1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/mm_types.h>
25 #include <linux/slab.h>
26 #include <linux/types.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sched/mm.h>
29 #include <linux/uaccess.h>
30 #include <linux/mman.h>
31 #include <linux/memory.h>
32 #include "kfd_priv.h"
33 #include "kfd_events.h"
34 #include "kfd_iommu.h"
35 #include <linux/device.h>
36 
37 /*
38  * Wrapper around wait_queue_entry_t
39  */
40 struct kfd_event_waiter {
41 	wait_queue_entry_t wait;
42 	struct kfd_event *event; /* Event to wait for */
43 	bool activated;		 /* Becomes true when event is signaled */
44 	bool event_age_enabled;  /* set to true when last_event_age is non-zero */
45 };
46 
47 /*
48  * Each signal event needs a 64-bit signal slot where the signaler will write
49  * a 1 before sending an interrupt. (This is needed because some interrupts
50  * do not contain enough spare data bits to identify an event.)
51  * We get whole pages and map them to the process VA.
52  * Individual signal events use their event_id as slot index.
53  */
54 struct kfd_signal_page {
55 	uint64_t *kernel_address;
56 	uint64_t __user *user_address;
57 	bool need_to_free_pages;
58 };
59 
60 static uint64_t *page_slots(struct kfd_signal_page *page)
61 {
62 	return page->kernel_address;
63 }
64 
65 static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
66 {
67 	void *backing_store;
68 	struct kfd_signal_page *page;
69 
70 	page = kzalloc(sizeof(*page), GFP_KERNEL);
71 	if (!page)
72 		return NULL;
73 
74 	backing_store = (void *) __get_free_pages(GFP_KERNEL,
75 					get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
76 	if (!backing_store)
77 		goto fail_alloc_signal_store;
78 
79 	/* Initialize all events to unsignaled */
80 	memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
81 	       KFD_SIGNAL_EVENT_LIMIT * 8);
82 
83 	page->kernel_address = backing_store;
84 	page->need_to_free_pages = true;
85 	pr_debug("Allocated new event signal page at %p, for process %p\n",
86 			page, p);
87 
88 	return page;
89 
90 fail_alloc_signal_store:
91 	kfree(page);
92 	return NULL;
93 }
94 
95 static int allocate_event_notification_slot(struct kfd_process *p,
96 					    struct kfd_event *ev,
97 					    const int *restore_id)
98 {
99 	int id;
100 
101 	if (!p->signal_page) {
102 		p->signal_page = allocate_signal_page(p);
103 		if (!p->signal_page)
104 			return -ENOMEM;
105 		/* Oldest user mode expects 256 event slots */
106 		p->signal_mapped_size = 256*8;
107 	}
108 
109 	if (restore_id) {
110 		id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1,
111 				GFP_KERNEL);
112 	} else {
113 		/*
114 		 * Compatibility with old user mode: Only use signal slots
115 		 * user mode has mapped, may be less than
116 		 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
117 		 * of the event limit without breaking user mode.
118 		 */
119 		id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8,
120 				GFP_KERNEL);
121 	}
122 	if (id < 0)
123 		return id;
124 
125 	ev->event_id = id;
126 	page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
127 
128 	return 0;
129 }
130 
131 /*
132  * Assumes that p->event_mutex or rcu_readlock is held and of course that p is
133  * not going away.
134  */
135 static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
136 {
137 	return idr_find(&p->event_idr, id);
138 }
139 
140 /**
141  * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
142  * @p:     Pointer to struct kfd_process
143  * @id:    ID to look up
144  * @bits:  Number of valid bits in @id
145  *
146  * Finds the first signaled event with a matching partial ID. If no
147  * matching signaled event is found, returns NULL. In that case the
148  * caller should assume that the partial ID is invalid and do an
149  * exhaustive search of all siglaned events.
150  *
151  * If multiple events with the same partial ID signal at the same
152  * time, they will be found one interrupt at a time, not necessarily
153  * in the same order the interrupts occurred. As long as the number of
154  * interrupts is correct, all signaled events will be seen by the
155  * driver.
156  */
157 static struct kfd_event *lookup_signaled_event_by_partial_id(
158 	struct kfd_process *p, uint32_t id, uint32_t bits)
159 {
160 	struct kfd_event *ev;
161 
162 	if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
163 		return NULL;
164 
165 	/* Fast path for the common case that @id is not a partial ID
166 	 * and we only need a single lookup.
167 	 */
168 	if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
169 		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
170 			return NULL;
171 
172 		return idr_find(&p->event_idr, id);
173 	}
174 
175 	/* General case for partial IDs: Iterate over all matching IDs
176 	 * and find the first one that has signaled.
177 	 */
178 	for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
179 		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
180 			continue;
181 
182 		ev = idr_find(&p->event_idr, id);
183 	}
184 
185 	return ev;
186 }
187 
188 static int create_signal_event(struct file *devkfd, struct kfd_process *p,
189 				struct kfd_event *ev, const int *restore_id)
190 {
191 	int ret;
192 
193 	if (p->signal_mapped_size &&
194 	    p->signal_event_count == p->signal_mapped_size / 8) {
195 		if (!p->signal_event_limit_reached) {
196 			pr_debug("Signal event wasn't created because limit was reached\n");
197 			p->signal_event_limit_reached = true;
198 		}
199 		return -ENOSPC;
200 	}
201 
202 	ret = allocate_event_notification_slot(p, ev, restore_id);
203 	if (ret) {
204 		pr_warn("Signal event wasn't created because out of kernel memory\n");
205 		return ret;
206 	}
207 
208 	p->signal_event_count++;
209 
210 	ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
211 	pr_debug("Signal event number %zu created with id %d, address %p\n",
212 			p->signal_event_count, ev->event_id,
213 			ev->user_signal_address);
214 
215 	return 0;
216 }
217 
218 static int create_other_event(struct kfd_process *p, struct kfd_event *ev, const int *restore_id)
219 {
220 	int id;
221 
222 	if (restore_id)
223 		id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1,
224 			GFP_KERNEL);
225 	else
226 		/* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
227 		 * intentional integer overflow to -1 without a compiler
228 		 * warning. idr_alloc treats a negative value as "maximum
229 		 * signed integer".
