1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/mm_types.h> 25 #include <linux/slab.h> 26 #include <linux/types.h> 27 #include <linux/sched/signal.h> 28 #include <linux/sched/mm.h> 29 #include <linux/uaccess.h> 30 #include <linux/mman.h> 31 #include <linux/memory.h> 32 #include "kfd_priv.h" 33 #include "kfd_events.h" 34 #include "kfd_iommu.h" 35 #include <linux/device.h> 36 37 /* 38 * Wrapper around wait_queue_entry_t 39 */ 40 struct kfd_event_waiter { 41 wait_queue_entry_t wait; 42 struct kfd_event *event; /* Event to wait for */ 43 bool activated; /* Becomes true when event is signaled */ 44 }; 45 46 /* 47 * Each signal event needs a 64-bit signal slot where the signaler will write 48 * a 1 before sending an interrupt. (This is needed because some interrupts 49 * do not contain enough spare data bits to identify an event.) 50 * We get whole pages and map them to the process VA. 51 * Individual signal events use their event_id as slot index. 52 */ 53 struct kfd_signal_page { 54 uint64_t *kernel_address; 55 uint64_t __user *user_address; 56 bool need_to_free_pages; 57 }; 58 59 static uint64_t *page_slots(struct kfd_signal_page *page) 60 { 61 return page->kernel_address; 62 } 63 64 static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p) 65 { 66 void *backing_store; 67 struct kfd_signal_page *page; 68 69 page = kzalloc(sizeof(*page), GFP_KERNEL); 70 if (!page) 71 return NULL; 72 73 backing_store = (void *) __get_free_pages(GFP_KERNEL, 74 get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); 75 if (!backing_store) 76 goto fail_alloc_signal_store; 77 78 /* Initialize all events to unsignaled */ 79 memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT, 80 KFD_SIGNAL_EVENT_LIMIT * 8); 81 82 page->kernel_address = backing_store; 83 page->need_to_free_pages = true; 84 pr_debug("Allocated new event signal page at %p, for process %p\n", 85 page, p); 86 87 return page; 88 89 fail_alloc_signal_store: 90 kfree(page); 91 return NULL; 92 } 93 94 static int allocate_event_notification_slot(struct kfd_process *p, 95 struct kfd_event *ev, 96 const int *restore_id) 97 { 98 int id; 99 100 if (!p->signal_page) { 101 p->signal_page = allocate_signal_page(p); 102 if (!p->signal_page) 103 return -ENOMEM; 104 /* Oldest user mode expects 256 event slots */ 105 p->signal_mapped_size = 256*8; 106 } 107 108 if (restore_id) { 109 id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1, 110 GFP_KERNEL); 111 } else { 112 /* 113 * Compatibility with old user mode: Only use signal slots 114 * user mode has mapped, may be less than 115 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase 116 * of the event limit without breaking user mode. 117 */ 118 id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8, 119 GFP_KERNEL); 120 } 121 if (id < 0) 122 return id; 123 124 ev->event_id = id; 125 page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT; 126 127 return 0; 128 } 129 130 /* 131 * Assumes that p->event_mutex or rcu_readlock is held and of course that p is 132 * not going away. 133 */ 134 static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id) 135 { 136 return idr_find(&p->event_idr, id); 137 } 138 139 /** 140 * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID 141 * @p: Pointer to struct kfd_process 142 * @id: ID to look up 143 * @bits: Number of valid bits in @id 144 * 145 * Finds the first signaled event with a matching partial ID. If no 146 * matching signaled event is found, returns NULL. In that case the 147 * caller should assume that the partial ID is invalid and do an 148 * exhaustive search of all siglaned events. 149 * 150 * If multiple events with the same partial ID signal at the same 151 * time, they will be found one interrupt at a time, not necessarily 152 * in the same order the interrupts occurred. As long as the number of 153 * interrupts is correct, all signaled events will be seen by the 154 * driver. 155 */ 156 static struct kfd_event *lookup_signaled_event_by_partial_id( 157 struct kfd_process *p, uint32_t id, uint32_t bits) 158 { 159 struct kfd_event *ev; 160 161 if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT) 162 return NULL; 163 164 /* Fast path for the common case that @id is not a partial ID 165 * and we only need a single lookup. 166 */ 167 if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) { 168 if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) 169 return NULL; 170 171 return idr_find(&p->event_idr, id); 172 } 173 174 /* General case for partial IDs: Iterate over all matching IDs 175 * and find the first one that has signaled. 