1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/mm_types.h> 25 #include <linux/slab.h> 26 #include <linux/types.h> 27 #include <linux/sched/signal.h> 28 #include <linux/sched/mm.h> 29 #include <linux/uaccess.h> 30 #include <linux/mman.h> 31 #include <linux/memory.h> 32 #include "kfd_priv.h" 33 #include "kfd_events.h" 34 #include "kfd_iommu.h" 35 #include <linux/device.h> 36 37 /* 38 * Wrapper around wait_queue_entry_t 39 */ 40 struct kfd_event_waiter { 41 wait_queue_entry_t wait; 42 struct kfd_event *event; /* Event to wait for */ 43 bool activated; /* Becomes true when event is signaled */ 44 }; 45 46 /* 47 * Each signal event needs a 64-bit signal slot where the signaler will write 48 * a 1 before sending an interrupt. (This is needed because some interrupts 49 * do not contain enough spare data bits to identify an event.) 50 * We get whole pages and map them to the process VA. 51 * Individual signal events use their event_id as slot index. 52 */ 53 struct kfd_signal_page { 54 uint64_t *kernel_address; 55 uint64_t __user *user_address; 56 bool need_to_free_pages; 57 }; 58 59 static uint64_t *page_slots(struct kfd_signal_page *page) 60 { 61 return page->kernel_address; 62 } 63 64 static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p) 65 { 66 void *backing_store; 67 struct kfd_signal_page *page; 68 69 page = kzalloc(sizeof(*page), GFP_KERNEL); 70 if (!page) 71 return NULL; 72 73 backing_store = (void *) __get_free_pages(GFP_KERNEL, 74 get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); 75 if (!backing_store) 76 goto fail_alloc_signal_store; 77 78 /* Initialize all events to unsignaled */ 79 memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT, 80 KFD_SIGNAL_EVENT_LIMIT * 8); 81 82 page->kernel_address = backing_store; 83 page->need_to_free_pages = true; 84 pr_debug("Allocated new event signal page at %p, for process %p\n", 85 page, p); 86 87 return page; 88 89 fail_alloc_signal_store: 90 kfree(page); 91 return NULL; 92 } 93 94 static int allocate_event_notification_slot(struct kfd_process *p, 95 struct kfd_event *ev, 96 const int *restore_id) 97 { 98 int id; 99 100 if (!p->signal_page) { 101 p->signal_page = allocate_signal_page(p); 102 if (!p->signal_page) 103 return -ENOMEM; 104 /* Oldest user mode expects 256 event slots */ 105 p->signal_mapped_size = 256*8; 106 } 107 108 if (restore_id) { 109 id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1, 110 GFP_KERNEL); 111 } else { 112 /* 113 * Compatibility with old user mode: Only use signal slots 114 * user mode has mapped, may be less than 115 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase 116 * of the event limit without breaking user mode. 117 */ 118 id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8, 119 GFP_KERNEL); 120 } 121 if (id < 0) 122 return id; 123 124 ev->event_id = id; 125 page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT; 126 127 return 0; 128 } 129 130 /* 131 * Assumes that p->event_mutex or rcu_readlock is held and of course that p is 132 * not going away. 133 */ 134 static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id) 135 { 136 return idr_find(&p->event_idr, id); 137 } 138 139 /** 140 * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID 141 * @p: Pointer to struct kfd_process 142 * @id: ID to look up 143 * @bits: Number of valid bits in @id 144 * 145 * Finds the first signaled event with a matching partial ID. If no 146 * matching signaled event is found, returns NULL. In that case the 147 * caller should assume that the partial ID is invalid and do an 148 * exhaustive search of all siglaned events. 149 * 150 * If multiple events with the same partial ID signal at the same 151 * time, they will be found one interrupt at a time, not necessarily 152 * in the same order the interrupts occurred. As long as the number of 153 * interrupts is correct, all signaled events will be seen by the 154 * driver. 155 */ 156 static struct kfd_event *lookup_signaled_event_by_partial_id( 157 struct kfd_process *p, uint32_t id, uint32_t bits) 158 { 159 struct kfd_event *ev; 160 161 if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT) 162 return NULL; 163 164 /* Fast path for the common case that @id is not a partial ID 165 * and we only need a single lookup. 166 */ 167 if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) { 168 if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) 169 return NULL; 170 171 return idr_find(&p->event_idr, id); 172 } 173 174 /* General case for partial IDs: Iterate over all matching IDs 175 * and find the first one that has signaled. 