119f6d2a6SOded Gabbay /*
219f6d2a6SOded Gabbay  * Copyright 2014 Advanced Micro Devices, Inc.
319f6d2a6SOded Gabbay  *
419f6d2a6SOded Gabbay  * Permission is hereby granted, free of charge, to any person obtaining a
519f6d2a6SOded Gabbay  * copy of this software and associated documentation files (the "Software"),
619f6d2a6SOded Gabbay  * to deal in the Software without restriction, including without limitation
719f6d2a6SOded Gabbay  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
819f6d2a6SOded Gabbay  * and/or sell copies of the Software, and to permit persons to whom the
919f6d2a6SOded Gabbay  * Software is furnished to do so, subject to the following conditions:
1019f6d2a6SOded Gabbay  *
1119f6d2a6SOded Gabbay  * The above copyright notice and this permission notice shall be included in
1219f6d2a6SOded Gabbay  * all copies or substantial portions of the Software.
1319f6d2a6SOded Gabbay  *
1419f6d2a6SOded Gabbay  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
1519f6d2a6SOded Gabbay  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
1619f6d2a6SOded Gabbay  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
1719f6d2a6SOded Gabbay  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
1819f6d2a6SOded Gabbay  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
1919f6d2a6SOded Gabbay  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
2019f6d2a6SOded Gabbay  * OTHER DEALINGS IN THE SOFTWARE.
2119f6d2a6SOded Gabbay  *
2219f6d2a6SOded Gabbay  */
2319f6d2a6SOded Gabbay 
2419f6d2a6SOded Gabbay #include <linux/device.h>
2519f6d2a6SOded Gabbay #include <linux/export.h>
2619f6d2a6SOded Gabbay #include <linux/err.h>
2719f6d2a6SOded Gabbay #include <linux/fs.h>
2819f6d2a6SOded Gabbay #include <linux/sched.h>
2919f6d2a6SOded Gabbay #include <linux/slab.h>
3019f6d2a6SOded Gabbay #include <linux/uaccess.h>
3119f6d2a6SOded Gabbay #include <linux/compat.h>
3219f6d2a6SOded Gabbay #include <uapi/linux/kfd_ioctl.h>
3319f6d2a6SOded Gabbay #include <linux/time.h>
3419f6d2a6SOded Gabbay #include "kfd_priv.h"
3519f6d2a6SOded Gabbay #include <linux/mm.h>
3619f6d2a6SOded Gabbay #include <uapi/asm-generic/mman-common.h>
3719f6d2a6SOded Gabbay #include <asm/processor.h>
3819f6d2a6SOded Gabbay 
3919f6d2a6SOded Gabbay /*
4019f6d2a6SOded Gabbay  * The primary memory I/O features being added for revisions of gfxip
4119f6d2a6SOded Gabbay  * beyond 7.0 (Kaveri) are:
4219f6d2a6SOded Gabbay  *
4319f6d2a6SOded Gabbay  * Access to ATC/IOMMU mapped memory w/ associated extension of VA to 48b
4419f6d2a6SOded Gabbay  *
4519f6d2a6SOded Gabbay  * “Flat” shader memory access – These are new shader vector memory
4619f6d2a6SOded Gabbay  * operations that do not reference a T#/V# so a “pointer” is what is
4719f6d2a6SOded Gabbay  * sourced from the vector gprs for direct access to memory.
4819f6d2a6SOded Gabbay  * This pointer space has the Shared(LDS) and Private(Scratch) memory
4919f6d2a6SOded Gabbay  * mapped into this pointer space as apertures.
5019f6d2a6SOded Gabbay  * The hardware then determines how to direct the memory request
5119f6d2a6SOded Gabbay  * based on what apertures the request falls in.
5219f6d2a6SOded Gabbay  *
5319f6d2a6SOded Gabbay  * Unaligned support and alignment check
5419f6d2a6SOded Gabbay  *
5519f6d2a6SOded Gabbay  *
5619f6d2a6SOded Gabbay  * System Unified Address - SUA
5719f6d2a6SOded Gabbay  *
5819f6d2a6SOded Gabbay  * The standard usage for GPU virtual addresses are that they are mapped by
5919f6d2a6SOded Gabbay  * a set of page tables we call GPUVM and these page tables are managed by
6019f6d2a6SOded Gabbay  * a combination of vidMM/driver software components.  The current virtual
6119f6d2a6SOded Gabbay  * address (VA) range for GPUVM is 40b.