176 */ 177 for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) { 178 if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) 179 continue; 180 181 ev = idr_find(&p->event_idr, id); 182 } 183 184 return ev; 185 } 186 187 static int create_signal_event(struct file *devkfd, struct kfd_process *p, 188 struct kfd_event *ev, const int *restore_id) 189 { 190 int ret; 191 192 if (p->signal_mapped_size && 193 p->signal_event_count == p->signal_mapped_size / 8) { 194 if (!p->signal_event_limit_reached) { 195 pr_debug("Signal event wasn't created because limit was reached\n"); 196 p->signal_event_limit_reached = true; 197 } 198 return -ENOSPC; 199 } 200 201 ret = allocate_event_notification_slot(p, ev, restore_id); 202 if (ret) { 203 pr_warn("Signal event wasn't created because out of kernel memory\n"); 204 return ret; 205 } 206 207 p->signal_event_count++; 208 209 ev->user_signal_address = &p->signal_page->user_address[ev->event_id]; 210 pr_debug("Signal event number %zu created with id %d, address %p\n", 211 p->signal_event_count, ev->event_id, 212 ev->user_signal_address); 213 214 return 0; 215 } 216 217 static int create_other_event(struct kfd_process *p, struct kfd_event *ev, const int *restore_id) 218 { 219 int id; 220 221 if (restore_id) 222 id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1, 223 GFP_KERNEL); 224 else 225 /* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an 226 * intentional integer overflow to -1 without a compiler 227 * warning. idr_alloc treats a negative value as "maximum 228 * signed integer". 229 */ 230 id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID, 231 (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1, 232 GFP_KERNEL); 233 234 if (id < 0) 235 return id; 236 ev->event_id = id; 237 238 return 0; 239 } 240 241 int kfd_event_init_process(struct kfd_process *p) 242 { 243 int id; 244 245 mutex_init(&p->event_mutex); 246 idr_init(&p->event_idr); 247 p->signal_page = NULL; 248 p->signal_event_count = 1; 249 /* Allocate event ID 0. It is used for a fast path to ignore bogus events 250 * that are sent by the CP without a context ID 251 */ 252 id = idr_alloc(&p->event_idr, NULL, 0, 1, GFP_KERNEL); 253 if (id < 0) { 254 idr_destroy(&p->event_idr); 255 mutex_destroy(&p->event_mutex); 256 return id; 257 } 258 return 0; 259 } 260 261 static void destroy_event(struct kfd_process *p, struct kfd_event *ev) 262 { 263 struct kfd_event_waiter *waiter; 264 265 /* Wake up pending waiters. They will return failure */ 266 spin_lock(&ev->lock); 267 list_for_each_entry(waiter, &ev->wq.head, wait.entry) 268 WRITE_ONCE(waiter->event, NULL); 269 wake_up_all(&ev->wq); 270 spin_unlock(&ev->lock); 271 272 if (ev->type == KFD_EVENT_TYPE_SIGNAL || 273 ev->type == KFD_EVENT_TYPE_DEBUG) 274 p->signal_event_count--; 275 276 idr_remove(&p->event_idr, ev->event_id); 277 kfree_rcu(ev, rcu); 278 } 279 280 static void destroy_events(struct kfd_process *p) 281 { 282 struct kfd_event *ev; 283 uint32_t id; 284 285 idr_for_each_entry(&p->event_idr, ev, id) 286 if (ev) 287 destroy_event(p, ev); 288 idr_destroy(&p->event_idr); 289 mutex_destroy(&p->event_mutex); 290 } 291 292 /* 293 * We assume that the process is being destroyed and there is no need to 294 * unmap the pages or keep bookkeeping data in order. 295 */ 296 static void shutdown_signal_page(struct kfd_process *p) 297 { 298 struct kfd_signal_page *page = p->signal_page; 299 300 if (page) { 301 if (page->need_to_free_pages) 302 free_pages((unsigned long)page->kernel_address, 303 get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); 304 kfree(page); 305 } 306 } 307 308 void kfd_event_free_process(struct kfd_process *p) 309 { 310 destroy_events(p); 311 shutdown_signal_page(p); 312 } 313 314 static bool event_can_be_gpu_signaled(const struct kfd_event *ev) 315 { 316 return ev->type == KFD_EVENT_TYPE_SIGNAL || 317 ev->type == KFD_EVENT_TYPE_DEBUG; 318 } 319 320 static bool event_can_be_cpu_signaled(const struct kfd_event *ev) 321 { 322 return ev->type == KFD_EVENT_TYPE_SIGNAL; 323 } 324 325 static int kfd_event_page_set(struct kfd_process *p, void *kernel_address, 326 uint64_t size, uint64_t user_handle) 327 { 328 struct kfd_signal_page *page; 329 330 if (p->signal_page) 331 return -EBUSY; 332 333 page = kzalloc(sizeof(*page), GFP_KERNEL); 334 if (!page) 335 return -ENOMEM; 336 337 /* Initialize all events to unsignaled */ 338 memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT, 339 KFD_SIGNAL_EVENT_LIMIT * 8); 340 341 page->kernel_address = kernel_address; 342 343 p->signal_page = page; 344 p->signal_mapped_size = size; 345 p->signal_handle = user_handle; 346 return 0; 347 } 348 349 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset) 350 { 351 struct kfd_dev *kfd; 352 struct kfd_process_device *pdd; 353 void *mem, *kern_addr; 354 uint64_t size; 355 int err = 0; 356 357 if (p->signal_page) { 358 pr_err("Event page is already set\n"); 359 return -EINVAL; 360 } 361 362 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(event_page_offset)); 363 if (!pdd) { 364 pr_err("Getting device by id failed in %s\n", __func__); 365 return -EINVAL; 366 } 367 kfd = pdd->dev; 