1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/mm_types.h> 25 #include <linux/slab.h> 26 #include <linux/types.h> 27 #include <linux/sched/signal.h> 28 #include <linux/sched/mm.h> 29 #include <linux/uaccess.h> 30 #include <linux/mman.h> 31 #include <linux/memory.h> 32 #include "kfd_priv.h" 33 #include "kfd_events.h" 34 #include "kfd_iommu.h" 35 #include <linux/device.h> 36 37 /* 38 * Wrapper around wait_queue_entry_t 39 */ 40 struct kfd_event_waiter { 41 wait_queue_entry_t wait; 42 struct kfd_event *event; /* Event to wait for */ 43 bool activated; /* Becomes true when event is signaled */ 44 bool event_age_enabled; /* set to true when last_event_age is non-zero */ 45 }; 46 47 /* 48 * Each signal event needs a 64-bit signal slot where the signaler will write 49 * a 1 before sending an interrupt. (This is needed because some interrupts 50 * do not contain enough spare data bits to identify an event.) 51 * We get whole pages and map them to the process VA. 52 * Individual signal events use their event_id as slot index. 53 */ 54 struct kfd_signal_page { 55 uint64_t *kernel_address; 56 uint64_t __user *user_address; 57 bool need_to_free_pages; 58 }; 59 60 static uint64_t *page_slots(struct kfd_signal_page *page) 61 { 62 return page->kernel_address; 63 } 64 65 static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p) 66 { 67 void *backing_store; 68 struct kfd_signal_page *page; 69 70 page = kzalloc(sizeof(*page), GFP_KERNEL); 71 if (!page) 72 return NULL; 73 74 backing_store = (void *) __get_free_pages(GFP_KERNEL, 75 get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); 76 if (!backing_store) 77 goto fail_alloc_signal_store; 78 79 /* Initialize all events to unsignaled */ 80 memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT, 81 KFD_SIGNAL_EVENT_LIMIT * 8); 82 83 page->kernel_address = backing_store; 84 page->need_to_free_pages = true; 85 pr_debug("Allocated new event signal page at %p, for process %p\n", 86 page, p); 87 88 return page; 89 90 fail_alloc_signal_store: 91 kfree(page); 92 return NULL; 93 } 94 95 static int allocate_event_notification_slot(struct kfd_process *p, 96 struct kfd_event *ev, 97 const int *restore_id) 98 { 99 int id; 100 101 if (!p->signal_page) { 102 p->signal_page = allocate_signal_page(p); 103 if (!p->signal_page) 104 return -ENOMEM; 105 /* Oldest user mode expects 256 event slots */ 106 p->signal_mapped_size = 256*8; 107 } 108 109 if (restore_id) { 110 id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1, 111 GFP_KERNEL); 112 } else { 113 /* 114 * Compatibility with old user mode: Only use signal slots 115 * user mode has mapped, may be less than 116 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase 117 * of the event limit without breaking user mode. 118 */ 119 id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8, 120 GFP_KERNEL); 121 } 122 if (id < 0) 123 return id; 124 125 ev->event_id = id; 126 page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT; 127 128 return 0; 129 } 130 131 /* 132 * Assumes that p->event_mutex or rcu_readlock is held and of course that p is 133 * not going away. 134 */ 135 static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id) 136 { 137 return idr_find(&p->event_idr, id); 138 } 139 140 /** 141 * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID 142 * @p: Pointer to struct kfd_process 143 * @id: ID to look up 144 * @bits: Number of valid bits in @id 145 * 146 * Finds the first signaled event with a matching partial ID. If no 147 * matching signaled event is found, returns NULL. In that case the 148 * caller should assume that the partial ID is invalid and do an 149 * exhaustive search of all siglaned events. 150 * 151 * If multiple events with the same partial ID signal at the same 152 * time, they will be found one interrupt at a time, not necessarily 153 * in the same order the interrupts occurred. As long as the number of 154 * interrupts is correct, all signaled events will be seen by the 155 * driver. 156 */ 157 static struct kfd_event *lookup_signaled_event_by_partial_id( 158 struct kfd_process *p, uint32_t id, uint32_t bits) 159 { 160 struct kfd_event *ev; 161 162 if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT) 163 return NULL; 164 165 /* Fast path for the common case that @id is not a partial ID 166 * and we only need a single lookup. 167 */ 168 if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) { 169 if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) 170 return NULL; 171 172 return idr_find(&p->event_idr, id); 173 } 174 175 /* General case for partial IDs: Iterate over all matching IDs 176 * and find the first one that has signaled. 