230 		 */
231 		id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
232 				(uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
233 				GFP_KERNEL);
234 
235 	if (id < 0)
236 		return id;
237 	ev->event_id = id;
238 
239 	return 0;
240 }
241 
242 int kfd_event_init_process(struct kfd_process *p)
243 {
244 	int id;
245 
246 	mutex_init(&p->event_mutex);
247 	idr_init(&p->event_idr);
248 	p->signal_page = NULL;
249 	p->signal_event_count = 1;
250 	/* Allocate event ID 0. It is used for a fast path to ignore bogus events
251 	 * that are sent by the CP without a context ID
252 	 */
253 	id = idr_alloc(&p->event_idr, NULL, 0, 1, GFP_KERNEL);
254 	if (id < 0) {
255 		idr_destroy(&p->event_idr);
256 		mutex_destroy(&p->event_mutex);
257 		return id;
258 	}
259 	return 0;
260 }
261 
262 static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
263 {
264 	struct kfd_event_waiter *waiter;
265 
266 	/* Wake up pending waiters. They will return failure */
267 	spin_lock(&ev->lock);
268 	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
269 		WRITE_ONCE(waiter->event, NULL);
270 	wake_up_all(&ev->wq);
271 	spin_unlock(&ev->lock);
272 
273 	if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
274 	    ev->type == KFD_EVENT_TYPE_DEBUG)
275 		p->signal_event_count--;
276 
277 	idr_remove(&p->event_idr, ev->event_id);
278 	kfree_rcu(ev, rcu);
279 }
280 
281 static void destroy_events(struct kfd_process *p)
282 {
283 	struct kfd_event *ev;
284 	uint32_t id;
285 
286 	idr_for_each_entry(&p->event_idr, ev, id)
287 		if (ev)
288 			destroy_event(p, ev);
289 	idr_destroy(&p->event_idr);
290 	mutex_destroy(&p->event_mutex);
291 }
292 
293 /*
294  * We assume that the process is being destroyed and there is no need to
295  * unmap the pages or keep bookkeeping data in order.
296  */
297 static void shutdown_signal_page(struct kfd_process *p)
298 {
299 	struct kfd_signal_page *page = p->signal_page;
300 
301 	if (page) {
302 		if (page->need_to_free_pages)
303 			free_pages((unsigned long)page->kernel_address,
304 				   get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
305 		kfree(page);
306 	}
307 }
308 
309 void kfd_event_free_process(struct kfd_process *p)
310 {
311 	destroy_events(p);
312 	shutdown_signal_page(p);
313 }
314 
315 static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
316 {
317 	return ev->type == KFD_EVENT_TYPE_SIGNAL ||
318 					ev->type == KFD_EVENT_TYPE_DEBUG;
319 }
320 
321 static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
322 {
323 	return ev->type == KFD_EVENT_TYPE_SIGNAL;
324 }
325 
326 static int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
327 		       uint64_t size, uint64_t user_handle)
328 {
329 	struct kfd_signal_page *page;
330 
331 	if (p->signal_page)
332 		return -EBUSY;
333 
334 	page = kzalloc(sizeof(*page), GFP_KERNEL);
335 	if (!page)
336 		return -ENOMEM;
337 
338 	/* Initialize all events to unsignaled */
339 	memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT,
340 	       KFD_SIGNAL_EVENT_LIMIT * 8);
341 
342 	page->kernel_address = kernel_address;
343 
344 	p->signal_page = page;
345 	p->signal_mapped_size = size;
346 	p->signal_handle = user_handle;
347 	return 0;
348 }
349 
350 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset)
351 {
352 	struct kfd_node *kfd;
353 	struct kfd_process_device *pdd;
354 	void *mem, *kern_addr;
355 	uint64_t size;
356 	int err = 0;
357 
358 	if (p->signal_page) {
359 		pr_err("Event page is already set\n");
360 		return -EINVAL;
361 	}
362 
363 	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(event_page_offset));
364 	if (!pdd) {
365 		pr_err("Getting device by id failed in %s\n", __func__);
366 		return -EINVAL;
367 	}
368 	kfd = pdd->dev;
369 
370 	pdd = kfd_bind_process_to_device(kfd, p);
371 	if (IS_ERR(pdd))
372 		return PTR_ERR(pdd);
373 
374 	mem = kfd_process_device_translate_handle(pdd,
375 			GET_IDR_HANDLE(event_page_offset));
376 	if (!mem) {
377 		pr_err("Can't find BO, offset is 0x%llx\n", event_page_offset);
378 		return -EINVAL;
379 	}
380 
381 	err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(mem, &kern_addr, &size);
382 	if (err) {
383 		pr_err("Failed to map event page to kernel\n");
384 		return err;
385 	}
386 
387 	err = kfd_event_page_set(p, kern_addr, size, event_page_offset);
388 	if (err) {
389 		pr_err("Failed to set event page\n");
390 		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
391 		return err;
392 	}
393 	return err;
394 }
395 
396 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
397 		     uint32_t event_type, bool auto_reset, uint32_t node_id,
398 		     uint32_t *event_id, uint32_t *event_trigger_data,
399 		     uint64_t *event_page_offset, uint32_t *event_slot_index)
400 {
401 	int ret = 0;
402 	struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
