1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/device.h>
26 #include <linux/export.h>
27 #include <linux/err.h>
28 #include <linux/fs.h>
29 #include <linux/sched.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/compat.h>
33 #include <uapi/linux/kfd_ioctl.h>
34 #include <linux/time.h>
35 #include "kfd_priv.h"
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/processor.h>
39 
40 /*
41  * The primary memory I/O features being added for revisions of gfxip
42  * beyond 7.0 (Kaveri) are:
43  *
44  * Access to ATC/IOMMU mapped memory w/ associated extension of VA to 48b
45  *
46  * “Flat” shader memory access – These are new shader vector memory
47  * operations that do not reference a T#/V# so a “pointer” is what is
48  * sourced from the vector gprs for direct access to memory.
49  * This pointer space has the Shared(LDS) and Private(Scratch) memory
50  * mapped into this pointer space as apertures.
51  * The hardware then determines how to direct the memory request
52  * based on what apertures the request falls in.
53  *
54  * Unaligned support and alignment check
55  *
56  *
57  * System Unified Address - SUA
58  *
59  * The standard usage for GPU virtual addresses are that they are mapped by
60  * a set of page tables we call GPUVM and these page tables are managed by
61  * a combination of vidMM/driver software components.  The current virtual
62  * address (VA) range for GPUVM is 40b.
63  *
64  * As of gfxip7.1 and beyond we’re adding the ability for compute memory
65  * clients (CP/RLC, DMA, SHADER(ifetch, scalar, and vector ops)) to access
66  * the same page tables used by host x86 processors and that are managed by
67  * the operating system. This is via a technique and hardware called ATC/IOMMU.
68  * The GPU has the capability of accessing both the GPUVM and ATC address
69  * spaces for a given VMID (process) simultaneously and we call this feature
70  * system unified address (SUA).
71  *
72  * There are three fundamental address modes of operation for a given VMID
73  * (process) on the GPU:
74  *
75  *	HSA64 – 64b pointers and the default address space is ATC
76  *	HSA32 – 32b pointers and the default address space is ATC
77  *	GPUVM – 64b pointers and the default address space is GPUVM (driver
78  *		model mode)
79  *
80  *
81  * HSA64 - ATC/IOMMU 64b
82  *
83  * A 64b pointer in the AMD64/IA64 CPU architecture is not fully utilized
84  * by the CPU so an AMD CPU can only access the high area
85  * (VA[63:47] == 0x1FFFF) and low area (VA[63:47 == 0) of the address space
86  * so the actual VA carried to translation is 48b.  There is a “hole” in
87  * the middle of the 64b VA space.
88  *
89  * The GPU not only has access to all of the CPU accessible address space via
90  * ATC/IOMMU, but it also has access to the GPUVM address space.  The “system
91  * unified address” feature (SUA) is the mapping of GPUVM and ATC address
92  * spaces into a unified pointer space.  The method we take for 64b mode is
93  * to map the full 40b GPUVM address space into the hole of the 64b address
94  * space.
95 
96  * The GPUVM_Base/GPUVM_Limit defines the aperture in the 64b space where we
97  * direct requests to be translated via GPUVM page tables instead of the
98  * IOMMU path.
99  *
100  *
101  * 64b to 49b Address conversion
102  *
103  * Note that there are still significant portions of unused regions (holes)
104  * in the 64b address space even for the GPU.  There are several places in
105  * the pipeline (sw and hw), we wish to compress the 64b virtual address
106  * to a 49b address.  This 49b address is constituted of an “ATC” bit
107  * plus a 48b virtual address.  This 49b address is what is passed to the
108  * translation hardware.  ATC==0 means the 48b address is a GPUVM address
109  * (max of 2^40 – 1) intended to be translated via GPUVM page tables.
110  * ATC==1 means the 48b address is intended to be translated via IOMMU
111  * page tables.
112  *
113  * A 64b pointer is compared to the apertures that are defined (Base/Limit), in
114  * this case the GPUVM aperture (red) is defined and if a pointer falls in this
115  * aperture, we subtract the GPUVM_Base address and set the ATC bit to zero
116  * as part of the 64b to 49b conversion.
117  *
118  * Where this 64b to 49b conversion is done is a function of the usage.
119  * Most GPU memory access is via memory objects where the driver builds
120  * a descriptor which consists of a base address and a memory access by
121  * the GPU usually consists of some kind of an offset or Cartesian coordinate
122  * that references this memory descriptor.  This is the case for shader
123  * instructions that reference the T# or V# constants, or for specified
124  * locations of assets (ex. the shader program location).  In these cases
125  * the driver is what handles the 64b to 49b conversion and the base
126  * address in the descriptor (ex. V# or T# or shader program location)
127  * is defined as a 48b address w/ an ATC bit.  For this usage a given
128  * memory object cannot straddle multiple apertures in the 64b address
129  * space. For example a shader program cannot jump in/out between ATC
130  * and GPUVM space.
