1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <linux/mm_types.h> 25 #include <linux/slab.h> 26 #include <linux/types.h> 27 #include <linux/sched/signal.h> 28 #include <linux/sched/mm.h> 29 #include <linux/uaccess.h> 30 #include <linux/mman.h> 31 #include <linux/memory.h> 32 #include "kfd_priv.h" 33 #include "kfd_events.h" 34 #include "kfd_iommu.h" 35 #include <linux/device.h> 36 37 /* 38 * Wrapper around wait_queue_entry_t 39 */ 40 struct kfd_event_waiter { 41 wait_queue_entry_t wait; 42 struct kfd_event *event; /* Event to wait for */ 43 bool activated; /* Becomes true when event is signaled */ 44 }; 45 46 /* 47 * Each signal event needs a 64-bit signal slot where the signaler will write 48 * a 1 before sending an interrupt. (This is needed because some interrupts 49 * do not contain enough spare data bits to identify an event.) 50 * We get whole pages and map them to the process VA. 51 * Individual signal events use their event_id as slot index. 52 */ 53 struct kfd_signal_page { 54 uint64_t *kernel_address; 55 uint64_t __user *user_address; 56 bool need_to_free_pages; 57 }; 58 59 static uint64_t *page_slots(struct kfd_signal_page *page) 60 { 61 return page->kernel_address; 62 } 63 64 static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p) 65 { 66 void *backing_store; 67 struct kfd_signal_page *page; 68 69 page = kzalloc(sizeof(*page), GFP_KERNEL); 70 if (!page) 71 return NULL; 72 73 backing_store = (void *) __get_free_pages(GFP_KERNEL, 74 get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); 75 if (!backing_store) 76 goto fail_alloc_signal_store; 77 78 /* Initialize all events to unsignaled */ 79 memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT, 80 KFD_SIGNAL_EVENT_LIMIT * 8); 81 82 page->kernel_address = backing_store; 83 page->need_to_free_pages = true; 84 pr_debug("Allocated new event signal page at %p, for process %p\n", 85 page, p); 86 87 return page; 88 89 fail_alloc_signal_store: 90 kfree(page); 91 return NULL; 92 } 93 94 static int allocate_event_notification_slot(struct kfd_process *p, 95 struct kfd_event *ev, 96 const int *restore_id) 97 { 98 int id; 99 100 if (!p->signal_page) { 101 p->signal_page = allocate_signal_page(p); 102 if (!p->signal_page) 103 return -ENOMEM; 104 /* Oldest user mode expects 256 event slots */ 105 p->signal_mapped_size = 256*8; 106 } 107 108 if (restore_id) { 109 id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1, 110 GFP_KERNEL); 111 } else { 112 /* 113 * Compatibility with old user mode: Only use signal slots 114 * user mode has mapped, may be less than 115 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase 116 * of the event limit without breaking user mode. 117 */ 118 id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8, 119 GFP_KERNEL); 120 } 121 if (id < 0) 122 return id; 123 124 ev->event_id = id; 125 page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT; 126 127 return 0; 128 } 129 130 /* 131 * Assumes that p->event_mutex or rcu_readlock is held and of course that p is 132 * not going away. 133 */ 134 static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id) 135 { 136 return idr_find(&p->event_idr, id); 137 } 138 139 /** 140 * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID 141 * @p: Pointer to struct kfd_process 142 * @id: ID to look up 143 * @bits: Number of valid bits in @id 144 * 145 * Finds the first signaled event with a matching partial ID. If no 146 * matching signaled event is found, returns NULL. In that case the 147 * caller should assume that the partial ID is invalid and do an 148 * exhaustive search of all siglaned events. 149 * 150 * If multiple events with the same partial ID signal at the same 151 * time, they will be found one interrupt at a time, not necessarily 152 * in the same order the interrupts occurred. As long as the number of 153 * interrupts is correct, all signaled events will be seen by the 154 * driver. 155 */ 156 static struct kfd_event *lookup_signaled_event_by_partial_id( 157 struct kfd_process *p, uint32_t id, uint32_t bits) 158 { 159 struct kfd_event *ev; 160 161 if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT) 162 return NULL; 163 164 /* Fast path for the common case that @id is not a partial ID 165 * and we only need a single lookup. 