6219f6d2a6SOded Gabbay  *
6319f6d2a6SOded Gabbay  * As of gfxip7.1 and beyond we’re adding the ability for compute memory
6419f6d2a6SOded Gabbay  * clients (CP/RLC, DMA, SHADER(ifetch, scalar, and vector ops)) to access
6519f6d2a6SOded Gabbay  * the same page tables used by host x86 processors and that are managed by
6619f6d2a6SOded Gabbay  * the operating system. This is via a technique and hardware called ATC/IOMMU.
6719f6d2a6SOded Gabbay  * The GPU has the capability of accessing both the GPUVM and ATC address
6819f6d2a6SOded Gabbay  * spaces for a given VMID (process) simultaneously and we call this feature
6919f6d2a6SOded Gabbay  * system unified address (SUA).
7019f6d2a6SOded Gabbay  *
7119f6d2a6SOded Gabbay  * There are three fundamental address modes of operation for a given VMID
7219f6d2a6SOded Gabbay  * (process) on the GPU:
7319f6d2a6SOded Gabbay  *
7419f6d2a6SOded Gabbay  *	HSA64 – 64b pointers and the default address space is ATC
7519f6d2a6SOded Gabbay  *	HSA32 – 32b pointers and the default address space is ATC
7619f6d2a6SOded Gabbay  *	GPUVM – 64b pointers and the default address space is GPUVM (driver
7719f6d2a6SOded Gabbay  *		model mode)
7819f6d2a6SOded Gabbay  *
7919f6d2a6SOded Gabbay  *
8019f6d2a6SOded Gabbay  * HSA64 - ATC/IOMMU 64b
8119f6d2a6SOded Gabbay  *
8219f6d2a6SOded Gabbay  * A 64b pointer in the AMD64/IA64 CPU architecture is not fully utilized
8319f6d2a6SOded Gabbay  * by the CPU so an AMD CPU can only access the high area
8419f6d2a6SOded Gabbay  * (VA[63:47] == 0x1FFFF) and low area (VA[63:47 == 0) of the address space
8519f6d2a6SOded Gabbay  * so the actual VA carried to translation is 48b.  There is a “hole” in
8619f6d2a6SOded Gabbay  * the middle of the 64b VA space.
8719f6d2a6SOded Gabbay  *
8819f6d2a6SOded Gabbay  * The GPU not only has access to all of the CPU accessible address space via
8919f6d2a6SOded Gabbay  * ATC/IOMMU, but it also has access to the GPUVM address space.  The “system
9019f6d2a6SOded Gabbay  * unified address” feature (SUA) is the mapping of GPUVM and ATC address
9119f6d2a6SOded Gabbay  * spaces into a unified pointer space.  The method we take for 64b mode is
9219f6d2a6SOded Gabbay  * to map the full 40b GPUVM address space into the hole of the 64b address
9319f6d2a6SOded Gabbay  * space.
9419f6d2a6SOded Gabbay 
9519f6d2a6SOded Gabbay  * The GPUVM_Base/GPUVM_Limit defines the aperture in the 64b space where we
9619f6d2a6SOded Gabbay  * direct requests to be translated via GPUVM page tables instead of the
9719f6d2a6SOded Gabbay  * IOMMU path.
9819f6d2a6SOded Gabbay  *
9919f6d2a6SOded Gabbay  *
10019f6d2a6SOded Gabbay  * 64b to 49b Address conversion
10119f6d2a6SOded Gabbay  *
10219f6d2a6SOded Gabbay  * Note that there are still significant portions of unused regions (holes)
10319f6d2a6SOded Gabbay  * in the 64b address space even for the GPU.  There are several places in
10419f6d2a6SOded Gabbay  * the pipeline (sw and hw), we wish to compress the 64b virtual address
10519f6d2a6SOded Gabbay  * to a 49b address.  This 49b address is constituted of an “ATC” bit
10619f6d2a6SOded Gabbay  * plus a 48b virtual address.  This 49b address is what is passed to the
10719f6d2a6SOded Gabbay  * translation hardware.  ATC==0 means the 48b address is a GPUVM address
10819f6d2a6SOded Gabbay  * (max of 2^40 – 1) intended to be translated via GPUVM page tables.