177 */ 178 for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) { 179 if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) 180 continue; 181 182 ev = idr_find(&p->event_idr, id); 183 } 184 185 return ev; 186 } 187 188 static int create_signal_event(struct file *devkfd, struct kfd_process *p, 189 struct kfd_event *ev, const int *restore_id) 190 { 191 int ret; 192 193 if (p->signal_mapped_size && 194 p->signal_event_count == p->signal_mapped_size / 8) { 195 if (!p->signal_event_limit_reached) { 196 pr_debug("Signal event wasn't created because limit was reached\n"); 197 p->signal_event_limit_reached = true; 198 } 199 return -ENOSPC; 200 } 201 202 ret = allocate_event_notification_slot(p, ev, restore_id); 203 if (ret) { 204 pr_warn("Signal event wasn't created because out of kernel memory\n"); 205 return ret; 206 } 207 208 p->signal_event_count++; 209 210 ev->user_signal_address = &p->signal_page->user_address[ev->event_id]; 211 pr_debug("Signal event number %zu created with id %d, address %p\n", 212 p->signal_event_count, ev->event_id, 213 ev->user_signal_address); 214 215 return 0; 216 } 217 218 static int create_other_event(struct kfd_process *p, struct kfd_event *ev, const int *restore_id) 219 { 220 int id; 221 222 if (restore_id) 223 id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1, 224 GFP_KERNEL); 225 else 226 /* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an 227 * intentional integer overflow to -1 without a compiler 228 * warning. idr_alloc treats a negative value as "maximum 229 * signed integer". 230 */ 231 id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID, 232 (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1, 233 GFP_KERNEL); 234 235 if (id < 0) 236 return id; 237 ev->event_id = id; 238 239 return 0; 240 } 241 242 int kfd_event_init_process(struct kfd_process *p) 243 { 244 int id; 245 246 mutex_init(&p->event_mutex); 247 idr_init(&p->event_idr); 248 p->signal_page = NULL; 249 p->signal_event_count = 1; 250 /* Allocate event ID 0. It is used for a fast path to ignore bogus events 251 * that are sent by the CP without a context ID 252 */ 253 id = idr_alloc(&p->event_idr, NULL, 0, 1, GFP_KERNEL); 254 if (id < 0) { 255 idr_destroy(&p->event_idr); 256 mutex_destroy(&p->event_mutex); 257 return id; 258 } 259 return 0; 260 } 261 262 static void destroy_event(struct kfd_process *p, struct kfd_event *ev) 263 { 264 struct kfd_event_waiter *waiter; 265 266 /* Wake up pending waiters. They will return failure */ 267 spin_lock(&ev->lock); 268 list_for_each_entry(waiter, &ev->wq.head, wait.entry) 269 WRITE_ONCE(waiter->event, NULL); 270 wake_up_all(&ev->wq); 271 spin_unlock(&ev->lock); 272 273 if (ev->type == KFD_EVENT_TYPE_SIGNAL || 274 ev->type == KFD_EVENT_TYPE_DEBUG) 275 p->signal_event_count--; 276 277 idr_remove(&p->event_idr, ev->event_id); 278 kfree_rcu(ev, rcu); 279 } 280 281 static void destroy_events(struct kfd_process *p) 282 { 283 struct kfd_event *ev; 284 uint32_t id; 285 286 idr_for_each_entry(&p->event_idr, ev, id) 287 if (ev) 288 destroy_event(p, ev); 289 idr_destroy(&p->event_idr); 290 mutex_destroy(&p->event_mutex); 291 } 292 293 /* 294 * We assume that the process is being destroyed and there is no need to 295 * unmap the pages or keep bookkeeping data in order. 296 */ 297 static void shutdown_signal_page(struct kfd_process *p) 298 { 299 struct kfd_signal_page *page = p->signal_page; 300 301 if (page) { 302 if (page->need_to_free_pages) 303 free_pages((unsigned long)page->kernel_address, 304 get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); 305 kfree(page); 306 } 307 } 308 309 void kfd_event_free_process(struct kfd_process *p) 310 { 311 destroy_events(p); 312 shutdown_signal_page(p); 313 } 314 315 static bool event_can_be_gpu_signaled(const struct kfd_event *ev) 316 { 317 return ev->type == KFD_EVENT_TYPE_SIGNAL || 318 ev->type == KFD_EVENT_TYPE_DEBUG; 319 } 320 321 static bool event_can_be_cpu_signaled(const struct kfd_event *ev) 322 { 323 return ev->type == KFD_EVENT_TYPE_SIGNAL; 324 } 325 326 static int kfd_event_page_set(struct kfd_process *p, void *kernel_address, 327 uint64_t size, uint64_t user_handle) 328 { 329 struct kfd_signal_page *page; 330 331 if (p->signal_page) 332 return -EBUSY; 333 334 page = kzalloc(sizeof(*page), GFP_KERNEL); 335 if (!page) 336 return -ENOMEM; 337 338 /* Initialize all events to unsignaled */ 339 memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT, 340 KFD_SIGNAL_EVENT_LIMIT * 8); 341 342 page->kernel_address = kernel_address; 343 344 p->signal_page = page; 345 p->signal_mapped_size = size; 346 p->signal_handle = user_handle; 347 return 0; 348 } 349 350 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset) 351 { 352 struct kfd_node *kfd; 353 struct kfd_process_device *pdd; 354 void *mem, *kern_addr; 355 uint64_t size; 356 int err = 0; 357 358 if (p->signal_page) { 359 pr_err("Event page is already set\n"); 360 return -EINVAL; 361 } 362 363 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(event_page_offset)); 364 if (!pdd) { 365 pr_err("Getting device by id failed in %s\n", __func__); 366 return -EINVAL; 367 } 368 kfd = pdd->dev; 369 370 pdd = kfd_bind_process_to_device(kfd, p); 371 if (IS_ERR(pdd)) 372 return PTR_ERR(pdd); 373 374 mem = kfd_process_device_translate_handle(pdd, 