166 */ 167 if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) { 168 if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) 169 return NULL; 170 171 return idr_find(&p->event_idr, id); 172 } 173 174 /* General case for partial IDs: Iterate over all matching IDs 175 * and find the first one that has signaled. 176 */ 177 for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) { 178 if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT) 179 continue; 180 181 ev = idr_find(&p->event_idr, id); 182 } 183 184 return ev; 185 } 186 187 static int create_signal_event(struct file *devkfd, struct kfd_process *p, 188 struct kfd_event *ev, const int *restore_id) 189 { 190 int ret; 191 192 if (p->signal_mapped_size && 193 p->signal_event_count == p->signal_mapped_size / 8) { 194 if (!p->signal_event_limit_reached) { 195 pr_debug("Signal event wasn't created because limit was reached\n"); 196 p->signal_event_limit_reached = true; 197 } 198 return -ENOSPC; 199 } 200 201 ret = allocate_event_notification_slot(p, ev, restore_id); 202 if (ret) { 203 pr_warn("Signal event wasn't created because out of kernel memory\n"); 204 return ret; 205 } 206 207 p->signal_event_count++; 208 209 ev->user_signal_address = &p->signal_page->user_address[ev->event_id]; 210 pr_debug("Signal event number %zu created with id %d, address %p\n", 211 p->signal_event_count, ev->event_id, 212 ev->user_signal_address); 213 214 return 0; 215 } 216 217 static int create_other_event(struct kfd_process *p, struct kfd_event *ev, const int *restore_id) 218 { 219 int id; 220 221 if (restore_id) 222 id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1, 223 GFP_KERNEL); 224 else 225 /* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an 226 * intentional integer overflow to -1 without a compiler 227 * warning. idr_alloc treats a negative value as "maximum 228 * signed integer". 229 */ 230 id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID, 231 (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1, 232 GFP_KERNEL); 233 234 if (id < 0) 235 return id; 236 ev->event_id = id; 237 238 return 0; 239 } 240 241 void kfd_event_init_process(struct kfd_process *p) 242 { 243 mutex_init(&p->event_mutex); 244 idr_init(&p->event_idr); 245 p->signal_page = NULL; 246 p->signal_event_count = 0; 247 } 248 249 static void destroy_event(struct kfd_process *p, struct kfd_event *ev) 250 { 251 struct kfd_event_waiter *waiter; 252 253 /* Wake up pending waiters. They will return failure */ 254 spin_lock(&ev->lock); 255 list_for_each_entry(waiter, &ev->wq.head, wait.entry) 256 WRITE_ONCE(waiter->event, NULL); 257 wake_up_all(&ev->wq); 258 spin_unlock(&ev->lock); 259 260 if (ev->type == KFD_EVENT_TYPE_SIGNAL || 261 ev->type == KFD_EVENT_TYPE_DEBUG) 262 p->signal_event_count--; 263 264 idr_remove(&p->event_idr, ev->event_id); 265 kfree_rcu(ev, rcu); 266 } 267 268 static void destroy_events(struct kfd_process *p) 269 { 270 struct kfd_event *ev; 271 uint32_t id; 272 273 idr_for_each_entry(&p->event_idr, ev, id) 274 destroy_event(p, ev); 275 idr_destroy(&p->event_idr); 276 } 277 278 /* 279 * We assume that the process is being destroyed and there is no need to 280 * unmap the pages or keep bookkeeping data in order. 281 */ 282 static void shutdown_signal_page(struct kfd_process *p) 283 { 284 struct kfd_signal_page *page = p->signal_page; 285 286 if (page) { 287 if (page->need_to_free_pages) 288 free_pages((unsigned long)page->kernel_address, 289 get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); 290 kfree(page); 291 } 292 } 293 294 void kfd_event_free_process(struct kfd_process *p) 295 { 296 destroy_events(p); 297 shutdown_signal_page(p); 298 } 299 300 static bool event_can_be_gpu_signaled(const struct kfd_event *ev) 301 { 302 return ev->type == KFD_EVENT_TYPE_SIGNAL || 303 ev->type == KFD_EVENT_TYPE_DEBUG; 304 } 305 306 static bool event_can_be_cpu_signaled(const struct kfd_event *ev) 307 { 308 return ev->type == KFD_EVENT_TYPE_SIGNAL; 309 } 310 311 