10919f6d2a6SOded Gabbay  * ATC==1 means the 48b address is intended to be translated via IOMMU
11019f6d2a6SOded Gabbay  * page tables.
11119f6d2a6SOded Gabbay  *
11219f6d2a6SOded Gabbay  * A 64b pointer is compared to the apertures that are defined (Base/Limit), in
11319f6d2a6SOded Gabbay  * this case the GPUVM aperture (red) is defined and if a pointer falls in this
11419f6d2a6SOded Gabbay  * aperture, we subtract the GPUVM_Base address and set the ATC bit to zero
11519f6d2a6SOded Gabbay  * as part of the 64b to 49b conversion.
11619f6d2a6SOded Gabbay  *
11719f6d2a6SOded Gabbay  * Where this 64b to 49b conversion is done is a function of the usage.
11819f6d2a6SOded Gabbay  * Most GPU memory access is via memory objects where the driver builds
11919f6d2a6SOded Gabbay  * a descriptor which consists of a base address and a memory access by
12019f6d2a6SOded Gabbay  * the GPU usually consists of some kind of an offset or Cartesian coordinate
12119f6d2a6SOded Gabbay  * that references this memory descriptor.  This is the case for shader
12219f6d2a6SOded Gabbay  * instructions that reference the T# or V# constants, or for specified
12319f6d2a6SOded Gabbay  * locations of assets (ex. the shader program location).  In these cases
12419f6d2a6SOded Gabbay  * the driver is what handles the 64b to 49b conversion and the base
12519f6d2a6SOded Gabbay  * address in the descriptor (ex. V# or T# or shader program location)
12619f6d2a6SOded Gabbay  * is defined as a 48b address w/ an ATC bit.  For this usage a given
12719f6d2a6SOded Gabbay  * memory object cannot straddle multiple apertures in the 64b address
12819f6d2a6SOded Gabbay  * space. For example a shader program cannot jump in/out between ATC
12919f6d2a6SOded Gabbay  * and GPUVM space.
13019f6d2a6SOded Gabbay  *
13119f6d2a6SOded Gabbay  * In some cases we wish to pass a 64b pointer to the GPU hardware and
13219f6d2a6SOded Gabbay  * the GPU hw does the 64b to 49b conversion before passing memory
13319f6d2a6SOded Gabbay  * requests to the cache/memory system.  This is the case for the
13419f6d2a6SOded Gabbay  * S_LOAD and FLAT_* shader memory instructions where we have 64b pointers
13519f6d2a6SOded Gabbay  * in scalar and vector GPRs respectively.
13619f6d2a6SOded Gabbay  *
13719f6d2a6SOded Gabbay  * In all cases (no matter where the 64b -> 49b conversion is done), the gfxip
13819f6d2a6SOded Gabbay  * hardware sends a 48b address along w/ an ATC bit, to the memory controller
13919f6d2a6SOded Gabbay  * on the memory request interfaces.
14019f6d2a6SOded Gabbay  *
14119f6d2a6SOded Gabbay  *	<client>_MC_rdreq_atc   // read request ATC bit
14219f6d2a6SOded Gabbay  *
14319f6d2a6SOded Gabbay  *		0 : <client>_MC_rdreq_addr is a GPUVM VA
14419f6d2a6SOded Gabbay  *
14519f6d2a6SOded Gabbay  *		1 : <client>_MC_rdreq_addr is a ATC VA
14619f6d2a6SOded Gabbay  *
14719f6d2a6SOded Gabbay  *
14819f6d2a6SOded Gabbay  * “Spare” aperture (APE1)
14919f6d2a6SOded Gabbay  *
15019f6d2a6SOded Gabbay  * We use the GPUVM aperture to differentiate ATC vs. GPUVM, but we also use
15119f6d2a6SOded Gabbay  * apertures to set the Mtype field for S_LOAD/FLAT_* ops which is input to the
15219f6d2a6SOded Gabbay  * config tables for setting cache policies. The “spare” (APE1) aperture is
15319f6d2a6SOded Gabbay  * motivated by getting a different Mtype from the default.
