr_t *sys, 125 uint64_t *vram, uint64_t npages, 126 enum MIGRATION_COPY_DIR direction, 127 struct dma_fence **mfence) 128 { 129 const uint64_t GTT_MAX_PAGES = AMDGPU_GTT_MAX_TRANSFER_SIZE; 130 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring; 131 uint64_t gart_s, gart_d; 132 struct dma_fence *next; 133 uint64_t size; 134 int r; 135 136 mutex_lock(&adev->mman.gtt_window_lock); 137 138 while (npages) { 139 size = min(GTT_MAX_PAGES, npages); 140 141 if (direction == FROM_VRAM_TO_RAM) { 142 gart_s = svm_migrate_direct_mapping_addr(adev, *vram); 143 r = svm_migrate_gart_map(ring, size, sys, &gart_d, 0); 144 145 } else if (direction == FROM_RAM_TO_VRAM) { 146 r = svm_migrate_gart_map(ring, size, sys, &gart_s, 147 KFD_IOCTL_SVM_FLAG_GPU_RO); 148 gart_d = svm_migrate_direct_mapping_addr(adev, *vram); 149 } 150 if (r) { 151 dev_err(adev->dev, "fail %d create gart mapping\n", r); 152 goto out_unlock; 153 } 154 155 r = amdgpu_copy_buffer(ring, gart_s, gart_d, size * PAGE_SIZE, 156 NULL, &next, false, true, false); 157 if (r) { 158 dev_err(adev->dev, "fail %d to copy memory\n", r); 159 goto out_unlock; 160 } 161 162 dma_fence_put(*mfence); 163 *mfence = next; 164 npages -= size; 165 if (npages) { 166 sys += size; 167 vram += size; 168 } 169 } 170 171 out_unlock: 172 mutex_unlock(&adev->mman.gtt_window_lock); 173 174 return r; 175 } 176 177 /** 178 * svm_migrate_copy_done - wait for memory copy sdma is done 179 * 180 * @adev: amdgpu device the sdma memory copy is executing on 181 * @mfence: migrate fence 182 * 183 * Wait for dma fence is signaled, if the copy ssplit into multiple sdma 184 * operations, this is the last sdma operation fence. 185 * 186 * Context: called after svm_migrate_copy_memory 187 * 188 * Return: 189 * 0 - success 190 * otherwise - error code from dma fence signal 191 */ 192 static int 193 svm_migrate_copy_done(struct amdgpu_device *adev, struct dma_fence *mfence) 194 { 195 int r = 0; 196 197 if (mfence) { 198 r = dma_fence_wait(mfence, false); 199 dma_fence_put(mfence); 200 pr_debug("sdma copy memory fence done\n"); 201 } 202 203 return r; 204 } 205 206 unsigned long 207 svm_migrate_addr_to_pfn(struct amdgpu_device *adev, unsigned long addr) 208 { 209 return (addr + adev->kfd.dev->pgmap.range.start) >> PAGE_SHIFT; 210 } 211 212 static void 213 svm_migrate_get_vram_page(struct svm_range *prange, unsigned long pfn) 214 { 215 struct page *page; 216 217 page = pfn_to_page(pfn); 218 svm_range_bo_ref(prange->svm_bo); 219 page->zone_device_data = prange->svm_bo; 220 zone_device_page_init(page); 221 } 222 223 static void 224 svm_migrate_put_vram_page(struct amdgpu_device *adev, unsigned long addr) 225 { 226 struct page *page; 227 228 page = pfn_to_page(svm_migrate_addr_to_pfn(adev, addr)); 229 unlock_page(page); 230 put_page(page); 231 } 232 233 static unsigned long 234 svm_migrate_addr(struct amdgpu_device *adev, struct page *page) 235 { 236 unsigned long addr; 237 238 addr = page_to_pfn(page) << PAGE_SHIFT; 239 return (addr - adev->kfd.dev->pgmap.range.start); 240 } 241 242 static struct page * 243 svm_migrate_get_sys_page(struct vm_area_struct *vma, unsigned long addr) 244 { 245 struct page *page; 246 247 page = alloc_page_vma(GFP_HIGHUSER, vma, addr); 248 if (page) 249 