176 */ 177 for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) { 178 if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) 179 continue; 180 181 ev = idr_find(&p->event_idr, id); 182 } 183 184 return ev; 185 } 186 187 static int create_signal_event(struct file *devkfd, struct kfd_process *p, 188 struct kfd_event *ev, const int *restore_id) 189 { 190 int ret; 191 192 if (p->signal_mapped_size && 193 p->signal_event_count == p->signal_mapped_size / 8) { 194 if (!p->signal_event_limit_reached) { 195 pr_debug("Signal event wasn't created because limit was reached\n"); 196 p->signal_event_limit_reached = true; 197 } 198 return -ENOSPC; 199 } 200 201 ret = allocate_event_notification_slot(p, ev, restore_id); 202 if (ret) { 203 pr_warn("Signal event wasn't created because out of kernel memory\n"); 204 return ret; 205 } 206 207 p->signal_event_count++; 208 209 ev->user_signal_address = &p->signal_page->user_address[ev->event_id]; 210 pr_debug("Signal event number %zu created with id %d, address %p\n", 211 p->signal_event_count, ev->event_id, 212 ev->user_signal_address); 213 214 return 0; 215 } 216 217 static int create_other_event(struct kfd_process *p, struct kfd_event *ev, const int *restore_id) 218 { 219 int id; 220 221 if (restore_id) 222 id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1, 223 GFP_KERNEL); 224 else 225 /* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an 226 * intentional integer overflow to -1 without a compiler 227 * warning. idr_alloc treats a negative value as "maximum 228 * signed integer". 229 */ 230 id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID, 231 (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1, 232 GFP_KERNEL); 233 234 if (id < 0) 235 return id; 236 ev->event_id = id; 237 238 return 0; 239 } 240 241 int kfd_event_init_process(struct kfd_process *p) 242 { 243 int id; 244 245 mutex_init(&p->event_mutex); 246 idr_init(&p->event_idr); 247 p->signal_page = NULL; 248 p->signal_event_count = 1; 249 /* Allocate event ID 0. It is used for a fast path to ignore bogus events 250 * that are sent by the CP without a context ID 251 */ 252 id = idr_alloc(&p->event_idr, NULL, 0, 1, GFP_KERNEL); 253 if (id < 0) { 254 idr_destroy(&p->event_idr); 255 mutex_destroy(&p->event_mutex); 256 return id; 257 } 258 return 0; 259 } 260 261 static void destroy_event(struct kfd_process *p, struct kfd_event *ev) 262 { 263 struct kfd_event_waiter *waiter; 264 265 /* Wake up pending waiters. They will return failure */ 266 spin_lock(&ev->lock); 267 list_for_each_entry(waiter, &ev->wq.head, wait.entry) 268 WRITE_ONCE(waiter->event, NULL); 269 wake_up_all(&ev->wq); 270 spin_unlock(&ev->lock); 271 272 if (ev->type == KFD_EVENT_TYPE_SIGNAL || 273 ev->type == KFD_EVENT_TYPE_DEBUG) 274 p->signal_event_count--; 275 276 idr_remove(&p->event_idr, ev->event_id); 277 kfree_rcu(ev, rcu); 278 } 279 280 static void destroy_events(struct kfd_process *p) 281 { 282 struct kfd_event *ev; 283 uint32_t id; 284 285 idr_for_each_entry(&p->event_idr, ev, id) 286 if (ev) 287 destroy_event(p, ev); 288 idr_destroy(&p->event_idr); 289 mutex_destroy(&p->event_mutex); 290 } 291 292 /* 293 * We assume that the process is being destroyed and there is no need to 294 * unmap the pages or keep bookkeeping data in order. 295 */ 296 static void shutdown_signal_page(struct kfd_process *p) 297 { 298 struct kfd_signal_page *page = p->signal_page; 299 300 if (page) { 301 if (page->need_to_free_pages) 302 free_pages((unsigned long)page->kernel_address, 303 get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); 304 kfree(page); 305 } 306 } 307 308 void kfd_event_free_process(struct kfd_process *p) 309 { 310 destroy_events(p); 311 shutdown_signal_page(p); 312 } 313 314 static bool event_can_be_gpu_signaled(const struct kfd_event *ev) 315 { 316 return ev->type == KFD_EVENT_TYPE_SIGNAL || 317 ev->type == KFD_EVENT_TYPE_DEBUG; 318 } 319 320 static bool event_can_be_cpu_signaled(const struct kfd_event *ev) 321 { 322 return ev->type == KFD_EVENT_TYPE_SIGNAL; 323 } 324 325 static int kfd_event_page_set(struct kfd_process *p, void *kernel_address, 326 uint64_t size, uint64_t user_handle) 327 { 328 struct kfd_signal_page *page; 329 330 if (p->signal_page) 331 return -EBUSY; 332 333 page = kzalloc(sizeof(*page), GFP_KERNEL); 334 if (!page) 335 return -ENOMEM; 336 337 /* Initialize all events to unsignaled */ 338 memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT, 339 KFD_SIGNAL_EVENT_LIMIT * 8); 340 341 page->kernel_address = kernel_address; 342 343 p->signal_page = page; 344 p->signal_mapped_size = size; 345 p->signal_handle = user_handle; 346 return 0; 347 } 348 349 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset) 350 { 351 struct kfd_dev *kfd; 352 struct kfd_process_device *pdd; 353 void *mem, *kern_addr; 354 uint64_t size; 355 int err = 0; 356 357 if (p->signal_page) { 358 pr_err("Event page is already set\n"); 359 return -EINVAL; 360 } 361 362 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(event_page_offset)); 363 if (!pdd) { 364 pr_err("Getting device by id failed in %s\n", __func__); 365 return -EINVAL; 366 } 