15419f6d2a6SOded Gabbay  * The default aperture isn’t an actual base/limit aperture; it is just the
15519f6d2a6SOded Gabbay  * address space that doesn’t hit any defined base/limit apertures.
15619f6d2a6SOded Gabbay  * The following diagram is a complete picture of the gfxip7.x SUA apertures.
15719f6d2a6SOded Gabbay  * The APE1 can be placed either below or above
15819f6d2a6SOded Gabbay  * the hole (cannot be in the hole).
15919f6d2a6SOded Gabbay  *
16019f6d2a6SOded Gabbay  *
16119f6d2a6SOded Gabbay  * General Aperture definitions and rules
16219f6d2a6SOded Gabbay  *
16319f6d2a6SOded Gabbay  * An aperture register definition consists of a Base, Limit, Mtype, and
16419f6d2a6SOded Gabbay  * usually an ATC bit indicating which translation tables that aperture uses.
16519f6d2a6SOded Gabbay  * In all cases (for SUA and DUA apertures discussed later), aperture base
16619f6d2a6SOded Gabbay  * and limit definitions are 64KB aligned.
16719f6d2a6SOded Gabbay  *
16819f6d2a6SOded Gabbay  *	<ape>_Base[63:0] = { <ape>_Base_register[63:16], 0x0000 }
16919f6d2a6SOded Gabbay  *
17019f6d2a6SOded Gabbay  *	<ape>_Limit[63:0] = { <ape>_Limit_register[63:16], 0xFFFF }
17119f6d2a6SOded Gabbay  *
17219f6d2a6SOded Gabbay  * The base and limit are considered inclusive to an aperture so being
17319f6d2a6SOded Gabbay  * inside an aperture means (address >= Base) AND (address <= Limit).
17419f6d2a6SOded Gabbay  *
17519f6d2a6SOded Gabbay  * In no case is a payload that straddles multiple apertures expected to work.
17619f6d2a6SOded Gabbay  * For example a load_dword_x4 that starts in one aperture and ends in another,
17719f6d2a6SOded Gabbay  * does not work.  For the vector FLAT_* ops we have detection capability in
17819f6d2a6SOded Gabbay  * the shader for reporting a “memory violation” back to the
17919f6d2a6SOded Gabbay  * SQ block for use in traps.
18019f6d2a6SOded Gabbay  * A memory violation results when an op falls into the hole,
18119f6d2a6SOded Gabbay  * or a payload straddles multiple apertures.  The S_LOAD instruction
18219f6d2a6SOded Gabbay  * does not have this detection.
18319f6d2a6SOded Gabbay  *
18419f6d2a6SOded Gabbay  * Apertures cannot overlap.
18519f6d2a6SOded Gabbay  *
18619f6d2a6SOded Gabbay  *
18719f6d2a6SOded Gabbay  *
18819f6d2a6SOded Gabbay  * HSA32 - ATC/IOMMU 32b
18919f6d2a6SOded Gabbay  *
19019f6d2a6SOded Gabbay  * For HSA32 mode, the pointers are interpreted as 32 bits and use a single GPR
19119f6d2a6SOded Gabbay  * instead of two for the S_LOAD and FLAT_* ops. The entire GPUVM space of 40b
19219f6d2a6SOded Gabbay  * will not fit so there is only partial visibility to the GPUVM
19319f6d2a6SOded Gabbay  * space (defined by the aperture) for S_LOAD and FLAT_* ops.
19419f6d2a6SOded Gabbay  * There is no spare (APE1) aperture for HSA32 mode.
19519f6d2a6SOded Gabbay  *
19619f6d2a6SOded Gabbay  *
19719f6d2a6SOded Gabbay  * GPUVM 64b mode (driver model)
19819f6d2a6SOded Gabbay  *
19919f6d2a6SOded Gabbay  * This mode is related to HSA64 in that the difference really is that
20019f6d2a6SOded Gabbay  * the default aperture is GPUVM (ATC==0) and not ATC space.
20119f6d2a6SOded Gabbay  * We have gfxip7.x hardware that has FLAT_* and S_LOAD support for
20219f6d2a6SOded Gabbay  * SUA GPUVM mode, but does not support HSA32/HSA64.