static int kfd_event_page_set(struct kfd_process *p, void *kernel_address, 312 uint64_t size, uint64_t user_handle) 313 { 314 struct kfd_signal_page *page; 315 316 if (p->signal_page) 317 return -EBUSY; 318 319 page = kzalloc(sizeof(*page), GFP_KERNEL); 320 if (!page) 321 return -ENOMEM; 322 323 /* Initialize all events to unsignaled */ 324 memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT, 325 KFD_SIGNAL_EVENT_LIMIT * 8); 326 327 page->kernel_address = kernel_address; 328 329 p->signal_page = page; 330 p->signal_mapped_size = size; 331 p->signal_handle = user_handle; 332 return 0; 333 } 334 335 int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset) 336 { 337 struct kfd_dev *kfd; 338 struct kfd_process_device *pdd; 339 void *mem, *kern_addr; 340 uint64_t size; 341 int err = 0; 342 343 if (p->signal_page) { 344 pr_err("Event page is already set\n"); 345 return -EINVAL; 346 } 347 348 pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(event_page_offset)); 349 if (!pdd) { 350 pr_err("Getting device by id failed in %s\n", __func__); 351 return -EINVAL; 352 } 353 kfd = pdd->dev; 354 355 pdd = kfd_bind_process_to_device(kfd, p); 356 if (IS_ERR(pdd)) 357 return PTR_ERR(pdd); 358 359 mem = kfd_process_device_translate_handle(pdd, 360 GET_IDR_HANDLE(event_page_offset)); 361 if (!mem) { 362 pr_err("Can't find BO, offset is 0x%llx\n", event_page_offset); 363 return -EINVAL; 364 } 365 366 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kfd->adev, 367 mem, &kern_addr, &size); 368 if (err) { 369 pr_err("Failed to map event page to kernel\n"); 370 return err; 371 } 372 373 err = kfd_event_page_set(p, kern_addr, size, event_page_offset); 374 if (err) { 375 pr_err("Failed to set event page\n"); 376 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(kfd->adev, mem); 377 return err; 378 } 379 return err; 380 } 381 382 int kfd_event_create(struct file *devkfd, struct kfd_process *p, 383 uint32_t event_type, bool auto_reset, uint32_t node_id, 384 uint32_t *event_id, uint32_t *event_trigger_data, 385 uint64_t *event_page_offset, uint32_t *event_slot_index) 386 { 387 int ret = 0; 388 struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL); 389 390 if (!ev) 391 return -ENOMEM; 392 393 ev->type = event_type; 394 ev->auto_reset = auto_reset; 395 ev->signaled = false; 396 397 spin_lock_init(&ev->lock); 398 init_waitqueue_head(&ev->wq); 399 400 *event_page_offset = 0; 401 402 mutex_lock(&p->event_mutex); 403 404 switch (event_type) { 405 case KFD_EVENT_TYPE_SIGNAL: 406 case KFD_EVENT_TYPE_DEBUG: 407 ret = create_signal_event(devkfd, p, ev, NULL); 408 if (!ret) { 409 *event_page_offset = KFD_MMAP_TYPE_EVENTS; 410 *event_slot_index = ev->event_id; 411 } 412 break; 413 default: 414 ret = create_other_event(p, ev, NULL); 415 break; 416 } 417 418 if (!ret) { 419 *event_id = ev->event_id; 420 *event_trigger_data = ev->event_id; 421 } else { 422 kfree(ev); 423 } 424 425 mutex_unlock(&p->event_mutex); 426 427 return ret; 428 } 429 430 int kfd_criu_restore_event(struct file *devkfd, 431 struct kfd_process *p, 432 uint8_t __user *user_priv_ptr, 433 uint64_t *priv_data_offset, 434 uint64_t max_priv_data_size) 435 { 436 struct kfd_criu_event_priv_data *ev_priv; 437 struct kfd_event *ev = NULL; 438 int ret = 0; 439 440 ev_priv = kmalloc(sizeof(*ev_priv), GFP_KERNEL); 441 if (!ev_priv) 442 return -ENOMEM; 443 444 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 445 if (!ev) { 446 ret = -ENOMEM; 447 goto exit; 448 } 449 450 if (*priv_data_offset + sizeof(*ev_priv) > max_priv_data_size) { 451 ret = -EINVAL; 452 goto exit; 453 } 454 455 ret = copy_from_user(ev_priv, user_priv_ptr + *priv_data_offset, sizeof(*ev_priv)); 456 if (ret) { 457 ret = -EFAULT; 458 goto exit; 459 } 460 *priv_data_offset += sizeof(*ev_priv); 461 462 if (ev_priv->user_handle) { 463 ret = kfd_kmap_event_page(p, ev_priv->user_handle); 464 if (ret) 465 goto exit; 466 } 467 468 ev->type = ev_priv->type; 469 ev->auto_reset = ev_priv->auto_reset; 470 ev->signaled = ev_priv->signaled; 471 472 spin_lock_init(&ev->lock); 473 init_waitqueue_head(&ev->wq); 474 475 mutex_lock(&p->event_mutex); 