375 GET_IDR_HANDLE(event_page_offset)); 376 if (!mem) { 377 pr_err("Can't find BO, offset is 0x%llx\n", event_page_offset); 378 return -EINVAL; 379 } 380 381 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(mem, &kern_addr, &size); 382 if (err) { 383 pr_err("Failed to map event page to kernel\n"); 384 return err; 385 } 386 387 err = kfd_event_page_set(p, kern_addr, size, event_page_offset); 388 if (err) { 389 pr_err("Failed to set event page\n"); 390 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem); 391 return err; 392 } 393 return err; 394 } 395 396 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 397 uint32_t event_type, bool auto_reset, uint32_t node_id, 398 uint32_t *event_id, uint32_t *event_trigger_data, 399 uint64_t *event_page_offset, uint32_t *event_slot_index) 400 { 401 int ret = 0; 402 struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL); 403 404 if (!ev) 405 return -ENOMEM; 406 407 ev->type = event_type; 408 ev->auto_reset = auto_reset; 409 ev->signaled = false; 410 411 spin_lock_init(&ev->lock); 412 init_waitqueue_head(&ev->wq); 413 414 *event_page_offset = 0; 415 416 mutex_lock(&p->event_mutex); 417 418 switch (event_type) { 419 case KFD_EVENT_TYPE_SIGNAL: 420 case KFD_EVENT_TYPE_DEBUG: 421 ret = create_signal_event(devkfd, p, ev, NULL); 422 if (!ret) { 423 *event_page_offset = KFD_MMAP_TYPE_EVENTS; 424 *event_slot_index = ev->event_id; 425 } 426 break; 427 default: 428 ret = create_other_event(p, ev, NULL); 429 break; 430 } 431 432 if (!ret) { 433 *event_id = ev->event_id; 434 *event_trigger_data = ev->event_id; 435 ev->event_age = 1; 436 } else { 437 kfree(ev); 438 } 439 440 mutex_unlock(&p->event_mutex); 441 442 return ret; 443 } 444 445 int kfd_criu_restore_event(struct file *devkfd, 446 struct kfd_process *p, 447 uint8_t __user *user_priv_ptr, 448 uint64_t *priv_data_offset, 449 uint64_t max_priv_data_size) 450 { 451 struct kfd_criu_event_priv_data *ev_priv; 452 struct kfd_event *ev = NULL; 453 int ret = 0; 454 455 ev_priv = kmalloc(sizeof(*ev_priv), GFP_KERNEL); 456 if (!ev_priv) 457 return -ENOMEM; 458 459 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 460 if (!ev) { 461 ret = -ENOMEM; 462 goto exit; 463 } 464 465 if (*priv_data_offset + sizeof(*ev_priv) > max_priv_data_size) { 466 ret = -EINVAL; 467 goto exit; 468 } 469 470 ret = copy_from_user(ev_priv, user_priv_ptr + *priv_data_offset, sizeof(*ev_priv)); 471 if (ret) { 472 ret = -EFAULT; 473 goto exit; 474 } 475 *priv_data_offset += sizeof(*ev_priv); 476 477 if (ev_priv->user_handle) { 478 ret = kfd_kmap_event_page(p, ev_priv->user_handle); 479 if (ret) 480 goto exit; 481 } 482 483 ev->type = ev_priv->type; 484 ev->auto_reset = ev_priv->auto_reset; 485 ev->signaled = ev_priv->signaled; 486 487 spin_lock_init(&ev->lock); 488 init_waitqueue_head(&ev->wq); 489 490 mutex_lock(&p->event_mutex); 491 switch (ev->type) { 492 case KFD_EVENT_TYPE_SIGNAL: 493 case KFD_EVENT_TYPE_DEBUG: 494 ret = create_signal_event(devkfd, p, ev, &ev_priv->event_id); 495 break; 496 case KFD_EVENT_TYPE_MEMORY: 497 memcpy(&ev->memory_exception_data, 498 &ev_priv->memory_exception_data, 499 sizeof(struct kfd_hsa_memory_exception_data)); 500 501 ret = create_other_event(p, ev, &ev_priv->event_id); 502 break; 503 case KFD_EVENT_TYPE_HW_EXCEPTION: 504 memcpy(&ev->hw_exception_data, 505 &ev_priv->hw_exception_data, 506 sizeof(struct kfd_hsa_hw_exception_data)); 507 508 ret = create_other_event(p, ev, &ev_priv->event_id); 509 break; 510 } 511 mutex_unlock(&p->event_mutex); 512 513 exit: 514 if (ret) 515 kfree(ev); 516 517 kfree(ev_priv); 518 519 return ret; 520 } 521 522 int kfd_criu_checkpoint_events(struct kfd_process *p, 523 uint8_t __user *user_priv_data, 524 uint64_t *priv_data_offset) 525 { 526 struct kfd_criu_event_priv_data *ev_privs; 527 int i = 0; 528 int ret = 0; 529 struct kfd_event *ev; 530 uint32_t ev_id; 531 532 uint32_t num_events = kfd_get_num_events(p); 533 534 if (!num_events) 535 return 0; 536 537 ev_privs = kvzalloc(num_events * sizeof(*ev_privs), GFP_KERNEL); 538 if (!ev_privs) 539 return -ENOMEM; 540 541 542 idr_for_each_entry(&p->event_idr, ev, ev_id) { 543 struct kfd_criu_event_priv_data *ev_priv; 544 545 /* 546 * Currently, all events have same size of private_data, but the current ioctl's 547 * and CRIU plugin supports private_data of variable sizes 548 */ 549 ev_priv = &ev_privs[i]; 550 551 ev_priv->object_type = KFD_CRIU_OBJECT_TYPE_EVENT; 552 553 /* We store the user_handle with the first event */ 554 if (i == 0 && p->signal_page) 555 ev_priv->user_handle = p->signal_handle; 556 557 ev_priv->event_id = ev->event_id; 558 ev_priv->auto_reset = ev->auto_reset; 559 ev_priv->type = ev->type; 560 ev_priv->signaled = ev->signaled; 561 562 if (ev_priv->type == KFD_EVENT_TYPE_MEMORY) 563 memcpy(&ev_priv->memory_exception_data, 564 &ev->memory_exception_data, 565 sizeof(struct kfd_hsa_memory_exception_data)); 566 else if (ev_priv->type == KFD_EVENT_TYPE_HW_EXCEPTION) 567 