lock_page(page); 250 251 return page; 252 } 253 254 static void svm_migrate_put_sys_page(unsigned long addr) 255 { 256 struct page *page; 257 258 page = pfn_to_page(addr >> PAGE_SHIFT); 259 unlock_page(page); 260 put_page(page); 261 } 262 263 static unsigned long svm_migrate_successful_pages(struct migrate_vma *migrate) 264 { 265 unsigned long cpages = 0; 266 unsigned long i; 267 268 for (i = 0; i < migrate->npages; i++) { 269 if (migrate->src[i] & MIGRATE_PFN_VALID && 270 migrate->src[i] & MIGRATE_PFN_MIGRATE) 271 cpages++; 272 } 273 return cpages; 274 } 275 276 static unsigned long svm_migrate_unsuccessful_pages(struct migrate_vma *migrate) 277 { 278 unsigned long upages = 0; 279 unsigned long i; 280 281 for (i = 0; i < migrate->npages; i++) { 282 if (migrate->src[i] & MIGRATE_PFN_VALID && 283 !(migrate->src[i] & MIGRATE_PFN_MIGRATE)) 284 upages++; 285 } 286 return upages; 287 } 288 289 static int 290 svm_migrate_copy_to_vram(struct amdgpu_device *adev, struct svm_range *prange, 291 struct migrate_vma *migrate, struct dma_fence **mfence, 292 dma_addr_t *scratch) 293 { 294 uint64_t npages = migrate->npages; 295 struct device *dev = adev->dev; 296 struct amdgpu_res_cursor cursor; 297 dma_addr_t *src; 298 uint64_t *dst; 299 uint64_t i, j; 300 int r; 301 302 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, 303 prange->last); 304 305 src = scratch; 306 dst = (uint64_t *)(scratch + npages); 307 308 r = svm_range_vram_node_new(adev, prange, true); 309 if (r) { 310 dev_dbg(adev->dev, "fail %d to alloc vram\n", r); 311 goto out; 312 } 313 314 amdgpu_res_first(prange->ttm_res, prange->offset << PAGE_SHIFT, 315 npages << PAGE_SHIFT, &cursor); 316 for (i = j = 0; i < npages; i++) { 317 struct page *spage; 318 319 dst[i] = cursor.start + (j << PAGE_SHIFT); 320 migrate->dst[i] = svm_migrate_addr_to_pfn(adev, dst[i]); 321 svm_migrate_get_vram_page(prange, migrate->dst[i]); 322 migrate->dst[i] = migrate_pfn(migrate->dst[i]); 323 324 spage = migrate_pfn_to_page(migrate->src[i]); 325 if (spage && !is_zone_device_page(spage)) { 326 src[i] = dma_map_page(dev, spage, 0, PAGE_SIZE, 327 DMA_TO_DEVICE); 328 r = dma_mapping_error(dev, src[i]); 329 if (r) { 330 dev_err(adev->dev, "%s: fail %d dma_map_page\n", 331 __func__, r); 332 goto out_free_vram_pages; 333 } 334 } else { 335 if (j) { 336 r = svm_migrate_copy_memory_gart( 337 adev, src + i - j, 338 dst + i - j, j, 339 FROM_RAM_TO_VRAM, 340 mfence); 341 if (r) 342 goto out_free_vram_pages; 343 amdgpu_res_next(&cursor, (j + 1) << PAGE_SHIFT); 344 j = 0; 345 } else { 346 amdgpu_res_next(&cursor, PAGE_SIZE); 347 } 348 continue; 349 } 350 351 pr_debug_ratelimited("dma mapping src to 0x%llx, pfn 0x%lx\n", 352 src[i] >> PAGE_SHIFT, page_to_pfn(spage)); 353 354 if (j >= (cursor.size >> PAGE_SHIFT) - 1 && i < npages - 1) { 355 r = svm_migrate_copy_memory_gart(adev, src + i - j, 356 dst + i - j, j + 1, 357 FROM_RAM_TO_VRAM, 358 mfence); 359 if (r) 360 goto out_free_vram_pages; 361 amdgpu_res_next(&cursor, (j + 1) * PAGE_SIZE); 362 j = 0; 363 } else { 364 j++; 365 } 366 } 367 368 r = svm_migrate_copy_memory_gart(adev, src + i - j, dst + i - j, j, 369 FROM_RAM_TO_VRAM, mfence); 370 371 out_free_vram_pages: 372 if (r) { 373 pr_debug("failed %d to copy memory to vram\n", r); 