367 kfd = pdd->dev; 368 369 pdd = kfd_bind_process_to_device(kfd, p); 370 if (IS_ERR(pdd)) 371 return PTR_ERR(pdd); 372 373 mem = kfd_process_device_translate_handle(pdd, 374 GET_IDR_HANDLE(event_page_offset)); 375 if (!mem) { 376 pr_err("Can't find BO, offset is 0x%llx\n", event_page_offset); 377 return -EINVAL; 378 } 379 380 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(mem, &kern_addr, &size); 381 if (err) { 382 pr_err("Failed to map event page to kernel\n"); 383 return err; 384 } 385 386 err = kfd_event_page_set(p, kern_addr, size, event_page_offset); 387 if (err) { 388 pr_err("Failed to set event page\n"); 389 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 390 return err; 391 } 392 return err; 393 } 394 395 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 396 uint32_t event_type, bool auto_reset, uint32_t node_id, 397 uint32_t *event_id, uint32_t *event_trigger_data, 398 uint64_t *event_page_offset, uint32_t *event_slot_index) 399 { 400 int ret = 0; 401 struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL); 402 403 if (!ev) 404 return -ENOMEM; 405 406 ev->type = event_type; 407 ev->auto_reset = auto_reset; 408 ev->signaled = false; 409 410 spin_lock_init(&ev->lock); 411 init_waitqueue_head(&ev->wq); 412 413 *event_page_offset = 0; 414 415 mutex_lock(&p->event_mutex); 416 417 switch (event_type) { 418 case KFD_EVENT_TYPE_SIGNAL: 419 case KFD_EVENT_TYPE_DEBUG: 420 ret = create_signal_event(devkfd, p, ev, NULL); 421 if (!ret) { 422 *event_page_offset = KFD_MMAP_TYPE_EVENTS; 423 *event_slot_index = ev->event_id; 424 } 425 break; 426 default: 427 ret = create_other_event(p, ev, NULL); 428 break; 429 } 430 431 if (!ret) { 432 *event_id = ev->event_id; 433 *event_trigger_data = ev->event_id; 434 } else { 435 kfree(ev); 436 } 437 438 mutex_unlock(&p->event_mutex); 439 440 return ret; 441 } 442 443 int kfd_criu_restore_event(struct file *devkfd, 444 struct kfd_process *p, 445 uint8_t __user *user_priv_ptr, 446 uint64_t *priv_data_offset, 447 uint64_t max_priv_data_size) 448 { 449 struct kfd_criu_event_priv_data *ev_priv; 450 struct kfd_event *ev = NULL; 451 int ret = 0; 452 453 ev_priv = kmalloc(sizeof(*ev_priv), GFP_KERNEL); 454 if (!ev_priv) 455 return -ENOMEM; 456 457 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 458 if (!ev) { 459 ret = -ENOMEM; 460 goto exit; 461 } 462 463 if (*priv_data_offset + sizeof(*ev_priv) > max_priv_data_size) { 464 ret = -EINVAL; 465 goto exit; 466 } 467 468 ret = copy_from_user(ev_priv, user_priv_ptr + *priv_data_offset, sizeof(*ev_priv)); 469 if (ret) { 470 ret = -EFAULT; 471 goto exit; 472 } 473 *priv_data_offset += sizeof(*ev_priv); 474 475 if (ev_priv->user_handle) { 476 ret = kfd_kmap_event_page(p, ev_priv->user_handle); 477 if (ret) 478 goto exit; 479 } 480 481 ev->type = ev_priv->type; 482 ev->auto_reset = ev_priv->auto_reset; 483 ev->signaled = ev_priv->signaled; 484 485 spin_lock_init(&ev->lock); 486 init_waitqueue_head(&ev->wq); 487 488 mutex_lock(&p->event_mutex); 489 switch (ev->type) { 490 case KFD_EVENT_TYPE_SIGNAL: 491 case KFD_EVENT_TYPE_DEBUG: 492 ret = create_signal_event(devkfd, p, ev, &ev_priv->event_id); 493 break; 494 case KFD_EVENT_TYPE_MEMORY: 495 memcpy(&ev->memory_exception_data, 496 &ev_priv->memory_exception_data, 497 sizeof(struct kfd_hsa_memory_exception_data)); 498 499 ret = create_other_event(p, ev, &ev_priv->event_id); 500 break; 501 case KFD_EVENT_TYPE_HW_EXCEPTION: 502 memcpy(&ev->hw_exception_data, 503 &ev_priv->hw_exception_data, 504 sizeof(struct kfd_hsa_hw_exception_data)); 505 506 ret = create_other_event(p, ev, &ev_priv->event_id); 507 break; 508 } 509 510 exit: 511 if (ret) 512 kfree(ev); 513 514 kfree(ev_priv); 515 516 mutex_unlock(&p->event_mutex); 517 518 return ret; 519 } 520 521 int kfd_criu_checkpoint_events(struct kfd_process *p, 522 uint8_t __user *user_priv_data, 523 uint64_t *priv_data_offset) 524 { 525 struct kfd_criu_event_priv_data *ev_privs; 526 int i = 0; 527 int ret = 0; 528 struct kfd_event *ev; 529 uint32_t ev_id; 530 531 uint32_t num_events = kfd_get_num_events(p); 532 533 if (!num_events) 534 return 0; 535 536 ev_privs = kvzalloc(num_events * sizeof(*ev_privs), GFP_KERNEL); 537 if (!ev_privs) 538 return -ENOMEM; 539 540 541 idr_for_each_entry(&p->event_idr, ev, ev_id) { 542 struct kfd_criu_event_priv_data *ev_priv; 543 544 /* 545 * Currently, all events have same size of private_data, but the current ioctl's 546 * and CRIU plugin supports private_data of variable sizes 547 */ 548 ev_priv = &ev_privs[i]; 549 550 ev_priv->object_type = KFD_CRIU_OBJECT_TYPE_EVENT; 551 552 /* We store the user_handle with the first event */ 553 if (i == 0 && p->signal_page) 554 ev_priv->user_handle = p->signal_handle; 555 556 ev_priv->event_id = ev->event_id; 557 ev_priv->auto_reset = ev->auto_reset; 558 ev_priv->type = ev->type; 559 ev_priv->signaled = ev->signaled; 560 561 if (ev_priv->type == KFD_EVENT_TYPE_MEMORY) 562 memcpy(&ev_priv->memory_exception_data, 563 &ev->memory_exception_data, 564 sizeof(struct kfd_hsa_memory_exception_data)); 565 else if (ev_priv->type == KFD_EVENT_TYPE_HW_EXCEPTION) 566 memcpy(&ev_priv->hw_exception_data, 567 &ev->hw_exception_data, 568 sizeof(struct kfd_hsa_hw_exception_data)); 569 570 pr_debug("Checkpointed event[%d] id = 0x%08x auto_reset = %x type = %x signaled = %x\n", 571 i, 572 ev_priv->event_id, 573 ev_priv->auto_reset, 574 ev_priv->type, 575 ev_priv->signaled); 576 i++; 577 } 578 579 ret = copy_to_user(user_priv_data + *priv_data_offset, 580 ev_privs, num_events * sizeof(*ev_privs)); 581 if (ret) { 582 pr_err("Failed to copy events priv to user\n"); 583 ret = -EFAULT; 584 } 585 586 *priv_data_offset += num_events * sizeof(*ev_privs); 587 588 kvfree(ev_privs); 589 return ret; 590 } 591 592 int kfd_get_num_events(struct kfd_process *p) 593 { 594 struct kfd_event *ev; 595 uint32_t id; 596 u32 num_events = 0; 597 598 idr_for_each_entry(&p->event_idr, ev, id) 599 num_events++; 600 601 return num_events; 602 } 603 604 /* Assumes that p is current. */ 605 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id) 606 { 607 struct kfd_event *ev; 608 int ret = 0; 609 610 mutex_lock(&p->event_mutex); 611 612 ev = lookup_event_by_id(p, event_id); 613 614 if (ev) 615 destroy_event(p, ev); 616 else 617 ret = -EINVAL; 618 619 mutex_unlock(&p->event_mutex); 620 return ret; 621 } 622 623 static void set_event(struct kfd_event *ev) 624 { 625 struct kfd_event_waiter *waiter; 626 627 /* Auto reset if the list is non-empty and we're waking 628 * someone. waitqueue_active is safe here because we're 629 * protected by the ev->lock, which is also held when 630 * updating the wait queues in kfd_wait_on_events. 631 */ 632 ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq); 633 634 list_for_each_entry(waiter, &ev->wq.head, wait.entry) 635 WRITE_ONCE(waiter->activated, true); 636 637 wake_up_all(&ev->wq); 638 } 639 640 /* Assumes that p is current. */ 641 int kfd_set_event(struct kfd_process *p, uint32_t event_id) 642 { 643 int ret = 0; 644 struct kfd_event *ev; 645 646 rcu_read_lock(); 647 648 ev = lookup_event_by_id(p, event_id); 649 if (!ev) { 650 ret = -EINVAL; 651 goto unlock_rcu; 652 } 653 spin_lock(&ev->lock); 654 655 if (event_can_be_cpu_signaled(ev)) 656 set_event(ev); 657 else 658 ret = -EINVAL; 659 660 spin_unlock(&ev->lock); 661 unlock_rcu: 662 rcu_read_unlock(); 663 return ret; 664 } 665 666 static void reset_event(struct kfd_event *ev) 667 { 668 ev->signaled = false; 669 } 670 671 /* Assumes that p is current. */ 672 int kfd_reset_event(struct kfd_process *p, uint32_t event_id) 673 { 674 int ret = 0; 675 struct kfd_event *ev; 676 677 rcu_read_lock(); 678 679 ev = lookup_event_by_id(p, event_id); 680 if (!ev) { 681 ret = -EINVAL; 682 goto unlock_rcu; 683 } 684 spin_lock(&ev->lock); 685 686 if (event_can_be_cpu_signaled(ev)) 687 reset_event(ev); 688 else 689 ret = -EINVAL; 690 691 spin_unlock(&ev->lock); 692 unlock_rcu: 693 rcu_read_unlock(); 694 return ret; 695 696 } 697 698 static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev) 699 { 700 WRITE_ONCE(page_slots(p->signal_page)[ev->event_id], UNSIGNALED_EVENT_SLOT); 701 } 702 703 static void set_event_from_interrupt(struct kfd_process *p, 704 struct kfd_event *ev) 705 { 706 if (ev && event_can_be_gpu_signaled(ev)) { 707 acknowledge_signal(p, ev); 708 spin_lock(&ev->lock); 709 set_event(ev); 710 spin_unlock(&ev->lock); 711 } 712 } 713 714 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, 715 uint32_t valid_id_bits) 716 { 717 struct kfd_event *ev = NULL; 718 719 /* 720 * Because we are called from arbitrary context (workqueue) as opposed 721 * to process context, kfd_process could attempt to exit while we are 722 * running so the lookup function increments the process ref count. 723 */ 724 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 725 726 if (!p) 727 return; /* Presumably process exited. */ 728 729 rcu_read_lock(); 730 731 if (valid_id_bits) 732 ev = lookup_signaled_event_by_partial_id(p, partial_id, 733 valid_id_bits); 734 if (ev) { 735 set_event_from_interrupt(p, ev); 736 } else if (p->signal_page) { 737 /* 738 * Partial ID lookup failed. Assume that the event ID 739 * in the interrupt payload was invalid and do an 740 * exhaustive search of signaled events. 