368 369 pdd = kfd_bind_process_to_device(kfd, p); 370 if (IS_ERR(pdd)) 371 return PTR_ERR(pdd); 372 373 mem = kfd_process_device_translate_handle(pdd, 374 GET_IDR_HANDLE(event_page_offset)); 375 if (!mem) { 376 pr_err("Can't find BO, offset is 0x%llx\n", event_page_offset); 377 return -EINVAL; 378 } 379 380 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(mem, &kern_addr, &size); 381 if (err) { 382 pr_err("Failed to map event page to kernel\n"); 383 return err; 384 } 385 386 err = kfd_event_page_set(p, kern_addr, size, event_page_offset); 387 if (err) { 388 pr_err("Failed to set event page\n"); 389 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 390 return err; 391 } 392 return err; 393 } 394 395 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 396 uint32_t event_type, bool auto_reset, uint32_t node_id, 397 uint32_t *event_id, uint32_t *event_trigger_data, 398 uint64_t *event_page_offset, uint32_t *event_slot_index) 399 { 400 int ret = 0; 401 struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL); 402 403 if (!ev) 404 return -ENOMEM; 405 406 ev->type = event_type; 407 ev->auto_reset = auto_reset; 408 ev->signaled = false; 409 410 spin_lock_init(&ev->lock); 411 init_waitqueue_head(&ev->wq); 412 413 *event_page_offset = 0; 414 415 mutex_lock(&p->event_mutex); 416 417 switch (event_type) { 418 case KFD_EVENT_TYPE_SIGNAL: 419 case KFD_EVENT_TYPE_DEBUG: 420 ret = create_signal_event(devkfd, p, ev, NULL); 421 if (!ret) { 422 *event_page_offset = KFD_MMAP_TYPE_EVENTS; 423 *event_slot_index = ev->event_id; 424 } 425 break; 426 default: 427 ret = create_other_event(p, ev, NULL); 428 break; 429 } 430 431 if (!ret) { 432 *event_id = ev->event_id; 433 *event_trigger_data = ev->event_id; 434 } else { 435 kfree(ev); 436 } 437 438 mutex_unlock(&p->event_mutex); 439 440 return ret; 441 } 442 443 int kfd_criu_restore_event(struct file *devkfd, 444 struct kfd_process *p, 445 uint8_t __user *user_priv_ptr, 446 uint64_t *priv_data_offset, 447 uint64_t max_priv_data_size) 448 { 449 struct kfd_criu_event_priv_data *ev_priv; 450 struct kfd_event *ev = NULL; 451 int ret = 0; 452 453 ev_priv = kmalloc(sizeof(*ev_priv), GFP_KERNEL); 454 if (!ev_priv) 455 return -ENOMEM; 456 457 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 458 if (!ev) { 459 ret = -ENOMEM; 460 goto exit; 461 } 462 463 if (*priv_data_offset + sizeof(*ev_priv) > max_priv_data_size) { 464 ret = -EINVAL; 465 goto exit; 466 } 467 468 ret = copy_from_user(ev_priv, user_priv_ptr + *priv_data_offset, sizeof(*ev_priv)); 469 if (ret) { 470 ret = -EFAULT; 471 goto exit; 472 } 473 *priv_data_offset += sizeof(*ev_priv); 474 475 if (ev_priv->user_handle) { 476 ret = kfd_kmap_event_page(p, ev_priv->user_handle); 477 if (ret) 478 goto exit; 479 } 480 481 ev->type = ev_priv->type; 482 ev->auto_reset = ev_priv->auto_reset; 483 ev->signaled = ev_priv->signaled; 484 485 spin_lock_init(&ev->lock); 486 init_waitqueue_head(&ev->wq); 487 488 mutex_lock(&p->event_mutex); 489 switch (ev->type) { 490 case KFD_EVENT_TYPE_SIGNAL: 491 case KFD_EVENT_TYPE_DEBUG: 492 ret = create_signal_event(devkfd, p, ev, &ev_priv->event_id); 493 break; 494 case KFD_EVENT_TYPE_MEMORY: 495 memcpy(&ev->memory_exception_data, 496 &ev_priv->memory_exception_data, 497 sizeof(struct kfd_hsa_memory_exception_data)); 498 499 ret = create_other_event(p, ev, &ev_priv->event_id); 500 break; 501 case KFD_EVENT_TYPE_HW_EXCEPTION: 502 memcpy(&ev->hw_exception_data, 503 &ev_priv->hw_exception_data, 504 sizeof(struct kfd_hsa_hw_exception_data)); 505 506 ret = create_other_event(p, ev, &ev_priv->event_id); 507 break; 508 } 509 mutex_unlock(&p->event_mutex); 510 511 exit: 512 if (ret) 513 kfree(ev); 514 515 kfree(ev_priv); 516 517 return ret; 518 } 519 520 int kfd_criu_checkpoint_events(struct kfd_process *p, 521 uint8_t __user *user_priv_data, 522 uint64_t *priv_data_offset) 523 { 524 struct kfd_criu_event_priv_data *ev_privs; 525 int i = 0; 526 int ret = 0; 527 struct kfd_event *ev; 528 uint32_t ev_id; 529 530 uint32_t num_events = kfd_get_num_events(p); 531 532 if (!num_events) 533 return 0; 534 535 ev_privs = kvzalloc(num_events * sizeof(*ev_privs), GFP_KERNEL); 536 if (!ev_privs) 537 return -ENOMEM; 538 539 540 idr_for_each_entry(&p->event_idr, ev, ev_id) { 541 struct kfd_criu_event_priv_data *ev_priv; 542 543 /* 544 * Currently, all events have same size of private_data, but the current ioctl's 545 * and CRIU plugin supports private_data of variable sizes 546 */ 547 ev_priv = &ev_privs[i]; 548 549 ev_priv->object_type = KFD_CRIU_OBJECT_TYPE_EVENT; 550 551 /* We store the user_handle with the first event */ 552 if (i == 0 && p->signal_page) 553 ev_priv->user_handle = p->signal_handle; 554 555 ev_priv->event_id = ev->event_id; 556 ev_priv->auto_reset = ev->auto_reset; 557 ev_priv->type = ev->type; 558 ev_priv->signaled = ev->signaled; 559 560 if (ev_priv->type == KFD_EVENT_TYPE_MEMORY) 561 memcpy(&ev_priv->memory_exception_data, 562 &ev->memory_exception_data, 563 sizeof(struct kfd_hsa_memory_exception_data)); 564 else if (ev_priv->type == KFD_EVENT_TYPE_HW_EXCEPTION) 565 memcpy(&ev_priv->hw_exception_data, 566 &ev->hw_exception_data, 567 sizeof(struct kfd_hsa_hw_exception_data)); 568 569 pr_debug("Checkpointed event[%d] id = 0x%08x auto_reset = %x type = %x signaled = %x\n", 570 i, 571 ev_priv->event_id, 572 ev_priv->auto_reset, 573 ev_priv->type, 574 ev_priv->signaled); 575 i++; 576 } 577 578 ret = copy_to_user(user_priv_data + *priv_data_offset, 579 ev_privs, num_events * sizeof(*ev_privs)); 580 if (ret) { 581 pr_err("Failed to copy events priv to user\n"); 582 ret = -EFAULT; 583 } 584 585 *priv_data_offset += num_events * sizeof(*ev_privs); 586 587 kvfree(ev_privs); 588 return ret; 589 } 590 591 int kfd_get_num_events(struct kfd_process *p) 592 { 593 struct kfd_event *ev; 594 uint32_t id; 595 u32 num_events = 0; 596 597 idr_for_each_entry(&p->event_idr, ev, id) 598 num_events++; 599 600 return num_events; 601 } 602 603 /* Assumes that p is current. */ 604 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id) 605 { 606 struct kfd_event *ev; 607 int ret = 0; 608 609 mutex_lock(&p->event_mutex); 610 611 ev = lookup_event_by_id(p, event_id); 612 613 if (ev) 614 destroy_event(p, ev); 615 else 616 ret = -EINVAL; 617 618 mutex_unlock(&p->event_mutex); 619 return ret; 620 } 621 622 static void set_event(struct kfd_event *ev) 623 { 624 struct kfd_event_waiter *waiter; 625 626 /* Auto reset if the list is non-empty and we're waking 627 * someone. waitqueue_active is safe here because we're 628 * protected by the ev->lock, which is also held when 629 * updating the wait queues in kfd_wait_on_events. 630 */ 631 ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq); 632 633 list_for_each_entry(waiter, &ev->wq.head, wait.entry) 634 WRITE_ONCE(waiter->activated, true); 635 636 wake_up_all(&ev->wq); 637 } 638 639 /* Assumes that p is current. */ 640 int kfd_set_event(struct kfd_process *p, uint32_t event_id) 641 { 642 int ret = 0; 643 struct kfd_event *ev; 644 645 rcu_read_lock(); 646 647 ev = lookup_event_by_id(p, event_id); 648 if (!ev) { 649 ret = -EINVAL; 650 goto unlock_rcu; 651 } 652 spin_lock(&ev->lock); 653 654 if (event_can_be_cpu_signaled(ev)) 655 set_event(ev); 656 else 657 ret = -EINVAL; 658 659 spin_unlock(&ev->lock); 660 unlock_rcu: 661 rcu_read_unlock(); 662 return ret; 663 } 664 665 static void reset_event(struct kfd_event *ev) 666 { 667 ev->signaled = false; 668 } 669 670 /* Assumes that p is current. */ 671 int kfd_reset_event(struct kfd_process *p, uint32_t event_id) 672 { 673 int ret = 0; 674 struct kfd_event *ev; 675 676 rcu_read_lock(); 677 678 ev = lookup_event_by_id(p, event_id); 679 if (!ev) { 680 ret = -EINVAL; 681 goto unlock_rcu; 682 } 683 spin_lock(&ev->lock); 684 685 if (event_can_be_cpu_signaled(ev)) 686 reset_event(ev); 687 else 688 ret = -EINVAL; 689 690 spin_unlock(&ev->lock); 691 unlock_rcu: 692 rcu_read_unlock(); 693 return ret; 694 695 } 696 697 static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev) 698 { 699 WRITE_ONCE(page_slots(p->signal_page)[ev->event_id], UNSIGNALED_EVENT_SLOT); 700 } 701 702 static void set_event_from_interrupt(struct kfd_process *p, 703 struct kfd_event *ev) 704 { 705 if (ev && event_can_be_gpu_signaled(ev)) { 706 acknowledge_signal(p, ev); 707 spin_lock(&ev->lock); 708 set_event(ev); 709 spin_unlock(&ev->lock); 710 } 711 } 712 713 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, 714 uint32_t valid_id_bits) 715 { 716 struct kfd_event *ev = NULL; 717 718 /* 719 * Because we are called from arbitrary context (workqueue) as opposed 720 * to process context, kfd_process could attempt to exit while we are 721 * running so the lookup function increments the process ref count. 722 */ 723 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 724 725 if (!p) 726 return; /* Presumably process exited. */ 727 728 rcu_read_lock(); 729 730 if (valid_id_bits) 731 ev = lookup_signaled_event_by_partial_id(p, partial_id, 732 valid_id_bits); 733 if (ev) { 734 set_event_from_interrupt(p, ev); 735 } else if (p->signal_page) { 736 /* 737 * Partial ID lookup failed. Assume that the event ID 738 * in the interrupt payload was invalid and do an 739 * exhaustive search of signaled events. 