403 
404 	if (!ev)
405 		return -ENOMEM;
406 
407 	ev->type = event_type;
408 	ev->auto_reset = auto_reset;
409 	ev->signaled = false;
410 
411 	spin_lock_init(&ev->lock);
412 	init_waitqueue_head(&ev->wq);
413 
414 	*event_page_offset = 0;
415 
416 	mutex_lock(&p->event_mutex);
417 
418 	switch (event_type) {
419 	case KFD_EVENT_TYPE_SIGNAL:
420 	case KFD_EVENT_TYPE_DEBUG:
421 		ret = create_signal_event(devkfd, p, ev, NULL);
422 		if (!ret) {
423 			*event_page_offset = KFD_MMAP_TYPE_EVENTS;
424 			*event_slot_index = ev->event_id;
425 		}
426 		break;
427 	default:
428 		ret = create_other_event(p, ev, NULL);
429 		break;
430 	}
431 
432 	if (!ret) {
433 		*event_id = ev->event_id;
434 		*event_trigger_data = ev->event_id;
435 		ev->event_age = 1;
436 	} else {
437 		kfree(ev);
438 	}
439 
440 	mutex_unlock(&p->event_mutex);
441 
442 	return ret;
443 }
444 
445 int kfd_criu_restore_event(struct file *devkfd,
446 			   struct kfd_process *p,
447 			   uint8_t __user *user_priv_ptr,
448 			   uint64_t *priv_data_offset,
449 			   uint64_t max_priv_data_size)
450 {
451 	struct kfd_criu_event_priv_data *ev_priv;
452 	struct kfd_event *ev = NULL;
453 	int ret = 0;
454 
455 	ev_priv = kmalloc(sizeof(*ev_priv), GFP_KERNEL);
456 	if (!ev_priv)
457 		return -ENOMEM;
458 
459 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
460 	if (!ev) {
461 		ret = -ENOMEM;
462 		goto exit;
463 	}
464 
465 	if (*priv_data_offset + sizeof(*ev_priv) > max_priv_data_size) {
466 		ret = -EINVAL;
467 		goto exit;
468 	}
469 
470 	ret = copy_from_user(ev_priv, user_priv_ptr + *priv_data_offset, sizeof(*ev_priv));
471 	if (ret) {
472 		ret = -EFAULT;
473 		goto exit;
474 	}
475 	*priv_data_offset += sizeof(*ev_priv);
476 
477 	if (ev_priv->user_handle) {
478 		ret = kfd_kmap_event_page(p, ev_priv->user_handle);
479 		if (ret)
480 			goto exit;
481 	}
482 
483 	ev->type = ev_priv->type;
484 	ev->auto_reset = ev_priv->auto_reset;
485 	ev->signaled = ev_priv->signaled;
486 
487 	spin_lock_init(&ev->lock);
488 	init_waitqueue_head(&ev->wq);
489 
490 	mutex_lock(&p->event_mutex);
491 	switch (ev->type) {
492 	case KFD_EVENT_TYPE_SIGNAL:
493 	case KFD_EVENT_TYPE_DEBUG:
494 		ret = create_signal_event(devkfd, p, ev, &ev_priv->event_id);
495 		break;
496 	case KFD_EVENT_TYPE_MEMORY:
497 		memcpy(&ev->memory_exception_data,
498 			&ev_priv->memory_exception_data,
499 			sizeof(struct kfd_hsa_memory_exception_data));
500 
501 		ret = create_other_event(p, ev, &ev_priv->event_id);
502 		break;
503 	case KFD_EVENT_TYPE_HW_EXCEPTION:
504 		memcpy(&ev->hw_exception_data,
505 			&ev_priv->hw_exception_data,
506 			sizeof(struct kfd_hsa_hw_exception_data));
507 
508 		ret = create_other_event(p, ev, &ev_priv->event_id);
509 		break;
510 	}
511 	mutex_unlock(&p->event_mutex);
512 
513 exit:
514 	if (ret)
515 		kfree(ev);
516 
517 	kfree(ev_priv);
518 
519 	return ret;
520 }
521 
522 int kfd_criu_checkpoint_events(struct kfd_process *p,
523 			 uint8_t __user *user_priv_data,
524 			 uint64_t *priv_data_offset)
525 {
526 	struct kfd_criu_event_priv_data *ev_privs;
527 	int i = 0;
528 	int ret =  0;
529 	struct kfd_event *ev;
530 	uint32_t ev_id;
531 
532 	uint32_t num_events = kfd_get_num_events(p);
533 
534 	if (!num_events)
535 		return 0;
536 
537 	ev_privs = kvzalloc(num_events * sizeof(*ev_privs), GFP_KERNEL);
538 	if (!ev_privs)
539 		return -ENOMEM;
540 
541 
542 	idr_for_each_entry(&p->event_idr, ev, ev_id) {
543 		struct kfd_criu_event_priv_data *ev_priv;
544 
545 		/*
546 		 * Currently, all events have same size of private_data, but the current ioctl's
547 		 * and CRIU plugin supports private_data of variable sizes
548 		 */
549 		ev_priv = &ev_privs[i];
550 
551 		ev_priv->object_type = KFD_CRIU_OBJECT_TYPE_EVENT;
552 
553 		/* We store the user_handle with the first event */
554 		if (i == 0 && p->signal_page)
555 			ev_priv->user_handle = p->signal_handle;
556 
557 		ev_priv->event_id = ev->event_id;
558 		ev_priv->auto_reset = ev->auto_reset;
559 		ev_priv->type = ev->type;
560 		ev_priv->signaled = ev->signaled;
561 
562 		if (ev_priv->type == KFD_EVENT_TYPE_MEMORY)
563 			memcpy(&ev_priv->memory_exception_data,
564 				&ev->memory_exception_data,
565 				sizeof(struct kfd_hsa_memory_exception_data));
566 		else if (ev_priv->type == KFD_EVENT_TYPE_HW_EXCEPTION)
567 			memcpy(&ev_priv->hw_exception_data,
568 				&ev->hw_exception_data,
569 				sizeof(struct kfd_hsa_hw_exception_data));
570 
571 		pr_debug("Checkpointed event[%d] id = 0x%08x auto_reset = %x type = %x signaled = %x\n",
572 			  i,
573 			  ev_priv->event_id,
574 			  ev_priv->auto_reset,
575 			  ev_priv->type,
576 			  ev_priv->signaled);
577 		i++;
578 	}
579 
580 	ret = copy_to_user(user_priv_data + *priv_data_offset,
581 			   ev_privs, num_events * sizeof(*ev_privs));