741 */ 742 uint64_t *slots = page_slots(p->signal_page); 743 uint32_t id; 744 745 if (valid_id_bits) 746 pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n", 747 partial_id, valid_id_bits); 748 749 if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) { 750 /* With relatively few events, it's faster to 751 * iterate over the event IDR 752 */ 753 idr_for_each_entry(&p->event_idr, ev, id) { 754 if (id >= KFD_SIGNAL_EVENT_LIMIT) 755 break; 756 757 if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) 758 set_event_from_interrupt(p, ev); 759 } 760 } else { 761 /* With relatively many events, it's faster to 762 * iterate over the signal slots and lookup 763 * only signaled events from the IDR. 764 */ 765 for (id = 1; id < KFD_SIGNAL_EVENT_LIMIT; id++) 766 if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) { 767 ev = lookup_event_by_id(p, id); 768 set_event_from_interrupt(p, ev); 769 } 770 } 771 } 772 773 rcu_read_unlock(); 774 kfd_unref_process(p); 775 } 776 777 static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events) 778 { 779 struct kfd_event_waiter *event_waiters; 780 uint32_t i; 781 782 event_waiters = kmalloc_array(num_events, 783 sizeof(struct kfd_event_waiter), 784 GFP_KERNEL); 785 if (!event_waiters) 786 return NULL; 787 788 for (i = 0; (event_waiters) && (i < num_events) ; i++) { 789 init_wait(&event_waiters[i].wait); 790 event_waiters[i].activated = false; 791 } 792 793 return event_waiters; 794 } 795 796 static int init_event_waiter(struct kfd_process *p, 797 struct kfd_event_waiter *waiter, 798 uint32_t event_id) 799 { 800 struct kfd_event *ev = lookup_event_by_id(p, event_id); 801 802 if (!ev) 803 return -EINVAL; 804 805 spin_lock(&ev->lock); 806 waiter->event = ev; 807 waiter->activated = ev->signaled; 808 ev->signaled = ev->signaled && !ev->auto_reset; 809 if (!waiter->activated) 810 add_wait_queue(&ev->wq, &waiter->wait); 811 spin_unlock(&ev->lock); 812 813 return 0; 814 } 815 816 /* test_event_condition - Test condition of events being waited for 817 * @all: Return completion only if all events have signaled 818 * @num_events: Number of events to wait for 819 * @event_waiters: Array of event waiters, one per event 820 * 821 * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have 822 * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all) 823 * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of 824 * the events have been destroyed. 825 */ 826 static uint32_t test_event_condition(bool all, uint32_t num_events, 827 struct kfd_event_waiter *event_waiters) 828 { 829 uint32_t i; 830 uint32_t activated_count = 0; 831 832 for (i = 0; i < num_events; i++) { 833 if (!READ_ONCE(event_waiters[i].event)) 834 return KFD_IOC_WAIT_RESULT_FAIL; 835 836 if (READ_ONCE(event_waiters[i].activated)) { 837 if (!all) 838 return KFD_IOC_WAIT_RESULT_COMPLETE; 839 840 activated_count++; 841 } 842 } 843 844 return activated_count == num_events ? 845 KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT; 846 } 847 848 /* 849 * Copy event specific data, if defined. 850 * Currently only memory exception events have additional data to copy to user 851 */ 852 static int copy_signaled_event_data(uint32_t num_events, 853 struct kfd_event_waiter *event_waiters, 854 struct kfd_event_data __user *data) 855 { 856 struct kfd_hsa_memory_exception_data *src; 857 struct kfd_hsa_memory_exception_data __user *dst; 858 struct kfd_event_waiter *waiter; 859 struct kfd_event *event; 860 uint32_t i; 861 862 for (i = 0; i < num_events; i++) { 863 waiter = &event_waiters[i]; 864 event = waiter->event; 865 if (!event) 866 return -EINVAL; /* event was destroyed */ 867 if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) { 868 dst = &data[i].memory_exception_data; 869 src = &event->memory_exception_data; 870 if (copy_to_user(dst, src, 871 sizeof(struct kfd_hsa_memory_exception_data))) 872 return -EFAULT; 873 } 874 } 875 876 return 0; 877 } 878 879 static long user_timeout_to_jiffies(uint32_t user_timeout_ms) 880 { 881 if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE) 882 return 0; 883 884 if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE) 885 return MAX_SCHEDULE_TIMEOUT; 886 887 /* 888 * msecs_to_jiffies interprets all values above 2^31-1 as infinite, 889 * but we consider them finite. 890 * This hack is wrong, but nobody is likely to notice. 891 */ 892 user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF); 893 894 return msecs_to_jiffies(user_timeout_ms) + 1; 895 } 896 897 static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters) 898 { 899 uint32_t i; 900 901 for (i = 0; i < num_events; i++) 902 if (waiters[i].event) { 903 spin_lock(&waiters[i].event->lock); 904 remove_wait_queue(&waiters[i].event->wq, 905 &waiters[i].wait); 906 spin_unlock(&waiters[i].event->lock); 907 } 908 909 kfree(waiters); 910 } 911 912 int kfd_wait_on_events(struct kfd_process *p, 913 uint32_t num_events, void __user *data, 914 bool all, uint32_t user_timeout_ms, 915 uint32_t *wait_result) 916 { 917 struct kfd_event_data __user *events = 918 (struct kfd_event_data __user *) data; 919 uint32_t i; 920 int ret = 0; 921 922 struct kfd_event_waiter *event_waiters = NULL; 923 long timeout = user_timeout_to_jiffies(user_timeout_ms); 924 925 event_waiters = alloc_event_waiters(num_events); 926 if (!event_waiters) { 927 ret = -ENOMEM; 928 goto out; 929 } 930 931 /* Use p->event_mutex here to protect against concurrent creation and 932 * destruction of events while we initialize event_waiters. 