740 */ 741 uint64_t *slots = page_slots(p->signal_page); 742 uint32_t id; 743 744 if (valid_id_bits) 745 pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n", 746 partial_id, valid_id_bits); 747 748 if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) { 749 /* With relatively few events, it's faster to 750 * iterate over the event IDR 751 */ 752 idr_for_each_entry(&p->event_idr, ev, id) { 753 if (id >= KFD_SIGNAL_EVENT_LIMIT) 754 break; 755 756 if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) 757 set_event_from_interrupt(p, ev); 758 } 759 } else { 760 /* With relatively many events, it's faster to 761 * iterate over the signal slots and lookup 762 * only signaled events from the IDR. 763 */ 764 for (id = 1; id < KFD_SIGNAL_EVENT_LIMIT; id++) 765 if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) { 766 ev = lookup_event_by_id(p, id); 767 set_event_from_interrupt(p, ev); 768 } 769 } 770 } 771 772 rcu_read_unlock(); 773 kfd_unref_process(p); 774 } 775 776 static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events) 777 { 778 struct kfd_event_waiter *event_waiters; 779 uint32_t i; 780 781 event_waiters = kmalloc_array(num_events, 782 sizeof(struct kfd_event_waiter), 783 GFP_KERNEL); 784 if (!event_waiters) 785 return NULL; 786 787 for (i = 0; (event_waiters) && (i < num_events) ; i++) { 788 init_wait(&event_waiters[i].wait); 789 event_waiters[i].activated = false; 790 } 791 792 return event_waiters; 793 } 794 795 static int init_event_waiter(struct kfd_process *p, 796 struct kfd_event_waiter *waiter, 797 uint32_t event_id) 798 { 799 struct kfd_event *ev = lookup_event_by_id(p, event_id); 800 801 if (!ev) 802 return -EINVAL; 803 804 spin_lock(&ev->lock); 805 waiter->event = ev; 806 waiter->activated = ev->signaled; 807 ev->signaled = ev->signaled && !ev->auto_reset; 808 if (!waiter->activated) 809 add_wait_queue(&ev->wq, &waiter->wait); 810 spin_unlock(&ev->lock); 811 812 return 0; 813 } 814 815 /* test_event_condition - Test condition of events being waited for 816 * @all: Return completion only if all events have signaled 817 * @num_events: Number of events to wait for 818 * @event_waiters: Array of event waiters, one per event 819 * 820 * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have 821 * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all) 822 * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of 823 * the events have been destroyed. 824 */ 825 static uint32_t test_event_condition(bool all, uint32_t num_events, 826 struct kfd_event_waiter *event_waiters) 827 { 828 uint32_t i; 829 uint32_t activated_count = 0; 830 831 for (i = 0; i < num_events; i++) { 832 if (!READ_ONCE(event_waiters[i].event)) 833 return KFD_IOC_WAIT_RESULT_FAIL; 834 835 if (READ_ONCE(event_waiters[i].activated)) { 836 if (!all) 837 return KFD_IOC_WAIT_RESULT_COMPLETE; 838 839 activated_count++; 840 } 841 } 842 843 return activated_count == num_events ? 844 KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT; 845 } 846 847 /* 848 * Copy event specific data, if defined. 849 * Currently only memory exception events have additional data to copy to user 850 */ 851 static int copy_signaled_event_data(uint32_t num_events, 852 struct kfd_event_waiter *event_waiters, 853 struct kfd_event_data __user *data) 854 { 855 struct kfd_hsa_memory_exception_data *src; 856 struct kfd_hsa_memory_exception_data __user *dst; 857 struct kfd_event_waiter *waiter; 858 struct kfd_event *event; 859 uint32_t i; 860 861 for (i = 0; i < num_events; i++) { 862 waiter = &event_waiters[i]; 863 event = waiter->event; 864 if (!event) 865 return -EINVAL; /* event was destroyed */ 866 if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) { 867 dst = &data[i].memory_exception_data; 868 src = &event->memory_exception_data; 869 if (copy_to_user(dst, src, 870 sizeof(struct kfd_hsa_memory_exception_data))) 871 return -EFAULT; 872 } 873 } 874 875 return 0; 876 } 877 878 static long user_timeout_to_jiffies(uint32_t user_timeout_ms) 879 { 880 if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE) 881 return 0; 882 883 if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE) 884 return MAX_SCHEDULE_TIMEOUT; 885 886 /* 887 * msecs_to_jiffies interprets all values above 2^31-1 as infinite, 888 * but we consider them finite. 889 * This hack is wrong, but nobody is likely to notice. 890 */ 891 user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF); 892 893 return msecs_to_jiffies(user_timeout_ms) + 1; 894 } 895 896 static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters, 897 bool undo_auto_reset) 898 { 899 uint32_t i; 900 901 for (i = 0; i < num_events; i++) 902 if (waiters[i].event) { 903 spin_lock(&waiters[i].event->lock); 904 remove_wait_queue(&waiters[i].event->wq, 905 &waiters[i].wait); 906 if (undo_auto_reset && waiters[i].activated && 907 waiters[i].event && waiters[i].event->auto_reset) 908 set_event(waiters[i].event); 909 spin_unlock(&waiters[i].event->lock); 910 } 911 912 kfree(waiters); 913 } 914 915 int kfd_wait_on_events(struct kfd_process *p, 916 uint32_t num_events, void __user *data, 917 bool all, uint32_t *user_timeout_ms, 918 uint32_t *wait_result) 919 { 920 struct kfd_event_data __user *events = 921 (struct kfd_event_data __user *) data; 922 uint32_t i; 923 int ret = 0; 924 925 struct kfd_event_waiter *event_waiters = NULL; 926 long timeout = user_timeout_to_jiffies(*user_timeout_ms); 927 928 event_waiters = alloc_event_waiters(num_events); 929 if (!event_waiters) { 930 ret = -ENOMEM; 931 goto out; 932 } 933 934 /* Use p->event_mutex here to protect against concurrent creation and 935 * destruction of events while we initialize event_waiters. 