20319f6d2a6SOded Gabbay  *
20419f6d2a6SOded Gabbay  *
20519f6d2a6SOded Gabbay  * Device Unified Address - DUA
20619f6d2a6SOded Gabbay  *
20719f6d2a6SOded Gabbay  * Device unified address (DUA) is the name of the feature that maps the
20819f6d2a6SOded Gabbay  * Shared(LDS) memory and Private(Scratch) memory into the overall address
20919f6d2a6SOded Gabbay  * space for use by the new FLAT_* vector memory ops.  The Shared and
21019f6d2a6SOded Gabbay  * Private memories are mapped as apertures into the address space,
21119f6d2a6SOded Gabbay  * and the hardware detects when a FLAT_* memory request is to be redirected
21219f6d2a6SOded Gabbay  * to the LDS or Scratch memory when it falls into one of these apertures.
21319f6d2a6SOded Gabbay  * Like the SUA apertures, the Shared/Private apertures are 64KB aligned and
21419f6d2a6SOded Gabbay  * the base/limit is “in” the aperture. For both HSA64 and GPUVM SUA modes,
21519f6d2a6SOded Gabbay  * the Shared/Private apertures are always placed in a limited selection of
21619f6d2a6SOded Gabbay  * options in the hole of the 64b address space. For HSA32 mode, the
21719f6d2a6SOded Gabbay  * Shared/Private apertures can be placed anywhere in the 32b space
21819f6d2a6SOded Gabbay  * except at 0.
21919f6d2a6SOded Gabbay  *
22019f6d2a6SOded Gabbay  *
22119f6d2a6SOded Gabbay  * HSA64 Apertures for FLAT_* vector ops
22219f6d2a6SOded Gabbay  *
22319f6d2a6SOded Gabbay  * For HSA64 SUA mode, the Shared and Private apertures are always placed
22419f6d2a6SOded Gabbay  * in the hole w/ a limited selection of possible locations. The requests
22519f6d2a6SOded Gabbay  * that fall in the private aperture are expanded as a function of the
22619f6d2a6SOded Gabbay  * work-item id (tid) and redirected to the location of the
22719f6d2a6SOded Gabbay  * “hidden private memory”. The hidden private can be placed in either GPUVM
22819f6d2a6SOded Gabbay  * or ATC space. The addresses that fall in the shared aperture are
22919f6d2a6SOded Gabbay  * re-directed to the on-chip LDS memory hardware.
23019f6d2a6SOded Gabbay  *
23119f6d2a6SOded Gabbay  *
23219f6d2a6SOded Gabbay  * HSA32 Apertures for FLAT_* vector ops
23319f6d2a6SOded Gabbay  *
23419f6d2a6SOded Gabbay  * In HSA32 mode, the Private and Shared apertures can be placed anywhere
23519f6d2a6SOded Gabbay  * in the 32b space except at 0 (Private or Shared Base at zero disables
23619f6d2a6SOded Gabbay  * the apertures). If the base address of the apertures are non-zero
23719f6d2a6SOded Gabbay  * (ie apertures exists), the size is always 64KB.
23819f6d2a6SOded Gabbay  *
23919f6d2a6SOded Gabbay  *
24019f6d2a6SOded Gabbay  * GPUVM Apertures for FLAT_* vector ops
24119f6d2a6SOded Gabbay  *
24219f6d2a6SOded Gabbay  * In GPUVM mode, the Shared/Private apertures are specified identically
24319f6d2a6SOded Gabbay  * to HSA64 mode where they are always in the hole at a limited selection
24419f6d2a6SOded Gabbay  * of locations.
24519f6d2a6SOded Gabbay  *
24619f6d2a6SOded Gabbay  *
24719f6d2a6SOded Gabbay  * Aperture Definitions for SUA and DUA
24819f6d2a6SOded Gabbay  *
24919f6d2a6SOded Gabbay  * The interpretation of the aperture register definitions for a given
25019f6d2a6SOded Gabbay  * VMID is a function of the “SUA Mode” which is one of HSA64, HSA32, or
25119f6d2a6SOded Gabbay  * GPUVM64 discussed in previous sections. The mode is first decoded, and
25219f6d2a6SOded Gabbay  * then the remaining register decode is a function of the mode.