582 	if (ret) {
583 		pr_err("Failed to copy events priv to user\n");
584 		ret = -EFAULT;
585 	}
586 
587 	*priv_data_offset += num_events * sizeof(*ev_privs);
588 
589 	kvfree(ev_privs);
590 	return ret;
591 }
592 
593 int kfd_get_num_events(struct kfd_process *p)
594 {
595 	struct kfd_event *ev;
596 	uint32_t id;
597 	u32 num_events = 0;
598 
599 	idr_for_each_entry(&p->event_idr, ev, id)
600 		num_events++;
601 
602 	return num_events;
603 }
604 
605 /* Assumes that p is current. */
606 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
607 {
608 	struct kfd_event *ev;
609 	int ret = 0;
610 
611 	mutex_lock(&p->event_mutex);
612 
613 	ev = lookup_event_by_id(p, event_id);
614 
615 	if (ev)
616 		destroy_event(p, ev);
617 	else
618 		ret = -EINVAL;
619 
620 	mutex_unlock(&p->event_mutex);
621 	return ret;
622 }
623 
624 static void set_event(struct kfd_event *ev)
625 {
626 	struct kfd_event_waiter *waiter;
627 
628 	/* Auto reset if the list is non-empty and we're waking
629 	 * someone. waitqueue_active is safe here because we're
630 	 * protected by the ev->lock, which is also held when
631 	 * updating the wait queues in kfd_wait_on_events.
632 	 */
633 	ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
634 	if (!(++ev->event_age)) {
635 		/* Never wrap back to reserved/default event age 0/1 */
636 		ev->event_age = 2;
637 		WARN_ONCE(1, "event_age wrap back!");
638 	}
639 
640 	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
641 		WRITE_ONCE(waiter->activated, true);
642 
643 	wake_up_all(&ev->wq);
644 }
645 
646 /* Assumes that p is current. */
647 int kfd_set_event(struct kfd_process *p, uint32_t event_id)
648 {
649 	int ret = 0;
650 	struct kfd_event *ev;
651 
652 	rcu_read_lock();
653 
654 	ev = lookup_event_by_id(p, event_id);
655 	if (!ev) {
656 		ret = -EINVAL;
657 		goto unlock_rcu;
658 	}
659 	spin_lock(&ev->lock);
660 
661 	if (event_can_be_cpu_signaled(ev))
662 		set_event(ev);
663 	else
664 		ret = -EINVAL;
665 
666 	spin_unlock(&ev->lock);
667 unlock_rcu:
668 	rcu_read_unlock();
669 	return ret;
670 }
671 
672 static void reset_event(struct kfd_event *ev)
673 {
674 	ev->signaled = false;
675 }
676 
677 /* Assumes that p is current. */
678 int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
679 {
680 	int ret = 0;
681 	struct kfd_event *ev;
682 
683 	rcu_read_lock();
684 
685 	ev = lookup_event_by_id(p, event_id);
686 	if (!ev) {
687 		ret = -EINVAL;
688 		goto unlock_rcu;
689 	}
690 	spin_lock(&ev->lock);
691 
692 	if (event_can_be_cpu_signaled(ev))
693 		reset_event(ev);
694 	else
695 		ret = -EINVAL;
696 
697 	spin_unlock(&ev->lock);
698 unlock_rcu:
699 	rcu_read_unlock();
700 	return ret;
701 
702 }
703 
704 static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
705 {
706 	WRITE_ONCE(page_slots(p->signal_page)[ev->event_id], UNSIGNALED_EVENT_SLOT);
707 }
708 
709 static void set_event_from_interrupt(struct kfd_process *p,
710 					struct kfd_event *ev)
711 {
712 	if (ev && event_can_be_gpu_signaled(ev)) {
713 		acknowledge_signal(p, ev);
714 		spin_lock(&ev->lock);
715 		set_event(ev);
716 		spin_unlock(&ev->lock);
717 	}
718 }
719 
720 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
721 				uint32_t valid_id_bits)
722 {
723 	struct kfd_event *ev = NULL;
724 
725 	/*
726 	 * Because we are called from arbitrary context (workqueue) as opposed
727 	 * to process context, kfd_process could attempt to exit while we are
728 	 * running so the lookup function increments the process ref count.
729 	 */
730 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
731 
732 	if (!p)
733 		return; /* Presumably process exited. */
734 
735 	rcu_read_lock();
736 
737 	if (valid_id_bits)
738 		ev = lookup_signaled_event_by_partial_id(p, partial_id,
739 							 valid_id_bits);
740 	if (ev) {
741 		set_event_from_interrupt(p, ev);
742 	} else if (p->signal_page) {
743 		/*
744 		 * Partial ID lookup failed. Assume that the event ID
745 		 * in the interrupt payload was invalid and do an
746 		 * exhaustive search of signaled events.
747 		 */
748 		uint64_t *slots = page_slots(p->signal_page);
749 		uint32_t id;
750 
751 		if (valid_id_bits)
752 			pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
753 					     partial_id, valid_id_bits);
754 
755 		if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) {
756 			/* With relatively few events, it's faster to
757 			 * iterate over the event IDR
758 			 */
759 			idr_for_each_entry(&p->event_idr, ev, id) {
760 				if (id >= KFD_SIGNAL_EVENT_LIMIT)
761 					break;
762 
763 				if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT)
764 					set_event_from_interrupt(p, ev);
765 			}
766 		} else {
767 			/* With relatively many events, it's faster to
768 			 * iterate over the signal slots and lookup
769 			 * only signaled events from the IDR.