374 while (i--) { 375 svm_migrate_put_vram_page(adev, dst[i]); 376 migrate->dst[i] = 0; 377 } 378 } 379 380 #ifdef DEBUG_FORCE_MIXED_DOMAINS 381 for (i = 0, j = 0; i < npages; i += 4, j++) { 382 if (j & 1) 383 continue; 384 svm_migrate_put_vram_page(adev, dst[i]); 385 migrate->dst[i] = 0; 386 svm_migrate_put_vram_page(adev, dst[i + 1]); 387 migrate->dst[i + 1] = 0; 388 svm_migrate_put_vram_page(adev, dst[i + 2]); 389 migrate->dst[i + 2] = 0; 390 svm_migrate_put_vram_page(adev, dst[i + 3]); 391 migrate->dst[i + 3] = 0; 392 } 393 #endif 394 out: 395 return r; 396 } 397 398 static long 399 svm_migrate_vma_to_vram(struct amdgpu_device *adev, struct svm_range *prange, 400 struct vm_area_struct *vma, uint64_t start, 401 uint64_t end, uint32_t trigger) 402 { 403 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 404 uint64_t npages = (end - start) >> PAGE_SHIFT; 405 struct kfd_process_device *pdd; 406 struct dma_fence *mfence = NULL; 407 struct migrate_vma migrate = { 0 }; 408 unsigned long cpages = 0; 409 dma_addr_t *scratch; 410 void *buf; 411 int r = -ENOMEM; 412 413 memset(&migrate, 0, sizeof(migrate)); 414 migrate.vma = vma; 415 migrate.start = start; 416 migrate.end = end; 417 migrate.flags = MIGRATE_VMA_SELECT_SYSTEM; 418 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 419 420 buf = kvcalloc(npages, 421 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t), 422 GFP_KERNEL); 423 if (!buf) 424 goto out; 425 426 migrate.src = buf; 427 migrate.dst = migrate.src + npages; 428 scratch = (dma_addr_t *)(migrate.dst + npages); 429 430 kfd_smi_event_migration_start(adev->kfd.dev, p->lead_thread->pid, 431 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 432 0, adev->kfd.dev->id, prange->prefetch_loc, 433 prange->preferred_loc, trigger); 434 435 r = migrate_vma_setup(&migrate); 436 if (r) { 437 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", 438 __func__, r, prange->start, prange->last); 439 goto out_free; 440 } 441 442 cpages = migrate.cpages; 443 if (!cpages) { 444 pr_debug("failed collect migrate sys pages [0x%lx 0x%lx]\n", 445 prange->start, prange->last); 446 goto out_free; 447 } 448 if (cpages != npages) 449 pr_debug("partial migration, 0x%lx/0x%llx pages migrated\n", 450 cpages, npages); 451 else 452 pr_debug("0x%lx pages migrated\n", cpages); 453 454 r = svm_migrate_copy_to_vram(adev, prange, &migrate, &mfence, scratch); 455 migrate_vma_pages(&migrate); 456 457 pr_debug("successful/cpages/npages 0x%lx/0x%lx/0x%lx\n", 458 svm_migrate_successful_pages(&migrate), cpages, migrate.npages); 459 460 svm_migrate_copy_done(adev, mfence); 461 migrate_vma_finalize(&migrate); 462 463 kfd_smi_event_migration_end(adev->kfd.dev, p->lead_thread->pid, 464 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 465 0, adev->kfd.dev->id, trigger); 466 467 svm_range_dma_unmap(adev->dev, scratch, 0, npages); 468 svm_range_free_dma_mappings(prange); 469 470 out_free: 471 kvfree(buf); 472 out: 473 if (!r && cpages) { 474 pdd = svm_range_get_pdd_by_adev(prange, adev); 475 if (pdd) 476 WRITE_ONCE(pdd->page_in, pdd->page_in + cpages); 477 478 return cpages; 479 } 480 return r; 481 } 482 483 /** 484 * svm_migrate_ram_to_vram - migrate svm range from system to device 485 * @prange: range structure 