933 */ 934 mutex_lock(&p->event_mutex); 935 936 for (i = 0; i < num_events; i++) { 937 struct kfd_event_data event_data; 938 939 if (copy_from_user(&event_data, &events[i], 940 sizeof(struct kfd_event_data))) { 941 ret = -EFAULT; 942 goto out_unlock; 943 } 944 945 ret = init_event_waiter(p, &event_waiters[i], 946 event_data.event_id); 947 if (ret) 948 goto out_unlock; 949 } 950 951 /* Check condition once. */ 952 *wait_result = test_event_condition(all, num_events, event_waiters); 953 if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) { 954 ret = copy_signaled_event_data(num_events, 955 event_waiters, events); 956 goto out_unlock; 957 } else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) { 958 /* This should not happen. Events shouldn't be 959 * destroyed while we're holding the event_mutex 960 */ 961 goto out_unlock; 962 } 963 964 mutex_unlock(&p->event_mutex); 965 966 while (true) { 967 if (fatal_signal_pending(current)) { 968 ret = -EINTR; 969 break; 970 } 971 972 if (signal_pending(current)) { 973 /* 974 * This is wrong when a nonzero, non-infinite timeout 975 * is specified. We need to use 976 * ERESTARTSYS_RESTARTBLOCK, but struct restart_block 977 * contains a union with data for each user and it's 978 * in generic kernel code that I don't want to 979 * touch yet. 980 */ 981 ret = -ERESTARTSYS; 982 break; 983 } 984 985 /* Set task state to interruptible sleep before 986 * checking wake-up conditions. A concurrent wake-up 987 * will put the task back into runnable state. In that 988 * case schedule_timeout will not put the task to 989 * sleep and we'll get a chance to re-check the 990 * updated conditions almost immediately. Otherwise, 991 * this race condition would lead to a soft hang or a 992 * very long sleep. 993 */ 994 set_current_state(TASK_INTERRUPTIBLE); 995 996 *wait_result = test_event_condition(all, num_events, 997 event_waiters); 998 if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT) 999 break; 1000 1001 if (timeout <= 0) 1002 break; 1003 1004 timeout = schedule_timeout(timeout); 1005 } 1006 __set_current_state(TASK_RUNNING); 1007 1008 mutex_lock(&p->event_mutex); 1009 /* copy_signaled_event_data may sleep. So this has to happen 1010 * after the task state is set back to RUNNING. 1011 * 1012 * The event may also have been destroyed after signaling. So 1013 * copy_signaled_event_data also must confirm that the event 1014 * still exists. Therefore this must be under the p->event_mutex 1015 * which is also held when events are destroyed. 1016 */ 1017 if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) 1018 ret = copy_signaled_event_data(num_events, 1019 event_waiters, events); 1020 1021 out_unlock: 1022 free_waiters(num_events, event_waiters); 1023 mutex_unlock(&p->event_mutex); 1024 out: 1025 if (ret) 1026 *wait_result = KFD_IOC_WAIT_RESULT_FAIL; 1027 else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL) 1028 ret = -EIO; 1029 1030 return ret; 1031 } 1032 1033 int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma) 1034 { 1035 unsigned long pfn; 1036 struct kfd_signal_page *page; 1037 int ret; 1038 1039 /* check required size doesn't exceed the allocated size */ 1040 if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) < 1041 get_order(vma->vm_end - vma->vm_start)) { 1042 pr_err("Event page mmap requested illegal size\n"); 1043 return -EINVAL; 1044 } 1045 1046 page = p->signal_page; 1047 if (!page) { 1048 /* Probably KFD bug, but mmap is user-accessible. */ 1049 pr_debug("Signal page could not be found\n"); 1050 return -EINVAL; 1051 } 1052 1053 pfn = __pa(page->kernel_address); 1054 pfn >>= PAGE_SHIFT; 1055 1056 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE 1057 | VM_DONTDUMP | VM_PFNMAP; 1058 1059 pr_debug("Mapping signal page\n"); 1060 pr_debug(" start user address == 0x%08lx\n", vma->vm_start); 1061 pr_debug(" end user address == 0x%08lx\n", vma->vm_end); 1062 pr_debug(" pfn == 0x%016lX\n", pfn); 1063 pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags); 1064 pr_debug(" size == 0x%08lX\n", 1065 vma->vm_end - vma->vm_start); 1066 1067 page->user_address = (uint64_t __user *)vma->vm_start; 1068 1069 /* mapping the page to user process */ 1070 ret = remap_pfn_range(vma, vma->vm_start, pfn, 1071 vma->vm_end - vma->vm_start, vma->vm_page_prot); 1072 if (!ret) 1073 p->signal_mapped_size = vma->vm_end - vma->vm_start; 1074 1075 return ret; 1076 } 1077 1078 /* 1079 * Assumes that p is not going away. 1080 */ 1081 static void lookup_events_by_type_and_signal(struct kfd_process *p, 1082 int type, void *event_data) 1083 { 1084 struct kfd_hsa_memory_exception_data *ev_data; 1085 struct kfd_event *ev; 1086 uint32_t