memcpy(&ev_priv->hw_exception_data, 568 &ev->hw_exception_data, 569 sizeof(struct kfd_hsa_hw_exception_data)); 570 571 pr_debug("Checkpointed event[%d] id = 0x%08x auto_reset = %x type = %x signaled = %x\n", 572 i, 573 ev_priv->event_id, 574 ev_priv->auto_reset, 575 ev_priv->type, 576 ev_priv->signaled); 577 i++; 578 } 579 580 ret = copy_to_user(user_priv_data + *priv_data_offset, 581 ev_privs, num_events * sizeof(*ev_privs)); 582 if (ret) { 583 pr_err("Failed to copy events priv to user\n"); 584 ret = -EFAULT; 585 } 586 587 *priv_data_offset += num_events * sizeof(*ev_privs); 588 589 kvfree(ev_privs); 590 return ret; 591 } 592 593 int kfd_get_num_events(struct kfd_process *p) 594 { 595 struct kfd_event *ev; 596 uint32_t id; 597 u32 num_events = 0; 598 599 idr_for_each_entry(&p->event_idr, ev, id) 600 num_events++; 601 602 return num_events; 603 } 604 605 /* Assumes that p is current. */ 606 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id) 607 { 608 struct kfd_event *ev; 609 int ret = 0; 610 611 mutex_lock(&p->event_mutex); 612 613 ev = lookup_event_by_id(p, event_id); 614 615 if (ev) 616 destroy_event(p, ev); 617 else 618 ret = -EINVAL; 619 620 mutex_unlock(&p->event_mutex); 621 return ret; 622 } 623 624 static void set_event(struct kfd_event *ev) 625 { 626 struct kfd_event_waiter *waiter; 627 628 /* Auto reset if the list is non-empty and we're waking 629 * someone. waitqueue_active is safe here because we're 630 * protected by the ev->lock, which is also held when 631 * updating the wait queues in kfd_wait_on_events. 632 */ 633 ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq); 634 if (!(++ev->event_age)) { 635 /* Never wrap back to reserved/default event age 0/1 */ 636 ev->event_age = 2; 637 WARN_ONCE(1, "event_age wrap back!"); 638 } 639 640 list_for_each_entry(waiter, &ev->wq.head, wait.entry) 641 WRITE_ONCE(waiter->activated, true); 642 643 wake_up_all(&ev->wq); 644 } 645 646 /* Assumes that p is current. */ 647 int kfd_set_event(struct kfd_process *p, uint32_t event_id) 648 { 649 int ret = 0; 650 struct kfd_event *ev; 651 652 rcu_read_lock(); 653 654 ev = lookup_event_by_id(p, event_id); 655 if (!ev) { 656 ret = -EINVAL; 657 goto unlock_rcu; 658 } 659 spin_lock(&ev->lock); 660 661 if (event_can_be_cpu_signaled(ev)) 662 set_event(ev); 663 else 664 ret = -EINVAL; 665 666 spin_unlock(&ev->lock); 667 unlock_rcu: 668 rcu_read_unlock(); 669 return ret; 670 } 671 672 static void reset_event(struct kfd_event *ev) 673 { 674 ev->signaled = false; 675 } 676 677 /* Assumes that p is current. */ 678 int kfd_reset_event(struct kfd_process *p, uint32_t event_id) 679 { 680 int ret = 0; 681 struct kfd_event *ev; 682 683 rcu_read_lock(); 684 685 ev = lookup_event_by_id(p, event_id); 686 if (!ev) { 687 ret = -EINVAL; 688 goto unlock_rcu; 689 } 690 spin_lock(&ev->lock); 691 692 if (event_can_be_cpu_signaled(ev)) 693 reset_event(ev); 694 else 695 ret = -EINVAL; 696 697 spin_unlock(&ev->lock); 698 unlock_rcu: 699 rcu_read_unlock(); 700 return ret; 701 702 } 703 704 static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev) 705 { 706 WRITE_ONCE(page_slots(p->signal_page)[ev->event_id], UNSIGNALED_EVENT_SLOT); 707 } 708 709 static void set_event_from_interrupt(struct kfd_process *p, 710 struct kfd_event *ev) 711 { 712 if (ev && event_can_be_gpu_signaled(ev)) { 713 acknowledge_signal(p, ev); 714 spin_lock(&ev->lock); 715 set_event(ev); 716 spin_unlock(&ev->lock); 717 } 718 } 719 720 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, 721 uint32_t valid_id_bits) 722 { 723 struct kfd_event *ev = NULL; 724 725 /* 726 * Because we are called from arbitrary context (workqueue) as opposed 727 * to process context, kfd_process could attempt to exit while we are 728 * running so the lookup function increments the process ref count. 729 */ 730 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 731 732 if (!p) 733 return; /* Presumably process exited. */ 734 735 rcu_read_lock(); 736 737 if (valid_id_bits) 738 ev = lookup_signaled_event_by_partial_id(p, partial_id, 739 valid_id_bits); 740 if (ev) { 741 set_event_from_interrupt(p, ev); 742 } else if (p->signal_page) { 743 /* 744 * Partial ID lookup failed. Assume that the event ID 745 * in the interrupt payload was invalid and do an 746 * exhaustive search of signaled events. 