486 * @best_loc: the device to migrate to 487 * @mm: the process mm structure 488 * @trigger: reason of migration 489 * 490 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 491 * 492 * Return: 493 * 0 - OK, otherwise error code 494 */ 495 static int 496 svm_migrate_ram_to_vram(struct svm_range *prange, uint32_t best_loc, 497 struct mm_struct *mm, uint32_t trigger) 498 { 499 unsigned long addr, start, end; 500 struct vm_area_struct *vma; 501 struct amdgpu_device *adev; 502 unsigned long cpages = 0; 503 long r = 0; 504 505 if (prange->actual_loc == best_loc) { 506 pr_debug("svms 0x%p [0x%lx 0x%lx] already on best_loc 0x%x\n", 507 prange->svms, prange->start, prange->last, best_loc); 508 return 0; 509 } 510 511 adev = svm_range_get_adev_by_id(prange, best_loc); 512 if (!adev) { 513 pr_debug("failed to get device by id 0x%x\n", best_loc); 514 return -ENODEV; 515 } 516 517 pr_debug("svms 0x%p [0x%lx 0x%lx] to gpu 0x%x\n", prange->svms, 518 prange->start, prange->last, best_loc); 519 520 start = prange->start << PAGE_SHIFT; 521 end = (prange->last + 1) << PAGE_SHIFT; 522 523 for (addr = start; addr < end;) { 524 unsigned long next; 525 526 vma = vma_lookup(mm, addr); 527 if (!vma) 528 break; 529 530 next = min(vma->vm_end, end); 531 r = svm_migrate_vma_to_vram(adev, prange, vma, addr, next, trigger); 532 if (r < 0) { 533 pr_debug("failed %ld to migrate\n", r); 534 break; 535 } else { 536 cpages += r; 537 } 538 addr = next; 539 } 540 541 if (cpages) 542 prange->actual_loc = best_loc; 543 544 return r < 0 ? r : 0; 545 } 546 547 static void svm_migrate_page_free(struct page *page) 548 { 549 struct svm_range_bo *svm_bo = page->zone_device_data; 550 551 if (svm_bo) { 552 pr_debug_ratelimited("ref: %d\n", kref_read(&svm_bo->kref)); 553 svm_range_bo_unref_async(svm_bo); 554 } 555 } 556 557 static int 558 svm_migrate_copy_to_ram(struct amdgpu_device *adev, struct svm_range *prange, 559 struct migrate_vma *migrate, struct dma_fence **mfence, 560 dma_addr_t *scratch, uint64_t npages) 561 { 562 struct device *dev = adev->dev; 563 uint64_t *src; 564 dma_addr_t *dst; 565 struct page *dpage; 566 uint64_t i = 0, j; 567 uint64_t addr; 568 int r = 0; 569 570 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms, prange->start, 571 prange->last); 572 573 addr = prange->start << PAGE_SHIFT; 574 575 src = (uint64_t *)(scratch + npages); 576 dst = scratch; 577 578 for (i = 0, j = 0; i < npages; i++, addr += PAGE_SIZE) { 579 struct page *spage; 580 581 spage = migrate_pfn_to_page(migrate->src[i]); 582 if (!spage || !is_zone_device_page(spage)) { 583 pr_debug("invalid page. Could be in CPU already svms 0x%p [0x%lx 0x%lx]\n", 584 prange->svms, prange->start, prange->last); 585 if (j) { 586 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 587 src + i - j, j, 588 FROM_VRAM_TO_RAM, 589 mfence); 590 if (r) 591 goto out_oom; 592 j = 0; 593 } 594 continue; 595 } 596 src[i] = svm_migrate_addr(adev, spage); 597 if (j > 0 && src[i] != src[i - 1] + PAGE_SIZE) { 598 r = svm_migrate_copy_memory_gart(adev, dst + i - j, 599 src + i - j, j, 600 FROM_VRAM_TO_RAM, 601 mfence); 602 if (r) 603 goto out_oom; 604 j = 0; 605 } 606 607 dpage = svm_migrate_get_sys_page(migrate->vma, addr); 608 if (!dpage) { 609 pr_debug("failed