131  *
132  * In some cases we wish to pass a 64b pointer to the GPU hardware and
133  * the GPU hw does the 64b to 49b conversion before passing memory
134  * requests to the cache/memory system.  This is the case for the
135  * S_LOAD and FLAT_* shader memory instructions where we have 64b pointers
136  * in scalar and vector GPRs respectively.
137  *
138  * In all cases (no matter where the 64b -> 49b conversion is done), the gfxip
139  * hardware sends a 48b address along w/ an ATC bit, to the memory controller
140  * on the memory request interfaces.
141  *
142  *	<client>_MC_rdreq_atc   // read request ATC bit
143  *
144  *		0 : <client>_MC_rdreq_addr is a GPUVM VA
145  *
146  *		1 : <client>_MC_rdreq_addr is a ATC VA
147  *
148  *
149  * “Spare” aperture (APE1)
150  *
151  * We use the GPUVM aperture to differentiate ATC vs. GPUVM, but we also use
152  * apertures to set the Mtype field for S_LOAD/FLAT_* ops which is input to the
153  * config tables for setting cache policies. The “spare” (APE1) aperture is
154  * motivated by getting a different Mtype from the default.
155  * The default aperture isn’t an actual base/limit aperture; it is just the
156  * address space that doesn’t hit any defined base/limit apertures.
157  * The following diagram is a complete picture of the gfxip7.x SUA apertures.
158  * The APE1 can be placed either below or above
159  * the hole (cannot be in the hole).
160  *
161  *
162  * General Aperture definitions and rules
163  *
164  * An aperture register definition consists of a Base, Limit, Mtype, and
165  * usually an ATC bit indicating which translation tables that aperture uses.
166  * In all cases (for SUA and DUA apertures discussed later), aperture base
167  * and limit definitions are 64KB aligned.
168  *
169  *	<ape>_Base[63:0] = { <ape>_Base_register[63:16], 0x0000 }
170  *
171  *	<ape>_Limit[63:0] = { <ape>_Limit_register[63:16], 0xFFFF }
172  *
173  * The base and limit are considered inclusive to an aperture so being
174  * inside an aperture means (address >= Base) AND (address <= Limit).
175  *
176  * In no case is a payload that straddles multiple apertures expected to work.
177  * For example a load_dword_x4 that starts in one aperture and ends in another,
178  * does not work.  For the vector FLAT_* ops we have detection capability in
179  * the shader for reporting a “memory violation” back to the
180  * SQ block for use in traps.
181  * A memory violation results when an op falls into the hole,
182  * or a payload straddles multiple apertures.  The S_LOAD instruction
183  * does not have this detection.
184  *
185  * Apertures cannot overlap.
186  *
187  *
188  *
189  * HSA32 - ATC/IOMMU 32b
190  *
191  * For HSA32 mode, the pointers are interpreted as 32 bits and use a single GPR
192  * instead of two for the S_LOAD and FLAT_* ops. The entire GPUVM space of 40b
193  * will not fit so there is only partial visibility to the GPUVM
194  * space (defined by the aperture) for S_LOAD and FLAT_* ops.
195  * There is no spare (APE1) aperture for HSA32 mode.
196  *
197  *
198  * GPUVM 64b mode (driver model)
199  *
200  * This mode is related to HSA64 in that the difference really is that
201  * the default aperture is GPUVM (ATC==0) and not ATC space.
202  * We have gfxip7.x hardware that has FLAT_* and S_LOAD support for
203  * SUA GPUVM mode, but does not support HSA32/HSA64.
204  *
205  *
206  * Device Unified Address - DUA
207  *
208  * Device unified address (DUA) is the name of the feature that maps the
209  * Shared(LDS) memory and Private(Scratch) memory into the overall address
210  * space for use by the new FLAT_* vector memory ops.  The Shared and
211  * Private memories are mapped as apertures into the address space,
212  * and the hardware detects when a FLAT_* memory request is to be redirected
213  * to the LDS or Scratch memory when it falls into one of these apertures.
214  * Like the SUA apertures, the Shared/Private apertures are 64KB aligned and
215  * the base/limit is “in” the aperture. For both HSA64 and GPUVM SUA modes,
216  * the Shared/Private apertures are always placed in a limited selection of
217  * options in the hole of the 64b address space. For HSA32 mode, the
218  * Shared/Private apertures can be placed anywhere in the 32b space
219  * except at 0.
220  *
221  *
222  * HSA64 Apertures for FLAT_* vector ops
223  *
224  * For HSA64 SUA mode, the Shared and Private apertures are always placed
225  * in the hole w/ a limited selection of possible locations. The requests
226  * that fall in the private aperture are expanded as a function of the
227  * work-item id (tid) and redirected to the location of the
228  * “hidden private memory”. The hidden private can be placed in either GPUVM
229  * or ATC space. The addresses that fall in the shared aperture are
230  * re-directed to the on-chip LDS memory hardware.