25319f6d2a6SOded Gabbay  *
25419f6d2a6SOded Gabbay  *
25519f6d2a6SOded Gabbay  * SUA Mode Decode
25619f6d2a6SOded Gabbay  *
25719f6d2a6SOded Gabbay  * For the S_LOAD and FLAT_* shader operations, the SUA mode is decoded from
25819f6d2a6SOded Gabbay  * the COMPUTE_DISPATCH_INITIATOR:DATA_ATC bit and
25919f6d2a6SOded Gabbay  * the SH_MEM_CONFIG:PTR32 bits.
26019f6d2a6SOded Gabbay  *
26119f6d2a6SOded Gabbay  * COMPUTE_DISPATCH_INITIATOR:DATA_ATC    SH_MEM_CONFIG:PTR32        Mode
26219f6d2a6SOded Gabbay  *
26319f6d2a6SOded Gabbay  * 1                                              0                  HSA64
26419f6d2a6SOded Gabbay  *
26519f6d2a6SOded Gabbay  * 1                                              1                  HSA32
26619f6d2a6SOded Gabbay  *
26719f6d2a6SOded Gabbay  * 0                                              X                 GPUVM64
26819f6d2a6SOded Gabbay  *
26919f6d2a6SOded Gabbay  * In general the hardware will ignore the PTR32 bit and treat
27019f6d2a6SOded Gabbay  * as “0” whenever DATA_ATC = “0”, but sw should set PTR32=0
27119f6d2a6SOded Gabbay  * when DATA_ATC=0.
27219f6d2a6SOded Gabbay  *
27319f6d2a6SOded Gabbay  * The DATA_ATC bit is only set for compute dispatches.
27419f6d2a6SOded Gabbay  * All “Draw” dispatches are hardcoded to GPUVM64 mode
27519f6d2a6SOded Gabbay  * for FLAT_* / S_LOAD operations.
27619f6d2a6SOded Gabbay  */
27719f6d2a6SOded Gabbay 
27819f6d2a6SOded Gabbay #define MAKE_GPUVM_APP_BASE(gpu_num) \
279585dbf38SOded Gabbay 	(((uint64_t)(gpu_num) << 61) + 0x1000000000000L)
28019f6d2a6SOded Gabbay 
28119f6d2a6SOded Gabbay #define MAKE_GPUVM_APP_LIMIT(base) \
282585dbf38SOded Gabbay 	(((uint64_t)(base) & \
283585dbf38SOded Gabbay 		0xFFFFFF0000000000UL) | 0xFFFFFFFFFFL)
28419f6d2a6SOded Gabbay 
28519f6d2a6SOded Gabbay #define MAKE_SCRATCH_APP_BASE(gpu_num) \
286585dbf38SOded Gabbay 	(((uint64_t)(gpu_num) << 61) + 0x100000000L)
28719f6d2a6SOded Gabbay 
28819f6d2a6SOded Gabbay #define MAKE_SCRATCH_APP_LIMIT(base) \
289585dbf38SOded Gabbay 	(((uint64_t)base & 0xFFFFFFFF00000000UL) | 0xFFFFFFFF)
29019f6d2a6SOded Gabbay 
29119f6d2a6SOded Gabbay #define MAKE_LDS_APP_BASE(gpu_num) \
29219f6d2a6SOded Gabbay 	(((uint64_t)(gpu_num) << 61) + 0x0)
29319f6d2a6SOded Gabbay #define MAKE_LDS_APP_LIMIT(base) \
294585dbf38SOded Gabbay 	(((uint64_t)(base) & 0xFFFFFFFF00000000UL) | 0xFFFFFFFF)
29519f6d2a6SOded Gabbay 
29619f6d2a6SOded Gabbay int kfd_init_apertures(struct kfd_process *process)
29719f6d2a6SOded Gabbay {
29819f6d2a6SOded Gabbay 	uint8_t id  = 0;
29919f6d2a6SOded Gabbay 	struct kfd_dev *dev;
30019f6d2a6SOded Gabbay 	struct kfd_process_device *pdd;
30119f6d2a6SOded Gabbay 
30219f6d2a6SOded Gabbay 	mutex_lock(&process->mutex);
30319f6d2a6SOded Gabbay 
30419f6d2a6SOded Gabbay 	/*Iterating over all devices*/