get page svms 0x%p [0x%lx 0x%lx]\n", 610 prange->svms, prange->start, prange->last); 611 r = -ENOMEM; 612 goto out_oom; 613 } 614 615 dst[i] = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_FROM_DEVICE); 616 r = dma_mapping_error(dev, dst[i]); 617 if (r) { 618 dev_err(adev->dev, "%s: fail %d dma_map_page\n", __func__, r); 619 goto out_oom; 620 } 621 622 pr_debug_ratelimited("dma mapping dst to 0x%llx, pfn 0x%lx\n", 623 dst[i] >> PAGE_SHIFT, page_to_pfn(dpage)); 624 625 migrate->dst[i] = migrate_pfn(page_to_pfn(dpage)); 626 j++; 627 } 628 629 r = svm_migrate_copy_memory_gart(adev, dst + i - j, src + i - j, j, 630 FROM_VRAM_TO_RAM, mfence); 631 632 out_oom: 633 if (r) { 634 pr_debug("failed %d copy to ram\n", r); 635 while (i--) { 636 svm_migrate_put_sys_page(dst[i]); 637 migrate->dst[i] = 0; 638 } 639 } 640 641 return r; 642 } 643 644 /** 645 * svm_migrate_vma_to_ram - migrate range inside one vma from device to system 646 * 647 * @adev: amdgpu device to migrate from 648 * @prange: svm range structure 649 * @vma: vm_area_struct that range [start, end] belongs to 650 * @start: range start virtual address in pages 651 * @end: range end virtual address in pages 652 * 653 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex 654 * 655 * Return: 656 * 0 - success with all pages migrated 657 * negative values - indicate error 658 * positive values - partial migration, number of pages not migrated 659 */ 660 static long 661 svm_migrate_vma_to_ram(struct amdgpu_device *adev, struct svm_range *prange, 662 struct vm_area_struct *vma, uint64_t start, uint64_t end, 663 uint32_t trigger, struct page *fault_page) 664 { 665 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms); 666 uint64_t npages = (end - start) >> PAGE_SHIFT; 667 unsigned long upages = npages; 668 unsigned long cpages = 0; 669 struct kfd_process_device *pdd; 670 struct dma_fence *mfence = NULL; 671 struct migrate_vma migrate = { 0 }; 672 dma_addr_t *scratch; 673 void *buf; 674 int r = -ENOMEM; 675 676 memset(&migrate, 0, sizeof(migrate)); 677 migrate.vma = vma; 678 migrate.start = start; 679 migrate.end = end; 680 migrate.pgmap_owner = SVM_ADEV_PGMAP_OWNER(adev); 681 if (adev->gmc.xgmi.connected_to_cpu) 682 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_COHERENT; 683 else 684 migrate.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE; 685 686 buf = kvcalloc(npages, 687 2 * sizeof(*migrate.src) + sizeof(uint64_t) + sizeof(dma_addr_t), 688 GFP_KERNEL); 689 if (!buf) 690 goto out; 691 692 migrate.src = buf; 693 migrate.dst = migrate.src + npages; 694 migrate.fault_page = fault_page; 695 scratch = (dma_addr_t *)(migrate.dst + npages); 696 697 kfd_smi_event_migration_start(adev->kfd.dev, p->lead_thread->pid, 698 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 699 adev->kfd.dev->id, 0, prange->prefetch_loc, 700 prange->preferred_loc, trigger); 701 702 r = migrate_vma_setup(&migrate); 703 if (r) { 704 dev_err(adev->dev, "%s: vma setup fail %d range [0x%lx 0x%lx]\n", 705 __func__, r, prange->start, prange->last); 706 goto out_free; 707 } 708 709 cpages = migrate.cpages; 710 if (!cpages) { 711 pr_debug("failed collect migrate device pages [0x%lx 0x%lx]\n", 712 prange->start, prange->last); 713 upages = svm_migrate_unsuccessful_pages(&migrate); 714 goto out_free; 715 } 716 if (cpages != npages) 717 pr_debug("partial migration, 0x%lx/0x%llx pages migrated\n", 718 cpages, npages); 719 else 720 pr_debug("0x%lx pages migrated\n", cpages); 721 722 r = svm_migrate_copy_to_ram(adev, prange, &migrate, &mfence, 723 scratch, npages); 724 migrate_vma_pages(&migrate); 725 726 upages = svm_migrate_unsuccessful_pages(&migrate); 727 pr_debug("unsuccessful/cpages/npages 0x%lx/0x%lx/0x%lx\n", 728 upages, cpages, migrate.npages); 729 730 svm_migrate_copy_done(adev, mfence); 731 migrate_vma_finalize(&migrate); 732 733 kfd_smi_event_migration_end(adev->kfd.dev, p->lead_thread->pid, 734 start >> PAGE_SHIFT, end >> PAGE_SHIFT, 735 adev->kfd.dev->id, 0, trigger); 736 737 svm_range_dma_unmap(adev->dev, scratch, 0, npages); 738 739 out_free: 740 kvfree(buf); 741 out: 742 if (!r && cpages) { 743 pdd = svm_range_get_pdd_by_adev(prange, adev); 744 if (pdd) 745 WRITE_ONCE(pdd->page_out, pdd->page_out + cpages); 746 } 747 return r ? r : upages; 748 } 749 750 /** 751 * svm_migrate_vram_to_ram - migrate svm range from device to system 752 * @prange: range structure 753 * @mm: process mm, use current->mm if NULL 754 * @trigger: reason of migration 755 * 756 * Context: Process context, caller hold mmap read lock, prange->migrate_mutex 757 * 758 * Return: 759 * 0 - OK, otherwise error code 760 */ 761 int svm_migrate_vram_to_ram(struct svm_range *prange, struct mm_struct *mm, 762 uint32_t trigger, struct page *fault_page) 763 { 764 struct amdgpu_device *adev; 765 struct vm_area_struct *vma; 766 unsigned long addr; 767 unsigned long start; 768 unsigned long end; 769 unsigned long upages = 0; 770 long r = 0; 771 772 if (!prange->actual_loc) { 773 pr_debug("[0x%lx 0x%lx] already migrated to ram\n", 774 prange->start, prange->last); 775 return 0; 776 } 777 778 adev = svm_range_get_adev_by_id(prange, prange->actual_loc); 779 if (!adev) { 780 pr_debug("failed to get device by id 0x%x\n", 781 prange->actual_loc); 782 return -ENODEV; 783 } 784 785 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] from gpu 0x%x to ram\n", 786 prange->svms, prange, prange->start, prange->last, 787 prange->actual_loc); 788 789 start = prange->start << PAGE_SHIFT; 790 end = (prange->last + 1) << PAGE_SHIFT; 791 792 for (addr = start; addr < end;) { 793 unsigned long next; 794 795 vma = vma_lookup(mm, addr); 796 if (!vma) { 797 pr_debug("failed to find vma for prange %p\n", prange); 798 r = -EFAULT; 799 break; 800 } 801 802 next = min(vma->vm_end, end); 803 r = svm_migrate_vma_to_ram(adev, prange, vma, addr, next, trigger, 804 fault_page); 805 if (r < 0) { 806 pr_debug("failed %ld to migrate prange %p\n", r, prange); 807 break; 808 } else { 809 upages += r; 810 } 811 addr = next; 812 } 813 814 if (r >= 0 && !upages) { 815 svm_range_vram_node_free(prange); 816 prange->actual_loc = 0; 817 } 818 819 return r < 0 ? r : 0; 820 } 821 822 /** 823 * svm_migrate_vram_to_vram - migrate svm range from device to device 824 * @prange: range structure 825 * @best_loc: the device to migrate to 826 * @mm: process mm, use current->mm if NULL 827 * @trigger: reason of migration 828 * 829 * Context: Process context, caller hold mmap read lock, svms lock, prange lock 830 * 831 * Return: 832 * 0 - OK, otherwise error code 833 */ 834 static int 835 svm_migrate_vram_to_vram(struct svm_range *prange, uint32_t best_loc, 836 struct mm_struct *mm, uint32_t trigger) 837 { 838 int r, retries = 3; 839 840 /* 841 * TODO: for both devices with PCIe large bar or on same xgmi hive, skip 842 * system memory as migration bridge 843 */ 844 845 pr_debug("from gpu 0x%x to gpu 0x%x\n", prange->actual_loc, best_loc); 846 847 do { 848 r = svm_migrate_vram_to_ram(prange, mm, trigger, NULL); 849 if (r) 850 return r; 851 } while (prange->actual_loc && --retries); 852 853 if (prange->actual_loc) 854 return -EDEADLK; 855 856 return svm_migrate_ram_to_vram(prange, best_loc, mm, trigger); 857 } 858 859 int 860 svm_migrate_to_vram(struct svm_range *prange, uint32_t best_loc, 861 struct mm_struct *mm, uint32_t trigger) 862 { 863 if (!prange->actual_loc) 864 return svm_migrate_ram_to_vram(prange, best_loc, mm, trigger); 865 else 866 return svm_migrate_vram_to_vram(prange, best_loc, mm, trigger); 867 868 } 869 870 /** 871 * svm_migrate_to_ram - CPU page fault handler 872 * @vmf: CPU vm fault vma, address 873 * 874 * Context: vm fault handler, caller holds the mmap read lock 875 * 876 * Return: 877 * 0 - OK 878 * VM_FAULT_SIGBUS - notice application to have SIGBUS page fault 879 */ 880 static vm_fault_t svm_migrate_to_ram(struct vm_fault *vmf) 881 { 882 unsigned long addr = vmf->address; 883 struct svm_range_bo *svm_bo; 884 enum svm_work_list_ops op; 885 struct svm_range *parent; 886 struct svm_range *prange; 887 struct kfd_process *p; 888 struct mm_struct *mm; 889 int r = 0; 890 891 svm_bo = vmf->page->zone_device_data; 892 if (!svm_bo) { 893 pr_debug("failed get device page at addr 0x%lx\n", addr); 894 return VM_FAULT_SIGBUS; 895 } 896 if (!mmget_not_zero(svm_bo->eviction_fence->mm)) { 897 pr_debug("addr 0x%lx of process mm is destroyed\n", addr); 898 return VM_FAULT_SIGBUS; 899 } 900 901 mm = svm_bo->eviction_fence->mm; 902 if (mm != vmf->vma->vm_mm) 903 pr_debug("addr 0x%lx is COW mapping in child process\n", addr); 904 905 p = kfd_lookup_process_by_mm(mm); 906 if (!p) { 907 pr_debug("failed find process at fault address 0x%lx\n", addr); 908 r = VM_FAULT_SIGBUS; 909 goto out_mmput; 910 } 911 if (READ_ONCE(p->svms.faulting_task) == current) { 912 pr_debug("skipping ram migration\n"); 913 r = 0; 914 goto out_unref_process; 915 } 916 917 pr_debug("CPU page fault svms 0x%p address 0x%lx\n", &p->svms, addr); 918 addr >>= PAGE_SHIFT; 919 920 mutex_lock(&p->svms.lock); 921 922 prange = svm_range_from_addr(&p->svms, addr, &parent); 923 if (!prange) { 924 pr_debug("failed get range svms 0x%p addr 0x%lx\n", &p->svms, addr); 925 r = -EFAULT; 926 goto out_unlock_svms; 927 } 928 929 mutex_lock(&parent->migrate_mutex); 930 if (prange != parent) 931 mutex_lock_nested(&prange->migrate_mutex, 1); 932 933 if (!prange->actual_loc) 934 goto out_unlock_prange; 935 936 svm_range_lock(parent); 937 if (prange != parent) 938 mutex_lock_nested(&prange->lock, 1); 939 r = svm_range_split_by_granularity(p, mm, addr, parent, prange); 940 if (prange != parent) 941 mutex_unlock(&prange->lock); 942 svm_range_unlock(parent); 943 if (r) { 944 pr_debug("failed %d to split range by granularity\n", r); 945 goto out_unlock_prange; 