936 */ 937 mutex_lock(&p->event_mutex); 938 939 for (i = 0; i < num_events; i++) { 940 struct kfd_event_data event_data; 941 942 if (copy_from_user(&event_data, &events[i], 943 sizeof(struct kfd_event_data))) { 944 ret = -EFAULT; 945 goto out_unlock; 946 } 947 948 ret = init_event_waiter(p, &event_waiters[i], 949 event_data.event_id); 950 if (ret) 951 goto out_unlock; 952 } 953 954 /* Check condition once. */ 955 *wait_result = test_event_condition(all, num_events, event_waiters); 956 if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) { 957 ret = copy_signaled_event_data(num_events, 958 event_waiters, events); 959 goto out_unlock; 960 } else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) { 961 /* This should not happen. Events shouldn't be 962 * destroyed while we're holding the event_mutex 963 */ 964 goto out_unlock; 965 } 966 967 mutex_unlock(&p->event_mutex); 968 969 while (true) { 970 if (fatal_signal_pending(current)) { 971 ret = -EINTR; 972 break; 973 } 974 975 if (signal_pending(current)) { 976 ret = -ERESTARTSYS; 977 if (*user_timeout_ms != KFD_EVENT_TIMEOUT_IMMEDIATE && 978 *user_timeout_ms != KFD_EVENT_TIMEOUT_INFINITE) 979 *user_timeout_ms = jiffies_to_msecs( 980 max(0l, timeout-1)); 981 break; 982 } 983 984 /* Set task state to interruptible sleep before 985 * checking wake-up conditions. A concurrent wake-up 986 * will put the task back into runnable state. In that 987 * case schedule_timeout will not put the task to 988 * sleep and we'll get a chance to re-check the 989 * updated conditions almost immediately. Otherwise, 990 * this race condition would lead to a soft hang or a 991 * very long sleep. 992 */ 993 set_current_state(TASK_INTERRUPTIBLE); 994 995 *wait_result = test_event_condition(all, num_events, 996 event_waiters); 997 if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT) 998 break; 999 1000 if (timeout <= 0) 1001 break; 1002 1003 timeout = schedule_timeout(timeout); 1004 } 1005 __set_current_state(TASK_RUNNING); 1006 1007 mutex_lock(&p->event_mutex); 1008 /* copy_signaled_event_data may sleep. So this has to happen 1009 * after the task state is set back to RUNNING. 1010 * 1011 * The event may also have been destroyed after signaling. So 1012 * copy_signaled_event_data also must confirm that the event 1013 * still exists. Therefore this must be under the p->event_mutex 1014 * which is also held when events are destroyed. 1015 */ 1016 if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) 1017 ret = copy_signaled_event_data(num_events, 1018 event_waiters, events); 1019 1020 out_unlock: 1021 free_waiters(num_events, event_waiters, ret == -ERESTARTSYS); 1022 mutex_unlock(&p->event_mutex); 1023 out: 1024 if (ret) 1025 *wait_result = KFD_IOC_WAIT_RESULT_FAIL; 1026 else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL) 1027 ret = -EIO; 1028 1029 return ret; 1030 } 1031 1032 int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma) 1033 { 1034 unsigned long pfn; 1035 struct kfd_signal_page *page; 1036 int ret; 1037 1038 /* check required size doesn't exceed the allocated size */ 1039 if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) < 1040 get_order(vma->vm_end - vma->vm_start)) { 1041 pr_err("Event page mmap requested illegal size\n"); 1042 return -EINVAL; 1043 } 1044 1045 page = p->signal_page; 1046 if (!page) { 1047 /* Probably KFD bug, but mmap is user-accessible. */ 1048 pr_debug("Signal page could not be found\n"); 1049 return -EINVAL; 1050 } 1051 1052 pfn = __pa(page->kernel_address); 1053 pfn >>= PAGE_SHIFT; 1054 1055 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE 1056 | VM_DONTDUMP | VM_PFNMAP; 1057 1058 pr_debug("Mapping signal page\n"); 1059 pr_debug(" start user address == 0x%08lx\n", vma->vm_start); 1060 pr_debug(" end user address == 0x%08lx\n", vma->vm_end); 1061 pr_debug(" pfn == 0x%016lX\n", pfn); 1062 pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags); 1063 pr_debug(" size == 0x%08lX\n", 1064 vma->vm_end - vma->vm_start); 1065 1066 page->user_address = (uint64_t __user *)vma->vm_start; 1067 1068 /* mapping the page to user process */ 1069 ret = remap_pfn_range(vma, vma->vm_start, pfn, 1070 vma->vm_end - vma->vm_start, vma->vm_page_prot); 1071 if (!ret) 1072 p->signal_mapped_size = vma->vm_end - vma->vm_start; 1073 1074 return ret; 1075 } 1076 1077 /* 1078 * Assumes that p is not going away. 1079 */ 1080 static void lookup_events_by_type_and_signal(struct kfd_process *p, 1081 int type, void *event_data) 1082 { 1083 struct kfd_hsa_memory_exception_data *ev_data; 1084 struct kfd_event *ev; 1085 uint32_t id; 1086 bool send_signal = true; 1087 1088 ev_data = (struct kfd_hsa_memory_exception_data *) event_data; 1089 1090 rcu_read_lock(); 1091 1092 id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1093 idr_for_each_entry_continue(&p->event_idr, ev, id) 1094 if (ev->type == type) { 1095 send_signal = false; 1096 dev_dbg(kfd_device, 1097 "Event found: id %X type %d", 1098 ev->event_id, ev->type); 1099 spin_lock(&ev->lock); 1100 set_event(ev); 1101 if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data) 1102 ev->memory_exception_data = *ev_data; 1103 spin_unlock(&ev->lock); 1104 } 1105 1106 if (type == KFD_EVENT_TYPE_MEMORY) { 1107 dev_warn(kfd_device, 1108 "Sending SIGSEGV to process %d (pasid 0x%x)", 1109 p->lead_thread->pid, p->pasid); 1110 send_sig(SIGSEGV, p->lead_thread, 0); 1111 } 1112 1113 /* Send SIGTERM no event of type "type" has been found*/ 1114 if (send_signal) { 1115 if (send_sigterm) { 1116 dev_warn(kfd_device, 1117 "Sending SIGTERM to process %d (pasid 0x%x)", 1118 p->lead_thread->pid, p->pasid); 1119 send_sig(SIGTERM, p->lead_thread, 0); 1120 } else { 1121 dev_err(kfd_device, 1122 "Process %d (pasid 0x%x) got unhandled exception", 1123 p->lead_thread->pid, p->pasid); 1124 } 1125 } 1126 1127 rcu_read_unlock(); 1128 } 1129 1130 #ifdef KFD_SUPPORT_IOMMU_V2 1131 void kfd_signal_iommu_event(struct kfd_dev *dev, u32 pasid, 1132 unsigned long address, bool is_write_requested, 1133 bool is_execute_requested) 1134 { 1135 struct kfd_hsa_memory_exception_data memory_exception_data; 1136 struct vm_area_struct *vma; 1137 int user_gpu_id; 1138 1139 /* 1140 * Because we are called from arbitrary context (workqueue) as opposed 1141 * to process context, kfd_process could attempt to exit while we are 1142 * running so the lookup function increments the process ref count. 1143 */ 1144 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1145 struct mm_struct *mm; 1146 1147 if (!p) 1148 return; /* Presumably process exited. */ 1149 1150 /* Take a safe reference to the mm_struct, which may otherwise 1151 * disappear even while the kfd_process is still referenced. 1152 */ 1153 mm = get_task_mm(p->lead_thread); 1154 if (!mm) { 1155 kfd_unref_process(p); 1156 return; /* Process is exiting */ 1157 } 1158 1159 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); 1160 if (unlikely(user_gpu_id == -EINVAL)) { 1161 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); 1162 return; 1163 } 1164 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 1165 1166 mmap_read_lock(mm); 1167 vma = find_vma(mm, address); 1168 1169 memory_exception_data.gpu_id = user_gpu_id; 1170 memory_exception_data.va = address; 1171 /* Set failure reason */ 1172 memory_exception_data.failure.NotPresent = 1; 1173 memory_exception_data.failure.NoExecute = 0; 1174 memory_exception_data.failure.ReadOnly = 0; 1175 if (vma && address >= vma->vm_start) { 1176 memory_exception_data.failure.NotPresent = 0; 1177 1178 if (is_write_requested && !(vma->vm_flags & VM_WRITE)) 1179 memory_exception_data.failure.ReadOnly = 1; 1180 else 1181 memory_exception_data.failure.ReadOnly = 0; 1182 1183 if (is_execute_requested && !(vma->vm_flags & VM_EXEC)) 1184 memory_exception_data.failure.NoExecute = 1; 1185 else 1186 memory_exception_data.failure.NoExecute = 0; 1187 } 1188 1189 mmap_read_unlock(mm); 1190 mmput(mm); 1191 1192 pr_debug("notpresent %d, noexecute %d, readonly %d\n", 1193 memory_exception_data.failure.NotPresent, 1194 memory_exception_data.failure.NoExecute, 1195 memory_exception_data.failure.ReadOnly); 1196 1197 /* Workaround on Raven to not kill the process when memory is freed 1198 * before IOMMU is able to finish processing all the excessive PPRs 1199 */ 1200 1201 if (KFD_GC_VERSION(dev) != IP_VERSION(9, 1, 0) && 1202 KFD_GC_VERSION(dev) != IP_VERSION(9, 2, 2) && 1203 KFD_GC_VERSION(dev) != IP_VERSION(9, 3, 0)) 1204 lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY, 1205 &memory_exception_data); 1206 1207 kfd_unref_process(p); 1208 } 1209 #endif /* KFD_SUPPORT_IOMMU_V2 */ 1210 1211 void kfd_signal_hw_exception_event(u32 pasid) 1212 { 1213 /* 1214 * Because we are called from arbitrary context (workqueue) as opposed 1215 * to process context, kfd_process could attempt to exit while we are 1216 * running so the lookup function increments the process ref count. 