231  *
232  *
233  * HSA32 Apertures for FLAT_* vector ops
234  *
235  * In HSA32 mode, the Private and Shared apertures can be placed anywhere
236  * in the 32b space except at 0 (Private or Shared Base at zero disables
237  * the apertures). If the base address of the apertures are non-zero
238  * (ie apertures exists), the size is always 64KB.
239  *
240  *
241  * GPUVM Apertures for FLAT_* vector ops
242  *
243  * In GPUVM mode, the Shared/Private apertures are specified identically
244  * to HSA64 mode where they are always in the hole at a limited selection
245  * of locations.
246  *
247  *
248  * Aperture Definitions for SUA and DUA
249  *
250  * The interpretation of the aperture register definitions for a given
251  * VMID is a function of the “SUA Mode” which is one of HSA64, HSA32, or
252  * GPUVM64 discussed in previous sections. The mode is first decoded, and
253  * then the remaining register decode is a function of the mode.
254  *
255  *
256  * SUA Mode Decode
257  *
258  * For the S_LOAD and FLAT_* shader operations, the SUA mode is decoded from
259  * the COMPUTE_DISPATCH_INITIATOR:DATA_ATC bit and
260  * the SH_MEM_CONFIG:PTR32 bits.
261  *
262  * COMPUTE_DISPATCH_INITIATOR:DATA_ATC    SH_MEM_CONFIG:PTR32        Mode
263  *
264  * 1                                              0                  HSA64
265  *
266  * 1                                              1                  HSA32
267  *
268  * 0                                              X                 GPUVM64
269  *
270  * In general the hardware will ignore the PTR32 bit and treat
271  * as “0” whenever DATA_ATC = “0”, but sw should set PTR32=0
272  * when DATA_ATC=0.
273  *
274  * The DATA_ATC bit is only set for compute dispatches.
275  * All “Draw” dispatches are hardcoded to GPUVM64 mode
276  * for FLAT_* / S_LOAD operations.
277  */
278 
279 #define MAKE_GPUVM_APP_BASE_VI(gpu_num) \
280 	(((uint64_t)(gpu_num) << 61) + 0x1000000000000L)
281 
282 #define MAKE_GPUVM_APP_LIMIT(base, size) \
283 	(((uint64_t)(base) & 0xFFFFFF0000000000UL) + (size) - 1)
284 
285 #define MAKE_SCRATCH_APP_BASE_VI() \
286 	(((uint64_t)(0x1UL) << 61) + 0x100000000L)
287 
288 #define MAKE_SCRATCH_APP_LIMIT(base) \
289 	(((uint64_t)base & 0xFFFFFFFF00000000UL) | 0xFFFFFFFF)
290 
291 #define MAKE_LDS_APP_BASE_VI() \
292 	(((uint64_t)(0x1UL) << 61) + 0x0)
293 #define MAKE_LDS_APP_LIMIT(base) \
294 	(((uint64_t)(base) & 0xFFFFFFFF00000000UL) | 0xFFFFFFFF)
295 
296 /* On GFXv9 the LDS and scratch apertures are programmed independently
297  * using the high 16 bits of the 64-bit virtual address. They must be
298  * in the hole, which will be the case as long as the high 16 bits are
299  * not 0.
300  *
301  * The aperture sizes are still 4GB implicitly.
302  *
303  * A GPUVM aperture is not applicable on GFXv9.
304  */
305 #define MAKE_LDS_APP_BASE_V9() ((uint64_t)(0x1UL) << 48)
306 #define MAKE_SCRATCH_APP_BASE_V9() ((uint64_t)(0x2UL) << 48)
307 
308 /* User mode manages most of the SVM aperture address space. The low
309  * 16MB are reserved for kernel use (CWSR trap handler and kernel IB
310  * for now).
311  */
312 #define SVM_USER_BASE (u64)(KFD_CWSR_TBA_TMA_SIZE + 2*PAGE_SIZE)
313 #define SVM_CWSR_BASE (SVM_USER_BASE - KFD_CWSR_TBA_TMA_SIZE)
314 #define SVM_IB_BASE   (SVM_CWSR_BASE - PAGE_SIZE)
315 
316 static void kfd_init_apertures_vi(struct kfd_process_device *pdd, uint8_t id)
317 {
318 	/*
319 	 * node id couldn't be 0 - the three MSB bits of
320 	 * aperture shouldn't be 0
321 	 */
322 	pdd->lds_base = MAKE_LDS_APP_BASE_VI();
323 	pdd->lds_limit = MAKE_LDS_APP_LIMIT(pdd->lds_base);
324 
325 	/* dGPUs: SVM aperture starting at 0
326 	 * with small reserved space for kernel.