770 			 */
771 			for (id = 1; id < KFD_SIGNAL_EVENT_LIMIT; id++)
772 				if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) {
773 					ev = lookup_event_by_id(p, id);
774 					set_event_from_interrupt(p, ev);
775 				}
776 		}
777 	}
778 
779 	rcu_read_unlock();
780 	kfd_unref_process(p);
781 }
782 
783 static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
784 {
785 	struct kfd_event_waiter *event_waiters;
786 	uint32_t i;
787 
788 	event_waiters = kcalloc(num_events, sizeof(struct kfd_event_waiter),
789 				GFP_KERNEL);
790 	if (!event_waiters)
791 		return NULL;
792 
793 	for (i = 0; i < num_events; i++)
794 		init_wait(&event_waiters[i].wait);
795 
796 	return event_waiters;
797 }
798 
799 static int init_event_waiter(struct kfd_process *p,
800 		struct kfd_event_waiter *waiter,
801 		struct kfd_event_data *event_data)
802 {
803 	struct kfd_event *ev = lookup_event_by_id(p, event_data->event_id);
804 
805 	if (!ev)
806 		return -EINVAL;
807 
808 	spin_lock(&ev->lock);
809 	waiter->event = ev;
810 	waiter->activated = ev->signaled;
811 	ev->signaled = ev->signaled && !ev->auto_reset;
812 
813 	/* last_event_age = 0 reserved for backward compatible */
814 	if (waiter->event->type == KFD_EVENT_TYPE_SIGNAL &&
815 		event_data->signal_event_data.last_event_age) {
816 		waiter->event_age_enabled = true;
817 		if (ev->event_age != event_data->signal_event_data.last_event_age)
818 			waiter->activated = true;
819 	}
820 
821 	if (!waiter->activated)
822 		add_wait_queue(&ev->wq, &waiter->wait);
823 	spin_unlock(&ev->lock);
824 
825 	return 0;
826 }
827 
828 /* test_event_condition - Test condition of events being waited for
829  * @all:           Return completion only if all events have signaled
830  * @num_events:    Number of events to wait for
831  * @event_waiters: Array of event waiters, one per event
832  *
833  * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
834  * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
835  * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
836  * the events have been destroyed.
837  */
838 static uint32_t test_event_condition(bool all, uint32_t num_events,
839 				struct kfd_event_waiter *event_waiters)
840 {
841 	uint32_t i;
842 	uint32_t activated_count = 0;
843 
844 	for (i = 0; i < num_events; i++) {
845 		if (!READ_ONCE(event_waiters[i].event))
846 			return KFD_IOC_WAIT_RESULT_FAIL;
847 
848 		if (READ_ONCE(event_waiters[i].activated)) {
849 			if (!all)
850 				return KFD_IOC_WAIT_RESULT_COMPLETE;
851 
852 			activated_count++;
853 		}
854 	}
855 
856 	return activated_count == num_events ?
857 		KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
858 }
859 
860 /*
861  * Copy event specific data, if defined.
862  * Currently only memory exception events have additional data to copy to user
863  */
864 static int copy_signaled_event_data(uint32_t num_events,
865 		struct kfd_event_waiter *event_waiters,
866 		struct kfd_event_data __user *data)
867 {
868 	void *src;
869 	void __user *dst;
870 	struct kfd_event_waiter *waiter;
871 	struct kfd_event *event;
872 	uint32_t i, size = 0;
873 
874 	for (i = 0; i < num_events; i++) {
875 		waiter = &event_waiters[i];
876 		event = waiter->event;
877 		if (!event)
878 			return -EINVAL; /* event was destroyed */
879 		if (waiter->activated) {
880 			if (event->type == KFD_EVENT_TYPE_MEMORY) {
881 				dst = &data[i].memory_exception_data;
882 				src = &event->memory_exception_data;
883 				size = sizeof(struct kfd_hsa_memory_exception_data);
884 			} else if (event->type == KFD_EVENT_TYPE_SIGNAL &&
885 				waiter->event_age_enabled) {
886 				dst = &data[i].signal_event_data.last_event_age;
887 				src = &event->event_age;
888 				size = sizeof(u64);
889 			}
890 			if (size && copy_to_user(dst, src, size))
891 				return -EFAULT;
892 		}
893 	}
894 
895 	return 0;
896 }
897 
898 static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
899 {
900 	if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
901 		return 0;
902 
903 	if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
904 		return MAX_SCHEDULE_TIMEOUT;
905 
906 	/*
907 	 * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
908 	 * but we consider them finite.
909 	 * This hack is wrong, but nobody is likely to notice.
910 	 */
911 	user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
912 
913 	return msecs_to_jiffies(user_timeout_ms) + 1;
914 }
915 
916 static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters,
917 			 bool undo_auto_reset)
918 {
919 	uint32_t i;
920 
921 	for (i = 0; i < num_events; i++)
922 		if (waiters[i].event) {
923 			spin_lock(&waiters[i].event->lock);
924 			remove_wait_queue(&waiters[i].event->wq,
925 					  &waiters[i].wait);
926 			if (undo_auto_reset && waiters[i].activated &&
927 			    waiters[i].event && waiters[i].event->auto_reset)
928 				set_event(waiters[i].event);
929 			spin_unlock(&waiters[i].event->lock);
930 		}
931 
932 	kfree(waiters);
933 }
934 
935 int kfd_wait_on_events(struct kfd_process *p,
936 		       uint32_t num_events, void __user *data,
937 		       bool all, uint32_t *user_timeout_ms,
938 		       uint32_t *wait_result)
939 {
940 	struct kfd_event_data __user *events =
941 			(struct kfd_event_data __user *) data;
942 	uint32_t i;
943 	int ret = 0;
944 
945 	struct kfd_event_waiter *event_waiters = NULL;
946 	long timeout = user_timeout_to_jiffies(*user_timeout_ms);
947 
948 	event_waiters = alloc_event_waiters(num_events);
949 	if (!event_waiters) {
950 		ret = -ENOMEM;
951 		goto out;
952 	}
953 
954 	/* Use p->event_mutex here to protect against concurrent creation and
955 	 * destruction of events while we initialize event_waiters.