1217 */ 1218 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1219 1220 if (!p) 1221 return; /* Presumably process exited. */ 1222 1223 lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL); 1224 kfd_unref_process(p); 1225 } 1226 1227 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid, 1228 struct kfd_vm_fault_info *info) 1229 { 1230 struct kfd_event *ev; 1231 uint32_t id; 1232 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1233 struct kfd_hsa_memory_exception_data memory_exception_data; 1234 int user_gpu_id; 1235 1236 if (!p) 1237 return; /* Presumably process exited. */ 1238 1239 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); 1240 if (unlikely(user_gpu_id == -EINVAL)) { 1241 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); 1242 return; 1243 } 1244 1245 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 1246 memory_exception_data.gpu_id = user_gpu_id; 1247 memory_exception_data.failure.imprecise = true; 1248 /* Set failure reason */ 1249 if (info) { 1250 memory_exception_data.va = (info->page_addr) << PAGE_SHIFT; 1251 memory_exception_data.failure.NotPresent = 1252 info->prot_valid ? 1 : 0; 1253 memory_exception_data.failure.NoExecute = 1254 info->prot_exec ? 1 : 0; 1255 memory_exception_data.failure.ReadOnly = 1256 info->prot_write ? 1 : 0; 1257 memory_exception_data.failure.imprecise = 0; 1258 } 1259 1260 rcu_read_lock(); 1261 1262 id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1263 idr_for_each_entry_continue(&p->event_idr, ev, id) 1264 if (ev->type == KFD_EVENT_TYPE_MEMORY) { 1265 spin_lock(&ev->lock); 1266 ev->memory_exception_data = memory_exception_data; 1267 set_event(ev); 1268 spin_unlock(&ev->lock); 1269 } 1270 1271 rcu_read_unlock(); 1272 kfd_unref_process(p); 1273 } 1274 1275 void kfd_signal_reset_event(struct kfd_dev *dev) 1276 { 1277 struct kfd_hsa_hw_exception_data hw_exception_data; 1278 struct kfd_hsa_memory_exception_data memory_exception_data; 1279 struct kfd_process *p; 1280 struct kfd_event *ev; 1281 unsigned int temp; 1282 uint32_t id, idx; 1283 int reset_cause = atomic_read(&dev->sram_ecc_flag) ? 1284 KFD_HW_EXCEPTION_ECC : 1285 KFD_HW_EXCEPTION_GPU_HANG; 1286 1287 /* Whole gpu reset caused by GPU hang and memory is lost */ 1288 memset(&hw_exception_data, 0, sizeof(hw_exception_data)); 1289 hw_exception_data.memory_lost = 1; 1290 hw_exception_data.reset_cause = reset_cause; 1291 1292 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 1293 memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC; 1294 memory_exception_data.failure.imprecise = true; 1295 1296 idx = srcu_read_lock(&kfd_processes_srcu); 1297 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1298 int user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); 1299 1300 if (unlikely(user_gpu_id == -EINVAL)) { 1301 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); 1302 continue; 1303 } 1304 1305 rcu_read_lock(); 1306 1307 id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1308 idr_for_each_entry_continue(&p->event_idr, ev, id) { 1309 if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) { 1310 spin_lock(&ev->lock); 1311 ev->hw_exception_data = hw_exception_data; 1312 ev->hw_exception_data.gpu_id = user_gpu_id; 1313 set_event(ev); 1314 spin_unlock(&ev->lock); 1315 } 1316 if (ev->type == KFD_EVENT_TYPE_MEMORY && 1317 reset_cause == KFD_HW_EXCEPTION_ECC) { 1318 spin_lock(&ev->lock); 1319 ev->memory_exception_data = memory_exception_data; 1320 ev->memory_exception_data.gpu_id = user_gpu_id; 1321 set_event(ev); 1322 spin_unlock(&ev->lock); 1323 } 1324 } 1325 1326 rcu_read_unlock(); 1327 } 1328 srcu_read_unlock(&kfd_processes_srcu, idx); 1329 } 1330 1331 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid) 1332 { 1333 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1334 struct kfd_hsa_memory_exception_data memory_exception_data; 1335 struct kfd_hsa_hw_exception_data hw_exception_data; 1336 struct kfd_event *ev; 1337 uint32_t id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1338 int user_gpu_id; 1339 1340 if (!p) 1341 return; /* Presumably process exited. */ 1342 1343 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); 1344 if (unlikely(user_gpu_id == -EINVAL)) { 1345 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); 1346 return; 1347 } 1348 1349 memset(&hw_exception_data, 0, sizeof(hw_exception_data)); 1350 hw_exception_data.gpu_id = user_gpu_id; 1351 hw_exception_data.memory_lost = 1; 1352 hw_exception_data.reset_cause = KFD_HW_EXCEPTION_ECC; 1353 1354 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 1355 memory_exception_data.ErrorType = KFD_MEM_ERR_POISON_CONSUMED; 1356 memory_exception_data.gpu_id = user_gpu_id; 1357 memory_exception_data.failure.imprecise = true; 1358 1359 rcu_read_lock(); 1360 1361 idr_for_each_entry_continue(&p->event_idr, ev, id) { 1362 if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) { 1363 spin_lock(&ev->lock); 1364 ev->hw_exception_data = hw_exception_data; 1365 set_event(ev); 1366 spin_unlock(&ev->lock); 1367 } 1368 1369 if (ev->type == KFD_EVENT_TYPE_MEMORY) { 1370 spin_lock(&ev->lock); 1371 ev->memory_exception_data = memory_exception_data; 1372 set_event(ev); 1373 spin_unlock(&ev->lock); 1374 } 1375 } 1376 1377 rcu_read_unlock(); 1378 1379 /* user application will handle SIGBUS signal */ 1380 send_sig(SIGBUS, p->lead_thread, 0); 1381 1382 kfd_unref_process(p); 1383 } 1384