747 */ 748 uint64_t *slots = page_slots(p->signal_page); 749 uint32_t id; 750 751 if (valid_id_bits) 752 pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n", 753 partial_id, valid_id_bits); 754 755 if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) { 756 /* With relatively few events, it's faster to 757 * iterate over the event IDR 758 */ 759 idr_for_each_entry(&p->event_idr, ev, id) { 760 if (id >= KFD_SIGNAL_EVENT_LIMIT) 761 break; 762 763 if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) 764 set_event_from_interrupt(p, ev); 765 } 766 } else { 767 /* With relatively many events, it's faster to 768 * iterate over the signal slots and lookup 769 * only signaled events from the IDR. 770 */ 771 for (id = 1; id < KFD_SIGNAL_EVENT_LIMIT; id++) 772 if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) { 773 ev = lookup_event_by_id(p, id); 774 set_event_from_interrupt(p, ev); 775 } 776 } 777 } 778 779 rcu_read_unlock(); 780 kfd_unref_process(p); 781 } 782 783 static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events) 784 { 785 struct kfd_event_waiter *event_waiters; 786 uint32_t i; 787 788 event_waiters = kcalloc(num_events, sizeof(struct kfd_event_waiter), 789 GFP_KERNEL); 790 if (!event_waiters) 791 return NULL; 792 793 for (i = 0; i < num_events; i++) 794 init_wait(&event_waiters[i].wait); 795 796 return event_waiters; 797 } 798 799 static int init_event_waiter(struct kfd_process *p, 800 struct kfd_event_waiter *waiter, 801 struct kfd_event_data *event_data) 802 { 803 struct kfd_event *ev = lookup_event_by_id(p, event_data->event_id); 804 805 if (!ev) 806 return -EINVAL; 807 808 spin_lock(&ev->lock); 809 waiter->event = ev; 810 waiter->activated = ev->signaled; 811 ev->signaled = ev->signaled && !ev->auto_reset; 812 813 /* last_event_age = 0 reserved for backward compatible */ 814 if (waiter->event->type == KFD_EVENT_TYPE_SIGNAL && 815 event_data->signal_event_data.last_event_age) { 816 waiter->event_age_enabled = true; 817 if (ev->event_age != event_data->signal_event_data.last_event_age) 818 waiter->activated = true; 819 } 820 821 if (!waiter->activated) 822 add_wait_queue(&ev->wq, &waiter->wait); 823 spin_unlock(&ev->lock); 824 825 return 0; 826 } 827 828 /* test_event_condition - Test condition of events being waited for 829 * @all: Return completion only if all events have signaled 830 * @num_events: Number of events to wait for 831 * @event_waiters: Array of event waiters, one per event 832 * 833 * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have 834 * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all) 835 * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of 836 * the events have been destroyed. 837 */ 838 static uint32_t test_event_condition(bool all, uint32_t num_events, 839 struct kfd_event_waiter *event_waiters) 840 { 841 uint32_t i; 842 uint32_t activated_count = 0; 843 844 for (i = 0; i < num_events; i++) { 845 if (!READ_ONCE(event_waiters[i].event)) 846 return KFD_IOC_WAIT_RESULT_FAIL; 847 848 if (READ_ONCE(event_waiters[i].activated)) { 849 if (!all) 850 return KFD_IOC_WAIT_RESULT_COMPLETE; 851 852 activated_count++; 853 } 854 } 855 856 return activated_count == num_events ? 857 KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT; 858 } 859 860 /* 861 * Copy event specific data, if defined. 862 * Currently only memory exception events have additional data to copy to user 863 */ 864 static int copy_signaled_event_data(uint32_t num_events, 865 struct kfd_event_waiter *event_waiters, 866 struct kfd_event_data __user *data) 867 { 868 void *src; 869 void __user *dst; 870 struct kfd_event_waiter *waiter; 871 struct kfd_event *event; 872 uint32_t i, size = 0; 873 874 for (i = 0; i < num_events; i++) { 875 waiter = &event_waiters[i]; 876 event = waiter->event; 877 if (!event) 878 return -EINVAL; /* event was destroyed */ 879 if (waiter->activated) { 880 if (event->type == KFD_EVENT_TYPE_MEMORY) { 881 dst = &data[i].memory_exception_data; 882 src = &event->memory_exception_data; 883 size = sizeof(struct kfd_hsa_memory_exception_data); 884 } else if (event->type == KFD_EVENT_TYPE_SIGNAL && 885 waiter->event_age_enabled) { 886 dst = &data[i].signal_event_data.last_event_age; 887 src = &event->event_age; 888 size = sizeof(u64); 889 } 890 if (size && copy_to_user(dst, src, size)) 891 return -EFAULT; 892 } 893 } 894 895 return 0; 896 } 897 898 static long user_timeout_to_jiffies(uint32_t user_timeout_ms) 899 { 900 if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE) 901 return 0; 902 903 if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE) 904 return MAX_SCHEDULE_TIMEOUT; 905 906 /* 907 * msecs_to_jiffies interprets all values above 2^31-1 as infinite, 908 * but we consider them finite. 909 * This hack is wrong, but nobody is likely to notice. 910 */ 911 user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF); 912 913 return msecs_to_jiffies(user_timeout_ms) + 1; 914 } 915 916 static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters, 917 bool undo_auto_reset) 918 { 919 uint32_t i; 920 921 for (i = 0; i < num_events; i++) 922 if (waiters[i].event) { 923 spin_lock(&waiters[i].event->lock); 924 remove_wait_queue(&waiters[i].event->wq, 925 &waiters[i].wait); 926 if (undo_auto_reset && waiters[i].activated && 927 waiters[i].event && waiters[i].event->auto_reset) 928 set_event(waiters[i].event); 929 spin_unlock(&waiters[i].event->lock); 930 } 931 932 kfree(waiters); 933 } 934 935 int kfd_wait_on_events(struct kfd_process *p, 936 uint32_t num_events, void __user *data, 937 bool all, uint32_t *user_timeout_ms, 938 uint32_t *wait_result) 939 { 940 struct kfd_event_data __user *events = 941 (struct kfd_event_data __user *) data; 942 uint32_t i; 943 int ret = 0; 944 945 struct kfd_event_waiter *event_waiters = NULL; 946 long timeout = user_timeout_to_jiffies(*user_timeout_ms); 947 948 event_waiters = alloc_event_waiters(num_events); 949 if (!event_waiters) { 950 ret = -ENOMEM; 951 goto out; 952 } 953 954 /* Use p->event_mutex here to protect against concurrent creation and 955 * destruction of events while we initialize event_waiters. 