956 	 */
957 	mutex_lock(&p->event_mutex);
958 
959 	for (i = 0; i < num_events; i++) {
960 		struct kfd_event_data event_data;
961 
962 		if (copy_from_user(&event_data, &events[i],
963 				sizeof(struct kfd_event_data))) {
964 			ret = -EFAULT;
965 			goto out_unlock;
966 		}
967 
968 		ret = init_event_waiter(p, &event_waiters[i], &event_data);
969 		if (ret)
970 			goto out_unlock;
971 	}
972 
973 	/* Check condition once. */
974 	*wait_result = test_event_condition(all, num_events, event_waiters);
975 	if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
976 		ret = copy_signaled_event_data(num_events,
977 					       event_waiters, events);
978 		goto out_unlock;
979 	} else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
980 		/* This should not happen. Events shouldn't be
981 		 * destroyed while we're holding the event_mutex
982 		 */
983 		goto out_unlock;
984 	}
985 
986 	mutex_unlock(&p->event_mutex);
987 
988 	while (true) {
989 		if (fatal_signal_pending(current)) {
990 			ret = -EINTR;
991 			break;
992 		}
993 
994 		if (signal_pending(current)) {
995 			ret = -ERESTARTSYS;
996 			if (*user_timeout_ms != KFD_EVENT_TIMEOUT_IMMEDIATE &&
997 			    *user_timeout_ms != KFD_EVENT_TIMEOUT_INFINITE)
998 				*user_timeout_ms = jiffies_to_msecs(
999 					max(0l, timeout-1));
1000 			break;
1001 		}
1002 
1003 		/* Set task state to interruptible sleep before
1004 		 * checking wake-up conditions. A concurrent wake-up
1005 		 * will put the task back into runnable state. In that
1006 		 * case schedule_timeout will not put the task to
1007 		 * sleep and we'll get a chance to re-check the
1008 		 * updated conditions almost immediately. Otherwise,
1009 		 * this race condition would lead to a soft hang or a
1010 		 * very long sleep.
1011 		 */
1012 		set_current_state(TASK_INTERRUPTIBLE);
1013 
1014 		*wait_result = test_event_condition(all, num_events,
1015 						    event_waiters);
1016 		if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
1017 			break;
1018 
1019 		if (timeout <= 0)
1020 			break;
1021 
1022 		timeout = schedule_timeout(timeout);
1023 	}
1024 	__set_current_state(TASK_RUNNING);
1025 
1026 	mutex_lock(&p->event_mutex);
1027 	/* copy_signaled_event_data may sleep. So this has to happen
1028 	 * after the task state is set back to RUNNING.
1029 	 *
1030 	 * The event may also have been destroyed after signaling. So
1031 	 * copy_signaled_event_data also must confirm that the event
1032 	 * still exists. Therefore this must be under the p->event_mutex
1033 	 * which is also held when events are destroyed.
1034 	 */
1035 	if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
1036 		ret = copy_signaled_event_data(num_events,
1037 					       event_waiters, events);
1038 
1039 out_unlock:
1040 	free_waiters(num_events, event_waiters, ret == -ERESTARTSYS);
1041 	mutex_unlock(&p->event_mutex);
1042 out:
1043 	if (ret)
1044 		*wait_result = KFD_IOC_WAIT_RESULT_FAIL;
1045 	else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
1046 		ret = -EIO;
1047 
1048 	return ret;
1049 }
1050 
1051 int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
1052 {
1053 	unsigned long pfn;
1054 	struct kfd_signal_page *page;
1055 	int ret;
1056 
1057 	/* check required size doesn't exceed the allocated size */
1058 	if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) <
1059 			get_order(vma->vm_end - vma->vm_start)) {
1060 		pr_err("Event page mmap requested illegal size\n");
1061 		return -EINVAL;
1062 	}
1063 
1064 	page = p->signal_page;
1065 	if (!page) {
1066 		/* Probably KFD bug, but mmap is user-accessible. */
1067 		pr_debug("Signal page could not be found\n");
1068 		return -EINVAL;
1069 	}
1070 
1071 	pfn = __pa(page->kernel_address);
1072 	pfn >>= PAGE_SHIFT;
1073 
1074 	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
1075 		       | VM_DONTDUMP | VM_PFNMAP);
1076 
1077 	pr_debug("Mapping signal page\n");
1078 	pr_debug("     start user address  == 0x%08lx\n", vma->vm_start);
1079 	pr_debug("     end user address    == 0x%08lx\n", vma->vm_end);
1080 	pr_debug("     pfn                 == 0x%016lX\n", pfn);
1081 	pr_debug("     vm_flags            == 0x%08lX\n", vma->vm_flags);
1082 	pr_debug("     size                == 0x%08lX\n",
1083 			vma->vm_end - vma->vm_start);
1084 
1085 	page->user_address = (uint64_t __user *)vma->vm_start;
1086 
1087 	/* mapping the page to user process */
1088 	ret = remap_pfn_range(vma, vma->vm_start, pfn,
1089 			vma->vm_end - vma->vm_start, vma->vm_page_prot);
1090 	if (!ret)
1091 		p->signal_mapped_size = vma->vm_end - vma->vm_start;
1092 
1093 	return ret;
1094 }
1095 
1096 /*
1097  * Assumes that p is not going away.