946 } 947 948 r = svm_migrate_vram_to_ram(prange, vmf->vma->vm_mm, 949 KFD_MIGRATE_TRIGGER_PAGEFAULT_CPU, 950 vmf->page); 951 if (r) 952 pr_debug("failed %d migrate svms 0x%p range 0x%p [0x%lx 0x%lx]\n", 953 r, prange->svms, prange, prange->start, prange->last); 954 955 /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */ 956 if (p->xnack_enabled && parent == prange) 957 op = SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP; 958 else 959 op = SVM_OP_UPDATE_RANGE_NOTIFIER; 960 svm_range_add_list_work(&p->svms, parent, mm, op); 961 schedule_deferred_list_work(&p->svms); 962 963 out_unlock_prange: 964 if (prange != parent) 965 mutex_unlock(&prange->migrate_mutex); 966 mutex_unlock(&parent->migrate_mutex); 967 out_unlock_svms: 968 mutex_unlock(&p->svms.lock); 969 out_unref_process: 970 pr_debug("CPU fault svms 0x%p address 0x%lx done\n", &p->svms, addr); 971 kfd_unref_process(p); 972 out_mmput: 973 mmput(mm); 974 return r ? VM_FAULT_SIGBUS : 0; 975 } 976 977 static const struct dev_pagemap_ops svm_migrate_pgmap_ops = { 978 .page_free = svm_migrate_page_free, 979 .migrate_to_ram = svm_migrate_to_ram, 980 }; 981 982 /* Each VRAM page uses sizeof(struct page) on system memory */ 983 #define SVM_HMM_PAGE_STRUCT_SIZE(size) ((size)/PAGE_SIZE * sizeof(struct page)) 984 985 int svm_migrate_init(struct amdgpu_device *adev) 986 { 987 struct kfd_dev *kfddev = adev->kfd.dev; 988 struct dev_pagemap *pgmap; 989 struct resource *res = NULL; 990 unsigned long size; 991 void *r; 992 993 /* Page migration works on Vega10 or newer */ 994 if (!KFD_IS_SOC15(kfddev)) 995 return -EINVAL; 996 997 pgmap = &kfddev->pgmap; 998 memset(pgmap, 0, sizeof(*pgmap)); 999 1000 /* TODO: register all vram to HMM for now. 1001 * should remove reserved size 1002 */ 1003 size = ALIGN(adev->gmc.real_vram_size, 2ULL << 20); 1004 if (adev->gmc.xgmi.connected_to_cpu) { 1005 pgmap->range.start = adev->gmc.aper_base; 1006 pgmap->range.end = adev->gmc.aper_base + adev->gmc.aper_size - 1; 1007 pgmap->type = MEMORY_DEVICE_COHERENT; 1008 } else { 1009 res = devm_request_free_mem_region(adev->dev, &iomem_resource, size); 1010 if (IS_ERR(res)) 1011 return -ENOMEM; 1012 pgmap->range.start = res->start; 1013 pgmap->range.end = res->end; 1014 pgmap->type = MEMORY_DEVICE_PRIVATE; 1015 } 1016 1017 pgmap->nr_range = 1; 1018 pgmap->ops = &svm_migrate_pgmap_ops; 1019 pgmap->owner = SVM_ADEV_PGMAP_OWNER(adev); 1020 pgmap->flags = 0; 1021 /* Device manager releases device-specific resources, memory region and 1022 * pgmap when driver disconnects from device. 1023 */ 1024 r = devm_memremap_pages(adev->dev, pgmap); 1025 if (IS_ERR(r)) { 1026 pr_err("failed to register HMM device memory\n"); 1027 /* Disable SVM support capability */ 1028 pgmap->type = 0; 1029 if (pgmap->type == MEMORY_DEVICE_PRIVATE) 1030 devm_release_mem_region(adev->dev, res->start, 1031 res->end - res->start + 1); 1032 return PTR_ERR(r); 1033 } 1034 1035 pr_debug("reserve %ldMB system memory for VRAM pages struct\n", 1036 SVM_HMM_PAGE_STRUCT_SIZE(size) >> 20); 1037 1038 amdgpu_amdkfd_reserve_system_mem(SVM_HMM_PAGE_STRUCT_SIZE(size)); 1039 1040 svm_range_set_max_pages(adev); 1041 1042 pr_info("HMM registered %ldMB device memory\n", size >> 20); 1043 1044 return 0; 1045 } 1046