327 	 * Set them to CANONICAL addresses.
328 	 */
329 	pdd->gpuvm_base = SVM_USER_BASE;
330 	pdd->gpuvm_limit =
331 		pdd->dev->kfd->shared_resources.gpuvm_size - 1;
332 
333 	/* dGPUs: the reserved space for kernel
334 	 * before SVM
335 	 */
336 	pdd->qpd.cwsr_base = SVM_CWSR_BASE;
337 	pdd->qpd.ib_base = SVM_IB_BASE;
338 
339 	pdd->scratch_base = MAKE_SCRATCH_APP_BASE_VI();
340 	pdd->scratch_limit = MAKE_SCRATCH_APP_LIMIT(pdd->scratch_base);
341 }
342 
343 static void kfd_init_apertures_v9(struct kfd_process_device *pdd, uint8_t id)
344 {
345 	pdd->lds_base = MAKE_LDS_APP_BASE_V9();
346 	pdd->lds_limit = MAKE_LDS_APP_LIMIT(pdd->lds_base);
347 
348 	pdd->gpuvm_base = PAGE_SIZE;
349 	pdd->gpuvm_limit =
350 		pdd->dev->kfd->shared_resources.gpuvm_size - 1;
351 
352 	pdd->scratch_base = MAKE_SCRATCH_APP_BASE_V9();
353 	pdd->scratch_limit = MAKE_SCRATCH_APP_LIMIT(pdd->scratch_base);
354 
355 	/*
356 	 * Place TBA/TMA on opposite side of VM hole to prevent
357 	 * stray faults from triggering SVM on these pages.
358 	 */
359 	pdd->qpd.cwsr_base = pdd->dev->kfd->shared_resources.gpuvm_size;
360 }
361 
362 int kfd_init_apertures(struct kfd_process *process)
363 {
364 	uint8_t id  = 0;
365 	struct kfd_node *dev;
366 	struct kfd_process_device *pdd;
367 
368 	/*Iterating over all devices*/
369 	while (kfd_topology_enum_kfd_devices(id, &dev) == 0) {
370 		if (!dev || kfd_devcgroup_check_permission(dev)) {
371 			/* Skip non GPU devices and devices to which the
372 			 * current process have no access to. Access can be
373 			 * limited by placing the process in a specific
374 			 * cgroup hierarchy
375 			 */
376 			id++;
377 			continue;
378 		}
379 
380 		pdd = kfd_create_process_device_data(dev, process);
381 		if (!pdd) {
382 			pr_err("Failed to create process device data\n");
383 			return -ENOMEM;
384 		}
385 		/*
386 		 * For 64 bit process apertures will be statically reserved in
387 		 * the x86_64 non canonical process address space
388 		 * amdkfd doesn't currently support apertures for 32 bit process
389 		 */
390 		if (process->is_32bit_user_mode) {
391 			pdd->lds_base = pdd->lds_limit = 0;
392 			pdd->gpuvm_base = pdd->gpuvm_limit = 0;
393 			pdd->scratch_base = pdd->scratch_limit = 0;
394 		} else {
395 			switch (dev->adev->asic_type) {
396 			case CHIP_KAVERI:
397 			case CHIP_HAWAII:
398 			case CHIP_CARRIZO:
399 			case CHIP_TONGA:
400 			case CHIP_FIJI:
401 			case CHIP_POLARIS10:
402 			case CHIP_POLARIS11:
403 			case CHIP_POLARIS12:
404 			case CHIP_VEGAM:
405 				kfd_init_apertures_vi(pdd, id);
406 				break;
407 			default:
408 				if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
409 					kfd_init_apertures_v9(pdd, id);
410 				else {
411 					WARN(1, "Unexpected ASIC family %u",
412 					     dev->adev->asic_type);
413 					return -EINVAL;
414 				}
415 			}
416 		}
417 
418 		dev_dbg(kfd_device, "node id %u\n", id);
419 		dev_dbg(kfd_device, "gpu id %u\n", pdd->dev->id);
420 		dev_dbg(kfd_device, "lds_base %llX\n", pdd->lds_base);
421 		dev_dbg(kfd_device, "lds_limit %llX\n", pdd->lds_limit);
422 		dev_dbg(kfd_device, "gpuvm_base %llX\n", pdd->gpuvm_base);
423 		dev_dbg(kfd_device, "gpuvm_limit %llX\n", pdd->gpuvm_limit);
424 		dev_dbg(kfd_device, "scratch_base %llX\n", pdd->scratch_base);
425 		dev_dbg(kfd_device, "scratch_limit %llX\n", pdd->scratch_limit);
426 
427 		id++;
428 	}
429 
430 	return 0;
431 }
432