1098  */
1099 static void lookup_events_by_type_and_signal(struct kfd_process *p,
1100 		int type, void *event_data)
1101 {
1102 	struct kfd_hsa_memory_exception_data *ev_data;
1103 	struct kfd_event *ev;
1104 	uint32_t id;
1105 	bool send_signal = true;
1106 
1107 	ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
1108 
1109 	rcu_read_lock();
1110 
1111 	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1112 	idr_for_each_entry_continue(&p->event_idr, ev, id)
1113 		if (ev->type == type) {
1114 			send_signal = false;
1115 			dev_dbg(kfd_device,
1116 					"Event found: id %X type %d",
1117 					ev->event_id, ev->type);
1118 			spin_lock(&ev->lock);
1119 			set_event(ev);
1120 			if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
1121 				ev->memory_exception_data = *ev_data;
1122 			spin_unlock(&ev->lock);
1123 		}
1124 
1125 	if (type == KFD_EVENT_TYPE_MEMORY) {
1126 		dev_warn(kfd_device,
1127 			"Sending SIGSEGV to process %d (pasid 0x%x)",
1128 				p->lead_thread->pid, p->pasid);
1129 		send_sig(SIGSEGV, p->lead_thread, 0);
1130 	}
1131 
1132 	/* Send SIGTERM no event of type "type" has been found*/
1133 	if (send_signal) {
1134 		if (send_sigterm) {
1135 			dev_warn(kfd_device,
1136 				"Sending SIGTERM to process %d (pasid 0x%x)",
1137 					p->lead_thread->pid, p->pasid);
1138 			send_sig(SIGTERM, p->lead_thread, 0);
1139 		} else {
1140 			dev_err(kfd_device,
1141 				"Process %d (pasid 0x%x) got unhandled exception",
1142 				p->lead_thread->pid, p->pasid);
1143 		}
1144 	}
1145 
1146 	rcu_read_unlock();
1147 }
1148 
1149 #ifdef KFD_SUPPORT_IOMMU_V2
1150 void kfd_signal_iommu_event(struct kfd_node *dev, u32 pasid,
1151 		unsigned long address, bool is_write_requested,
1152 		bool is_execute_requested)
1153 {
1154 	struct kfd_hsa_memory_exception_data memory_exception_data;
1155 	struct vm_area_struct *vma;
1156 	int user_gpu_id;
1157 
1158 	/*
1159 	 * Because we are called from arbitrary context (workqueue) as opposed
1160 	 * to process context, kfd_process could attempt to exit while we are
1161 	 * running so the lookup function increments the process ref count.
1162 	 */
1163 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1164 	struct mm_struct *mm;
1165 
1166 	if (!p)
1167 		return; /* Presumably process exited. */
1168 
1169 	/* Take a safe reference to the mm_struct, which may otherwise
1170 	 * disappear even while the kfd_process is still referenced.
1171 	 */
1172 	mm = get_task_mm(p->lead_thread);
1173 	if (!mm) {
1174 		kfd_unref_process(p);
1175 		return; /* Process is exiting */
1176 	}
1177 
1178 	user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1179 	if (unlikely(user_gpu_id == -EINVAL)) {
1180 		WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1181 		return;
1182 	}
1183 	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1184 
1185 	mmap_read_lock(mm);
1186 	vma = find_vma(mm, address);
1187 
1188 	memory_exception_data.gpu_id = user_gpu_id;
1189 	memory_exception_data.va = address;
1190 	/* Set failure reason */
1191 	memory_exception_data.failure.NotPresent = 1;
1192 	memory_exception_data.failure.NoExecute = 0;
1193 	memory_exception_data.failure.ReadOnly = 0;
1194 	if (vma && address >= vma->vm_start) {
1195 		memory_exception_data.failure.NotPresent = 0;
1196 
1197 		if (is_write_requested && !(vma->vm_flags & VM_WRITE))
1198 			memory_exception_data.failure.ReadOnly = 1;
1199 		else
1200 			memory_exception_data.failure.ReadOnly = 0;
1201 
1202 		if (is_execute_requested && !(vma->vm_flags & VM_EXEC))
1203 			memory_exception_data.failure.NoExecute = 1;
1204 		else
1205 			memory_exception_data.failure.NoExecute = 0;
1206 	}
1207 
1208 	mmap_read_unlock(mm);
1209 	mmput(mm);
1210 
1211 	pr_debug("notpresent %d, noexecute %d, readonly %d\n",
1212 			memory_exception_data.failure.NotPresent,
1213 			memory_exception_data.failure.NoExecute,
1214 			memory_exception_data.failure.ReadOnly);
1215 
1216 	/* Workaround on Raven to not kill the process when memory is freed
1217 	 * before IOMMU is able to finish processing all the excessive PPRs
1218 	 */
1219 
1220 	if (KFD_GC_VERSION(dev) != IP_VERSION(9, 1, 0) &&
1221 	    KFD_GC_VERSION(dev) != IP_VERSION(9, 2, 2) &&
1222 	    KFD_GC_VERSION(dev) != IP_VERSION(9, 3, 0))
1223 		lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY,
1224 				&memory_exception_data);
1225 
1226 	kfd_unref_process(p);
1227 }
1228 #endif /* KFD_SUPPORT_IOMMU_V2 */
1229 
1230 void kfd_signal_hw_exception_event(u32 pasid)
1231 {
1232 	/*
1233 	 * Because we are called from arbitrary context (workqueue) as opposed
1234 	 * to process context, kfd_process could attempt to exit while we are
1235 	 * running so the lookup function increments the process ref count.