30519f6d2a6SOded Gabbay 	while ((dev = kfd_topology_enum_kfd_devices(id)) != NULL &&
30619f6d2a6SOded Gabbay 		id < NUM_OF_SUPPORTED_GPUS) {
30719f6d2a6SOded Gabbay 
30819f6d2a6SOded Gabbay 		pdd = kfd_get_process_device_data(dev, process, 1);
30919f6d2a6SOded Gabbay 
31019f6d2a6SOded Gabbay 		/*
31119f6d2a6SOded Gabbay 		 * For 64 bit process aperture will be statically reserved in
31219f6d2a6SOded Gabbay 		 * the x86_64 non canonical process address space
31319f6d2a6SOded Gabbay 		 * amdkfd doesn't currently support apertures for 32 bit process
31419f6d2a6SOded Gabbay 		 */
31519f6d2a6SOded Gabbay 		if (process->is_32bit_user_mode) {
31619f6d2a6SOded Gabbay 			pdd->lds_base = pdd->lds_limit = 0;
31719f6d2a6SOded Gabbay 			pdd->gpuvm_base = pdd->gpuvm_limit = 0;
31819f6d2a6SOded Gabbay 			pdd->scratch_base = pdd->scratch_limit = 0;
31919f6d2a6SOded Gabbay 		} else {
32019f6d2a6SOded Gabbay 			/*
32119f6d2a6SOded Gabbay 			 * node id couldn't be 0 - the three MSB bits of
32219f6d2a6SOded Gabbay 			 * aperture shoudn't be 0
32319f6d2a6SOded Gabbay 			 */
32419f6d2a6SOded Gabbay 			pdd->lds_base = MAKE_LDS_APP_BASE(id + 1);
32519f6d2a6SOded Gabbay 
32619f6d2a6SOded Gabbay 			pdd->lds_limit = MAKE_LDS_APP_LIMIT(pdd->lds_base);
32719f6d2a6SOded Gabbay 
32819f6d2a6SOded Gabbay 			pdd->gpuvm_base = MAKE_GPUVM_APP_BASE(id + 1);
32919f6d2a6SOded Gabbay 
33019f6d2a6SOded Gabbay 			pdd->gpuvm_limit =
33119f6d2a6SOded Gabbay 					MAKE_GPUVM_APP_LIMIT(pdd->gpuvm_base);
33219f6d2a6SOded Gabbay 
33319f6d2a6SOded Gabbay 			pdd->scratch_base = MAKE_SCRATCH_APP_BASE(id + 1);
33419f6d2a6SOded Gabbay 
33519f6d2a6SOded Gabbay 			pdd->scratch_limit =
33619f6d2a6SOded Gabbay 				MAKE_SCRATCH_APP_LIMIT(pdd->scratch_base);
33719f6d2a6SOded Gabbay 		}
33819f6d2a6SOded Gabbay 
33919f6d2a6SOded Gabbay 		dev_dbg(kfd_device, "node id %u\n", id);
34019f6d2a6SOded Gabbay 		dev_dbg(kfd_device, "gpu id %u\n", pdd->dev->id);
34119f6d2a6SOded Gabbay 		dev_dbg(kfd_device, "lds_base %llX\n", pdd->lds_base);
34219f6d2a6SOded Gabbay 		dev_dbg(kfd_device, "lds_limit %llX\n", pdd->lds_limit);
34319f6d2a6SOded Gabbay 		dev_dbg(kfd_device, "gpuvm_base %llX\n", pdd->gpuvm_base);
34419f6d2a6SOded Gabbay 		dev_dbg(kfd_device, "gpuvm_limit %llX\n", pdd->gpuvm_limit);
34519f6d2a6SOded Gabbay 		dev_dbg(kfd_device, "scratch_base %llX\n", pdd->scratch_base);
34619f6d2a6SOded Gabbay 		dev_dbg(kfd_device, "scratch_limit %llX\n", pdd->scratch_limit);
34719f6d2a6SOded Gabbay 
34819f6d2a6SOded Gabbay 		id++;
34919f6d2a6SOded Gabbay 	}
35019f6d2a6SOded Gabbay 
35119f6d2a6SOded Gabbay 	mutex_unlock(&process->mutex);
35219f6d2a6SOded Gabbay 
35319f6d2a6SOded Gabbay 	return 0;
35419f6d2a6SOded Gabbay }
35519f6d2a6SOded Gabbay 
35619f6d2a6SOded Gabbay 
357