956 */ 957 mutex_lock(&p->event_mutex); 958 959 for (i = 0; i < num_events; i++) { 960 struct kfd_event_data event_data; 961 962 if (copy_from_user(&event_data, &events[i], 963 sizeof(struct kfd_event_data))) { 964 ret = -EFAULT; 965 goto out_unlock; 966 } 967 968 ret = init_event_waiter(p, &event_waiters[i], &event_data); 969 if (ret) 970 goto out_unlock; 971 } 972 973 /* Check condition once. */ 974 *wait_result = test_event_condition(all, num_events, event_waiters); 975 if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) { 976 ret = copy_signaled_event_data(num_events, 977 event_waiters, events); 978 goto out_unlock; 979 } else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) { 980 /* This should not happen. Events shouldn't be 981 * destroyed while we're holding the event_mutex 982 */ 983 goto out_unlock; 984 } 985 986 mutex_unlock(&p->event_mutex); 987 988 while (true) { 989 if (fatal_signal_pending(current)) { 990 ret = -EINTR; 991 break; 992 } 993 994 if (signal_pending(current)) { 995 ret = -ERESTARTSYS; 996 if (*user_timeout_ms != KFD_EVENT_TIMEOUT_IMMEDIATE && 997 *user_timeout_ms != KFD_EVENT_TIMEOUT_INFINITE) 998 *user_timeout_ms = jiffies_to_msecs( 999 max(0l, timeout-1)); 1000 break; 1001 } 1002 1003 /* Set task state to interruptible sleep before 1004 * checking wake-up conditions. A concurrent wake-up 1005 * will put the task back into runnable state. In that 1006 * case schedule_timeout will not put the task to 1007 * sleep and we'll get a chance to re-check the 1008 * updated conditions almost immediately. Otherwise, 1009 * this race condition would lead to a soft hang or a 1010 * very long sleep. 1011 */ 1012 set_current_state(TASK_INTERRUPTIBLE); 1013 1014 *wait_result = test_event_condition(all, num_events, 1015 event_waiters); 1016 if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT) 1017 break; 1018 1019 if (timeout <= 0) 1020 break; 1021 1022 timeout = schedule_timeout(timeout); 1023 } 1024 __set_current_state(TASK_RUNNING); 1025 1026 mutex_lock(&p->event_mutex); 1027 /* copy_signaled_event_data may sleep. So this has to happen 1028 * after the task state is set back to RUNNING. 1029 * 1030 * The event may also have been destroyed after signaling. So 1031 * copy_signaled_event_data also must confirm that the event 1032 * still exists. Therefore this must be under the p->event_mutex 1033 * which is also held when events are destroyed. 1034 */ 1035 if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) 1036 ret = copy_signaled_event_data(num_events, 1037 event_waiters, events); 1038 1039 out_unlock: 1040 free_waiters(num_events, event_waiters, ret == -ERESTARTSYS); 1041 mutex_unlock(&p->event_mutex); 1042 out: 1043 if (ret) 1044 *wait_result = KFD_IOC_WAIT_RESULT_FAIL; 1045 else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL) 1046 ret = -EIO; 1047 1048 return ret; 1049 } 1050 1051 int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma) 1052 { 1053 unsigned long pfn; 1054 struct kfd_signal_page *page; 1055 int ret; 1056 1057 /* check required size doesn't exceed the allocated size */ 1058 if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) < 1059 get_order(vma->vm_end - vma->vm_start)) { 1060 pr_err("Event page mmap requested illegal size\n"); 1061 return -EINVAL; 1062 } 1063 1064 page = p->signal_page; 1065 if (!page) { 1066 /* Probably KFD bug, but mmap is user-accessible. */ 1067 pr_debug("Signal page could not be found\n"); 1068 return -EINVAL; 1069 } 1070 1071 pfn = __pa(page->kernel_address); 1072 pfn >>= PAGE_SHIFT; 1073 1074 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE 1075 | VM_DONTDUMP | VM_PFNMAP); 1076 1077 pr_debug("Mapping signal page\n"); 1078 pr_debug(" start user address == 0x%08lx\n", vma->vm_start); 1079 pr_debug(" end user address == 0x%08lx\n", vma->vm_end); 1080 pr_debug(" pfn == 0x%016lX\n", pfn); 1081 pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags); 1082 pr_debug(" size == 0x%08lX\n", 1083 vma->vm_end - vma->vm_start); 1084 1085 page->user_address = (uint64_t __user *)vma->vm_start; 1086 1087 /* mapping the page to user process */ 1088 ret = remap_pfn_range(vma, vma->vm_start, pfn, 1089 vma->vm_end - vma->vm_start, vma->vm_page_prot); 1090 if (!ret) 1091 p->signal_mapped_size = vma->vm_end - vma->vm_start; 1092 1093 return ret; 1094 } 1095 1096 /* 1097 * Assumes that p is not going away. 1098 */ 1099 static void lookup_events_by_type_and_signal(struct kfd_process *p, 1100 int type, void *event_data) 1101 { 1102 struct kfd_hsa_memory_exception_data *ev_data; 1103 struct kfd_event *ev; 1104 uint32_t id; 1105 bool send_signal = true; 1106 1107 ev_data = (struct kfd_hsa_memory_exception_data *) event_data; 1108 1109 rcu_read_lock(); 1110 1111 id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1112 idr_for_each_entry_continue(&p->event_idr, ev, id) 1113 if (ev->type == type) { 1114 send_signal = false; 1115 dev_dbg(kfd_device, 1116 "Event found: id %X type %d", 1117 ev->event_id, ev->type); 1118 spin_lock(&ev->lock); 1119 set_event(ev); 1120 if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data) 1121 ev->memory_exception_data = *ev_data; 1122 spin_unlock(&ev->lock); 1123 } 1124 1125 if (type == KFD_EVENT_TYPE_MEMORY) { 1126 dev_warn(kfd_device, 1127 "Sending SIGSEGV to process %d (pasid 0x%x)", 1128 p->lead_thread->pid, p->pasid); 1129 send_sig(SIGSEGV, p->lead_thread, 0); 1130 } 1131 1132 /* Send SIGTERM no event of type "type" has been found*/ 1133 if (send_signal) { 1134 if (send_sigterm) { 1135 dev_warn(kfd_device, 1136 "Sending SIGTERM to process %d (pasid 0x%x)", 1137 p->lead_thread->pid, p->pasid); 1138 send_sig(SIGTERM, p->lead_thread, 0); 1139 } else { 1140 dev_err(kfd_device, 1141 "Process %d (pasid 0x%x) got unhandled exception", 1142 p->lead_thread->pid, p->pasid); 1143 } 1144 } 1145 1146 rcu_read_unlock(); 1147 } 1148 1149 #ifdef KFD_SUPPORT_IOMMU_V2 1150 void kfd_signal_iommu_event(struct kfd_node *dev, u32 pasid, 1151 unsigned long address, bool is_write_requested, 1152 bool is_execute_requested) 1153 { 1154 struct kfd_hsa_memory_exception_data memory_exception_data; 1155 struct vm_area_struct *vma; 1156 int user_gpu_id; 1157 1158 /* 1159 * Because we are called from arbitrary context (workqueue) as opposed 1160 * to process context, kfd_process could attempt to exit while we are 1161 * running so the lookup function increments the process ref count. 1162 */ 1163 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1164 struct mm_struct *mm; 1165 1166 if (!p) 1167 return; /* Presumably process exited. */ 1168 1169 /* Take a safe reference to the mm_struct, which may otherwise 1170 * disappear even while the kfd_process is still referenced. 1171 */ 1172 mm = get_task_mm(p->lead_thread); 1173 if (!mm) { 1174 kfd_unref_process(p); 1175 return; /* Process is exiting */ 1176 } 1177 1178 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); 1179 if (unlikely(user_gpu_id == -EINVAL)) { 1180 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); 1181 return; 1182 } 1183 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 1184 1185 mmap_read_lock(mm); 1186 vma = find_vma(mm, address); 1187 1188 memory_exception_data.gpu_id = user_gpu_id; 1189 memory_exception_data.va = address; 1190 /* Set failure reason */ 1191 memory_exception_data.failure.NotPresent = 1; 1192 memory_exception_data.failure.NoExecute = 0; 1193 memory_exception_data.failure.ReadOnly = 0; 1194 if (vma && address >= vma->vm_start) { 1195 memory_exception_data.failure.NotPresent = 0; 1196 1197 if (is_write_requested && !(vma->vm_flags & VM_WRITE)) 1198 memory_exception_data.failure.ReadOnly = 1; 1199 else 1200 memory_exception_data.failure.ReadOnly = 0; 1201 1202 if (is_execute_requested && !(vma->vm_flags & VM_EXEC)) 1203 memory_exception_data.failure.NoExecute = 1; 1204 else 1205 memory_exception_data.failure.NoExecute = 0; 1206 } 1207 1208 mmap_read_unlock(mm); 1209 mmput(mm); 1210 1211 pr_debug("notpresent %d, noexecute %d, readonly %d\n", 1212 memory_exception_data.failure.NotPresent, 1213 memory_exception_data.failure.NoExecute, 1214 memory_exception_data.failure.ReadOnly); 1215 1216 /* Workaround on Raven to not kill the process when memory is freed 1217 * before IOMMU is able to finish processing all the excessive PPRs 1218 */ 1219 1220 if (KFD_GC_VERSION(dev) != IP_VERSION(9, 1, 0) && 1221 KFD_GC_VERSION(dev) != IP_VERSION(9, 2, 2) && 1222 KFD_GC_VERSION(dev) != IP_VERSION(9, 3, 0)) 1223 lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY, 1224 &memory_exception_data); 1225 1226 kfd_unref_process(p); 1227 } 1228 #endif /* KFD_SUPPORT_IOMMU_V2 */ 1229 1230 void kfd_signal_hw_exception_event(u32 pasid) 1231 { 1232 /* 1233 * Because we are called from arbitrary context (workqueue) as opposed 1234 * to process context, kfd_process could attempt to exit while we are 1235 * running so the lookup function increments the process ref count. 