1236 	 */
1237 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1238 
1239 	if (!p)
1240 		return; /* Presumably process exited. */
1241 
1242 	lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
1243 	kfd_unref_process(p);
1244 }
1245 
1246 void kfd_signal_vm_fault_event(struct kfd_node *dev, u32 pasid,
1247 				struct kfd_vm_fault_info *info,
1248 				struct kfd_hsa_memory_exception_data *data)
1249 {
1250 	struct kfd_event *ev;
1251 	uint32_t id;
1252 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1253 	struct kfd_hsa_memory_exception_data memory_exception_data;
1254 	int user_gpu_id;
1255 
1256 	if (!p)
1257 		return; /* Presumably process exited. */
1258 
1259 	user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1260 	if (unlikely(user_gpu_id == -EINVAL)) {
1261 		WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1262 		return;
1263 	}
1264 
1265 	/* SoC15 chips and onwards will pass in data from now on. */
1266 	if (!data) {
1267 		memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1268 		memory_exception_data.gpu_id = user_gpu_id;
1269 		memory_exception_data.failure.imprecise = true;
1270 
1271 		/* Set failure reason */
1272 		if (info) {
1273 			memory_exception_data.va = (info->page_addr) <<
1274 								PAGE_SHIFT;
1275 			memory_exception_data.failure.NotPresent =
1276 				info->prot_valid ? 1 : 0;
1277 			memory_exception_data.failure.NoExecute =
1278 				info->prot_exec ? 1 : 0;
1279 			memory_exception_data.failure.ReadOnly =
1280 				info->prot_write ? 1 : 0;
1281 			memory_exception_data.failure.imprecise = 0;
1282 		}
1283 	}
1284 
1285 	rcu_read_lock();
1286 
1287 	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1288 	idr_for_each_entry_continue(&p->event_idr, ev, id)
1289 		if (ev->type == KFD_EVENT_TYPE_MEMORY) {
1290 			spin_lock(&ev->lock);
1291 			ev->memory_exception_data = data ? *data :
1292 							memory_exception_data;
1293 			set_event(ev);
1294 			spin_unlock(&ev->lock);
1295 		}
1296 
1297 	rcu_read_unlock();
1298 	kfd_unref_process(p);
1299 }
1300 
1301 void kfd_signal_reset_event(struct kfd_node *dev)
1302 {
1303 	struct kfd_hsa_hw_exception_data hw_exception_data;
1304 	struct kfd_hsa_memory_exception_data memory_exception_data;
1305 	struct kfd_process *p;
1306 	struct kfd_event *ev;
1307 	unsigned int temp;
1308 	uint32_t id, idx;
1309 	int reset_cause = atomic_read(&dev->sram_ecc_flag) ?
1310 			KFD_HW_EXCEPTION_ECC :
1311 			KFD_HW_EXCEPTION_GPU_HANG;
1312 
1313 	/* Whole gpu reset caused by GPU hang and memory is lost */
1314 	memset(&hw_exception_data, 0, sizeof(hw_exception_data));
1315 	hw_exception_data.memory_lost = 1;
1316 	hw_exception_data.reset_cause = reset_cause;
1317 
1318 	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1319 	memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC;
1320 	memory_exception_data.failure.imprecise = true;
1321 
1322 	idx = srcu_read_lock(&kfd_processes_srcu);
1323 	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1324 		int user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1325 
1326 		if (unlikely(user_gpu_id == -EINVAL)) {
1327 			WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1328 			continue;
1329 		}
1330 
1331 		rcu_read_lock();
1332 
1333 		id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1334 		idr_for_each_entry_continue(&p->event_idr, ev, id) {
1335 			if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
1336 				spin_lock(&ev->lock);
1337 				ev->hw_exception_data = hw_exception_data;
1338 				ev->hw_exception_data.gpu_id = user_gpu_id;
1339 				set_event(ev);
1340 				spin_unlock(&ev->lock);
1341 			}
1342 			if (ev->type == KFD_EVENT_TYPE_MEMORY &&
1343 			    reset_cause == KFD_HW_EXCEPTION_ECC) {
1344 				spin_lock(&ev->lock);
1345 				ev->memory_exception_data = memory_exception_data;
1346 				ev->memory_exception_data.gpu_id = user_gpu_id;
1347 				set_event(ev);
1348 				spin_unlock(&ev->lock);
1349 			}
1350 		}
1351 
1352 		rcu_read_unlock();
1353 	}
1354 	srcu_read_unlock(&kfd_processes_srcu, idx);
1355 }
1356 
1357 void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid)
1358 {
1359 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1360 	struct kfd_hsa_memory_exception_data memory_exception_data;
1361 	struct kfd_hsa_hw_exception_data hw_exception_data;
1362 	struct kfd_event *ev;
1363 	uint32_t id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1364 	int user_gpu_id;
1365 
1366 	if (!p)
1367 		return; /* Presumably process exited. */
1368 
1369 	user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1370 	if (unlikely(user_gpu_id == -EINVAL)) {
1371 		WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1372 		return;
1373 	}
1374 
1375 	memset(&hw_exception_data, 0, sizeof(hw_exception_data));
1376 	hw_exception_data.gpu_id = user_gpu_id;
1377 	hw_exception_data.memory_lost = 1;
1378 	hw_exception_data.reset_cause = KFD_HW_EXCEPTION_ECC;
1379 
1380 	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1381 	memory_exception_data.ErrorType = KFD_MEM_ERR_POISON_CONSUMED;
1382 	memory_exception_data.gpu_id = user_gpu_id;
1383 	memory_exception_data.failure.imprecise = true;
1384 
1385 	rcu_read_lock();
1386 
1387 	idr_for_each_entry_continue(&p->event_idr, ev, id) {
1388 		if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
1389 			spin_lock(&ev->lock);
1390 			ev->hw_exception_data = hw_exception_data;
1391 			set_event(ev);
1392 			spin_unlock(&ev->lock);
1393 		}
1394 
1395 		if (ev->type == KFD_EVENT_TYPE_MEMORY) {
1396 			spin_lock(&ev->lock);
1397 			ev->memory_exception_data = memory_exception_data;
1398 			set_event(ev);
1399 			spin_unlock(&ev->lock);
1400 		}
1401 	}
1402 
1403 	rcu_read_unlock();
1404 
1405 	/* user application will handle SIGBUS signal */
1406 	send_sig(SIGBUS, p->lead_thread, 0);
1407 
1408 	kfd_unref_process(p);
1409 }
1410