id; 1087 bool send_signal = true; 1088 1089 ev_data = (struct kfd_hsa_memory_exception_data *) event_data; 1090 1091 rcu_read_lock(); 1092 1093 id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1094 idr_for_each_entry_continue(&p->event_idr, ev, id) 1095 if (ev->type == type) { 1096 send_signal = false; 1097 dev_dbg(kfd_device, 1098 "Event found: id %X type %d", 1099 ev->event_id, ev->type); 1100 spin_lock(&ev->lock); 1101 set_event(ev); 1102 if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data) 1103 ev->memory_exception_data = *ev_data; 1104 spin_unlock(&ev->lock); 1105 } 1106 1107 if (type == KFD_EVENT_TYPE_MEMORY) { 1108 dev_warn(kfd_device, 1109 "Sending SIGSEGV to process %d (pasid 0x%x)", 1110 p->lead_thread->pid, p->pasid); 1111 send_sig(SIGSEGV, p->lead_thread, 0); 1112 } 1113 1114 /* Send SIGTERM no event of type "type" has been found*/ 1115 if (send_signal) { 1116 if (send_sigterm) { 1117 dev_warn(kfd_device, 1118 "Sending SIGTERM to process %d (pasid 0x%x)", 1119 p->lead_thread->pid, p->pasid); 1120 send_sig(SIGTERM, p->lead_thread, 0); 1121 } else { 1122 dev_err(kfd_device, 1123 "Process %d (pasid 0x%x) got unhandled exception", 1124 p->lead_thread->pid, p->pasid); 1125 } 1126 } 1127 1128 rcu_read_unlock(); 1129 } 1130 1131 #ifdef KFD_SUPPORT_IOMMU_V2 1132 void kfd_signal_iommu_event(struct kfd_dev *dev, u32 pasid, 1133 unsigned long address, bool is_write_requested, 1134 bool is_execute_requested) 1135 { 1136 struct kfd_hsa_memory_exception_data memory_exception_data; 1137 struct vm_area_struct *vma; 1138 int user_gpu_id; 1139 1140 /* 1141 * Because we are called from arbitrary context (workqueue) as opposed 1142 * to process context, kfd_process could attempt to exit while we are 1143 * running so the lookup function increments the process ref count. 1144 */ 1145 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1146 struct mm_struct *mm; 1147 1148 if (!p) 1149 return; /* Presumably process exited. */ 1150 1151 /* Take a safe reference to the mm_struct, which may otherwise 1152 * disappear even while the kfd_process is still referenced. 1153 */ 1154 mm = get_task_mm(p->lead_thread); 1155 if (!mm) { 1156 kfd_unref_process(p); 1157 return; /* Process is exiting */ 1158 } 1159 1160 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); 1161 if (unlikely(user_gpu_id == -EINVAL)) { 1162 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); 1163 return; 1164 } 1165 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 1166 1167 mmap_read_lock(mm); 1168 vma = find_vma(mm, address); 1169 1170 memory_exception_data.gpu_id = user_gpu_id; 1171 memory_exception_data.va = address; 1172 /* Set failure reason */ 1173 memory_exception_data.failure.NotPresent = 1; 1174 memory_exception_data.failure.NoExecute = 0; 1175 memory_exception_data.failure.ReadOnly = 0; 1176 if (vma && address >= vma->vm_start) { 1177 memory_exception_data.failure.NotPresent = 0; 1178 1179 if (is_write_requested && !(vma->vm_flags & VM_WRITE)) 1180 memory_exception_data.failure.ReadOnly = 1; 1181 else 1182 memory_exception_data.failure.ReadOnly = 0; 1183 1184 if (is_execute_requested && !(vma->vm_flags & VM_EXEC)) 1185 memory_exception_data.failure.NoExecute = 1; 1186 else 1187 memory_exception_data.failure.NoExecute = 0; 1188 } 1189 1190 mmap_read_unlock(mm); 1191 mmput(mm); 1192 1193 pr_debug("notpresent %d, noexecute %d, readonly %d\n", 1194 memory_exception_data.failure.NotPresent, 1195 memory_exception_data.failure.NoExecute, 1196 memory_exception_data.failure.ReadOnly); 1197 1198 /* Workaround on Raven to not kill the process when memory is freed 1199 * before IOMMU is able to finish processing all the excessive PPRs 1200 */ 1201 1202 if (KFD_GC_VERSION(dev) != IP_VERSION(9, 1, 0) && 1203 KFD_GC_VERSION(dev) != IP_VERSION(9, 2, 2) && 1204 KFD_GC_VERSION(dev) != IP_VERSION(9, 3, 0)) 1205 lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY, 1206 &memory_exception_data); 1207 1208 kfd_unref_process(p); 1209 } 1210 #endif /* KFD_SUPPORT_IOMMU_V2 */ 1211 1212 void kfd_signal_hw_exception_event(u32 pasid) 1213 { 1214 /* 1215 * Because we are called from arbitrary context (workqueue) as opposed 1216 * to process context, kfd_process could attempt to exit while we are 1217 * running so the lookup function increments the process ref count. 