1236 */ 1237 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1238 1239 if (!p) 1240 return; /* Presumably process exited. */ 1241 1242 lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL); 1243 kfd_unref_process(p); 1244 } 1245 1246 void kfd_signal_vm_fault_event(struct kfd_node *dev, u32 pasid, 1247 struct kfd_vm_fault_info *info, 1248 struct kfd_hsa_memory_exception_data *data) 1249 { 1250 struct kfd_event *ev; 1251 uint32_t id; 1252 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1253 struct kfd_hsa_memory_exception_data memory_exception_data; 1254 int user_gpu_id; 1255 1256 if (!p) 1257 return; /* Presumably process exited. */ 1258 1259 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); 1260 if (unlikely(user_gpu_id == -EINVAL)) { 1261 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); 1262 return; 1263 } 1264 1265 /* SoC15 chips and onwards will pass in data from now on. */ 1266 if (!data) { 1267 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 1268 memory_exception_data.gpu_id = user_gpu_id; 1269 memory_exception_data.failure.imprecise = true; 1270 1271 /* Set failure reason */ 1272 if (info) { 1273 memory_exception_data.va = (info->page_addr) << 1274 PAGE_SHIFT; 1275 memory_exception_data.failure.NotPresent = 1276 info->prot_valid ? 1 : 0; 1277 memory_exception_data.failure.NoExecute = 1278 info->prot_exec ? 1 : 0; 1279 memory_exception_data.failure.ReadOnly = 1280 info->prot_write ? 1 : 0; 1281 memory_exception_data.failure.imprecise = 0; 1282 } 1283 } 1284 1285 rcu_read_lock(); 1286 1287 id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1288 idr_for_each_entry_continue(&p->event_idr, ev, id) 1289 if (ev->type == KFD_EVENT_TYPE_MEMORY) { 1290 spin_lock(&ev->lock); 1291 ev->memory_exception_data = data ? *data : 1292 memory_exception_data; 1293 set_event(ev); 1294 spin_unlock(&ev->lock); 1295 } 1296 1297 rcu_read_unlock(); 1298 kfd_unref_process(p); 1299 } 1300 1301 void kfd_signal_reset_event(struct kfd_node *dev) 1302 { 1303 struct kfd_hsa_hw_exception_data hw_exception_data; 1304 struct kfd_hsa_memory_exception_data memory_exception_data; 1305 struct kfd_process *p; 1306 struct kfd_event *ev; 1307 unsigned int temp; 1308 uint32_t id, idx; 1309 int reset_cause = atomic_read(&dev->sram_ecc_flag) ? 1310 KFD_HW_EXCEPTION_ECC : 1311 KFD_HW_EXCEPTION_GPU_HANG; 1312 1313 /* Whole gpu reset caused by GPU hang and memory is lost */ 1314 memset(&hw_exception_data, 0, sizeof(hw_exception_data)); 1315 hw_exception_data.memory_lost = 1; 1316 hw_exception_data.reset_cause = reset_cause; 1317 1318 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 1319 memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC; 1320 memory_exception_data.failure.imprecise = true; 1321 1322 idx = srcu_read_lock(&kfd_processes_srcu); 1323 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1324 int user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); 1325 1326 if (unlikely(user_gpu_id == -EINVAL)) { 1327 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); 1328 continue; 1329 } 1330 1331 rcu_read_lock(); 1332 1333 id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1334 idr_for_each_entry_continue(&p->event_idr, ev, id) { 1335 if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) { 1336 spin_lock(&ev->lock); 1337 ev->hw_exception_data = hw_exception_data; 1338 ev->hw_exception_data.gpu_id = user_gpu_id; 1339 set_event(ev); 1340 spin_unlock(&ev->lock); 1341 } 1342 if (ev->type == KFD_EVENT_TYPE_MEMORY && 1343 reset_cause == KFD_HW_EXCEPTION_ECC) { 1344 spin_lock(&ev->lock); 1345 ev->memory_exception_data = memory_exception_data; 1346 ev->memory_exception_data.gpu_id = user_gpu_id; 1347 set_event(ev); 1348 spin_unlock(&ev->lock); 1349 } 1350 } 1351 1352 rcu_read_unlock(); 1353 } 1354 srcu_read_unlock(&kfd_processes_srcu, idx); 1355 } 1356 1357 void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid) 1358 { 1359 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1360 struct kfd_hsa_memory_exception_data memory_exception_data; 1361 struct kfd_hsa_hw_exception_data hw_exception_data; 1362 struct kfd_event *ev; 1363 uint32_t id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1364 int user_gpu_id; 1365 1366 if (!p) 1367 return; /* Presumably process exited. */ 1368 1369 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); 1370 if (unlikely(user_gpu_id == -EINVAL)) { 1371 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); 1372 return; 1373 } 1374 1375 memset(&hw_exception_data, 0, sizeof(hw_exception_data)); 1376 hw_exception_data.gpu_id = user_gpu_id; 1377 hw_exception_data.memory_lost = 1; 1378 hw_exception_data.reset_cause = KFD_HW_EXCEPTION_ECC; 1379 1380 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 1381 memory_exception_data.ErrorType = KFD_MEM_ERR_POISON_CONSUMED; 1382 memory_exception_data.gpu_id = user_gpu_id; 1383 memory_exception_data.failure.imprecise = true; 1384 1385 rcu_read_lock(); 1386 1387 idr_for_each_entry_continue(&p->event_idr, ev, id) { 1388 if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) { 1389 spin_lock(&ev->lock); 1390 ev->hw_exception_data = hw_exception_data; 1391 set_event(ev); 1392 spin_unlock(&ev->lock); 1393 } 1394 1395 if (ev->type == KFD_EVENT_TYPE_MEMORY) { 1396 spin_lock(&ev->lock); 1397 ev->memory_exception_data = memory_exception_data; 1398 set_event(ev); 1399 spin_unlock(&ev->lock); 1400 } 1401 } 1402 1403 rcu_read_unlock(); 1404 1405 /* user application will handle SIGBUS signal */ 1406 send_sig(SIGBUS, p->lead_thread, 0); 1407 1408 kfd_unref_process(p); 1409 } 1410