1218 */ 1219 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1220 1221 if (!p) 1222 return; /* Presumably process exited. */ 1223 1224 lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL); 1225 kfd_unref_process(p); 1226 } 1227 1228 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid, 1229 struct kfd_vm_fault_info *info) 1230 { 1231 struct kfd_event *ev; 1232 uint32_t id; 1233 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1234 struct kfd_hsa_memory_exception_data memory_exception_data; 1235 int user_gpu_id; 1236 1237 if (!p) 1238 return; /* Presumably process exited. */ 1239 1240 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); 1241 if (unlikely(user_gpu_id == -EINVAL)) { 1242 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); 1243 return; 1244 } 1245 1246 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 1247 memory_exception_data.gpu_id = user_gpu_id; 1248 memory_exception_data.failure.imprecise = true; 1249 /* Set failure reason */ 1250 if (info) { 1251 memory_exception_data.va = (info->page_addr) << PAGE_SHIFT; 1252 memory_exception_data.failure.NotPresent = 1253 info->prot_valid ? 1 : 0; 1254 memory_exception_data.failure.NoExecute = 1255 info->prot_exec ? 1 : 0; 1256 memory_exception_data.failure.ReadOnly = 1257 info->prot_write ? 1 : 0; 1258 memory_exception_data.failure.imprecise = 0; 1259 } 1260 1261 rcu_read_lock(); 1262 1263 id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1264 idr_for_each_entry_continue(&p->event_idr, ev, id) 1265 if (ev->type == KFD_EVENT_TYPE_MEMORY) { 1266 spin_lock(&ev->lock); 1267 ev->memory_exception_data = memory_exception_data; 1268 set_event(ev); 1269 spin_unlock(&ev->lock); 1270 } 1271 1272 rcu_read_unlock(); 1273 kfd_unref_process(p); 1274 } 1275 1276 void kfd_signal_reset_event(struct kfd_dev *dev) 1277 { 1278 struct kfd_hsa_hw_exception_data hw_exception_data; 1279 struct kfd_hsa_memory_exception_data memory_exception_data; 1280 struct kfd_process *p; 1281 struct kfd_event *ev; 1282 unsigned int temp; 1283 uint32_t id, idx; 1284 int reset_cause = atomic_read(&dev->sram_ecc_flag) ? 1285 KFD_HW_EXCEPTION_ECC : 1286 KFD_HW_EXCEPTION_GPU_HANG; 1287 1288 /* Whole gpu reset caused by GPU hang and memory is lost */ 1289 memset(&hw_exception_data, 0, sizeof(hw_exception_data)); 1290 hw_exception_data.memory_lost = 1; 1291 hw_exception_data.reset_cause = reset_cause; 1292 1293 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 1294 memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC; 1295 memory_exception_data.failure.imprecise = true; 1296 1297 idx = srcu_read_lock(&kfd_processes_srcu); 1298 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1299 int user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); 1300 1301 if (unlikely(user_gpu_id == -EINVAL)) { 1302 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); 1303 continue; 1304 } 1305 1306 rcu_read_lock(); 1307 1308 id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1309 idr_for_each_entry_continue(&p->event_idr, ev, id) { 1310 if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) { 1311 spin_lock(&ev->lock); 1312 ev->hw_exception_data = hw_exception_data; 1313 ev->hw_exception_data.gpu_id = user_gpu_id; 1314 set_event(ev); 1315 spin_unlock(&ev->lock); 1316 } 1317 if (ev->type == KFD_EVENT_TYPE_MEMORY && 1318 reset_cause == KFD_HW_EXCEPTION_ECC) { 1319 spin_lock(&ev->lock); 1320 ev->memory_exception_data = memory_exception_data; 1321 ev->memory_exception_data.gpu_id = user_gpu_id; 1322 set_event(ev); 1323 spin_unlock(&ev->lock); 1324 } 1325 } 1326 1327 rcu_read_unlock(); 1328 } 1329 srcu_read_unlock(&kfd_processes_srcu, idx); 1330 } 1331 1332 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid) 1333 { 1334 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1335 struct kfd_hsa_memory_exception_data memory_exception_data; 1336 struct kfd_hsa_hw_exception_data hw_exception_data; 1337 struct kfd_event *ev; 1338 uint32_t id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1339 int user_gpu_id; 1340 1341 if (!p) 1342 return; /* Presumably process exited. */ 1343 1344 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); 1345 if (unlikely(user_gpu_id == -EINVAL)) { 1346 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); 1347 return; 1348 } 1349 1350 memset(&hw_exception_data, 0, sizeof(hw_exception_data)); 1351 hw_exception_data.gpu_id = user_gpu_id; 1352 hw_exception_data.memory_lost = 1; 1353 hw_exception_data.reset_cause = KFD_HW_EXCEPTION_ECC; 1354 1355 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 1356 memory_exception_data.ErrorType = KFD_MEM_ERR_POISON_CONSUMED; 1357 memory_exception_data.gpu_id = user_gpu_id; 1358 memory_exception_data.failure.imprecise = true; 1359 1360 rcu_read_lock(); 1361 1362 idr_for_each_entry_continue(&p->event_idr, ev, id) { 1363 if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) { 1364 spin_lock(&ev->lock); 1365 ev->hw_exception_data = hw_exception_data; 1366 set_event(ev); 1367 spin_unlock(&ev->lock); 1368 } 1369 1370 if (ev->type == KFD_EVENT_TYPE_MEMORY) { 1371 spin_lock(&ev->lock); 1372 ev->memory_exception_data = memory_exception_data; 1373 set_event(ev); 1374 spin_unlock(&ev->lock); 1375 } 1376 } 1377 1378 rcu_read_unlock(); 1379 1380 /* user application will handle SIGBUS signal */ 1381 send_sig(SIGBUS, p->lead_thread, 0); 1382 1383 kfd_unref_process(p); 1384 } 1385