476 switch (ev->type) { 477 case KFD_EVENT_TYPE_SIGNAL: 478 case KFD_EVENT_TYPE_DEBUG: 479 ret = create_signal_event(devkfd, p, ev, &ev_priv->event_id); 480 break; 481 case KFD_EVENT_TYPE_MEMORY: 482 memcpy(&ev->memory_exception_data, 483 &ev_priv->memory_exception_data, 484 sizeof(struct kfd_hsa_memory_exception_data)); 485 486 ret = create_other_event(p, ev, &ev_priv->event_id); 487 break; 488 case KFD_EVENT_TYPE_HW_EXCEPTION: 489 memcpy(&ev->hw_exception_data, 490 &ev_priv->hw_exception_data, 491 sizeof(struct kfd_hsa_hw_exception_data)); 492 493 ret = create_other_event(p, ev, &ev_priv->event_id); 494 break; 495 } 496 497 exit: 498 if (ret) 499 kfree(ev); 500 501 kfree(ev_priv); 502 503 mutex_unlock(&p->event_mutex); 504 505 return ret; 506 } 507 508 int kfd_criu_checkpoint_events(struct kfd_process *p, 509 uint8_t __user *user_priv_data, 510 uint64_t *priv_data_offset) 511 { 512 struct kfd_criu_event_priv_data *ev_privs; 513 int i = 0; 514 int ret = 0; 515 struct kfd_event *ev; 516 uint32_t ev_id; 517 518 uint32_t num_events = kfd_get_num_events(p); 519 520 if (!num_events) 521 return 0; 522 523 ev_privs = kvzalloc(num_events * sizeof(*ev_privs), GFP_KERNEL); 524 if (!ev_privs) 525 return -ENOMEM; 526 527 528 idr_for_each_entry(&p->event_idr, ev, ev_id) { 529 struct kfd_criu_event_priv_data *ev_priv; 530 531 /* 532 * Currently, all events have same size of private_data, but the current ioctl's 533 * and CRIU plugin supports private_data of variable sizes 534 */ 535 ev_priv = &ev_privs[i]; 536 537 ev_priv->object_type = KFD_CRIU_OBJECT_TYPE_EVENT; 538 539 /* We store the user_handle with the first event */ 540 if (i == 0 && p->signal_page) 541 ev_priv->user_handle = p->signal_handle; 542 543 ev_priv->event_id = ev->event_id; 544 ev_priv->auto_reset = ev->auto_reset; 545 ev_priv->type = ev->type; 546 ev_priv->signaled = ev->signaled; 547 548 if (ev_priv->type == KFD_EVENT_TYPE_MEMORY) 549 memcpy(&ev_priv->memory_exception_data, 550 &ev->memory_exception_data, 551 sizeof(struct kfd_hsa_memory_exception_data)); 552 else if (ev_priv->type == KFD_EVENT_TYPE_HW_EXCEPTION) 553 memcpy(&ev_priv->hw_exception_data, 554 &ev->hw_exception_data, 555 sizeof(struct kfd_hsa_hw_exception_data)); 556 557 pr_debug("Checkpointed event[%d] id = 0x%08x auto_reset = %x type = %x signaled = %x\n", 558 i, 559 ev_priv->event_id, 560 ev_priv->auto_reset, 561 ev_priv->type, 562 ev_priv->signaled); 563 i++; 564 } 565 566 ret = copy_to_user(user_priv_data + *priv_data_offset, 567 ev_privs, num_events * sizeof(*ev_privs)); 568 if (ret) { 569 pr_err("Failed to copy events priv to user\n"); 570 ret = -EFAULT; 571 } 572 573 *priv_data_offset += num_events * sizeof(*ev_privs); 574 575 kvfree(ev_privs); 576 return ret; 577 } 578 579 int kfd_get_num_events(struct kfd_process *p) 580 { 581 struct kfd_event *ev; 582 uint32_t id; 583 u32 num_events = 0; 584 585 idr_for_each_entry(&p->event_idr, ev, id) 586 num_events++; 587 588 return num_events; 589 } 590 591 /* Assumes that p is current. */ 592 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id) 593 { 594 struct kfd_event *ev; 595 int ret = 0; 596 597 mutex_lock(&p->event_mutex); 598 599 ev = lookup_event_by_id(p, event_id); 600 601 if (ev) 602 destroy_event(p, ev); 603 else 604 ret = -EINVAL; 605 606 mutex_unlock(&p->event_mutex); 607 return ret; 608 } 609 610 static void set_event(struct kfd_event *ev) 611 { 612 struct kfd_event_waiter *waiter; 613 614 /* Auto reset if the list is non-empty and we're waking 615 * someone. waitqueue_active is safe here because we're 616 * protected by the ev->lock, which is also held when 617 * updating the wait queues in kfd_wait_on_events. 618 */ 619 ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq); 620 621 list_for_each_entry(waiter, &ev->wq.head, wait.entry) 622 WRITE_ONCE(waiter->activated, true); 623 624 wake_up_all(&ev->wq); 625 } 626 627 /* Assumes that p is current. */ 628 int kfd_set_event(struct kfd_process *p, uint32_t event_id) 629 { 630 int ret = 0; 631 struct kfd_event *ev; 632 633 rcu_read_lock(); 634 635 ev = lookup_event_by_id(p, event_id); 636 if (!ev) { 637 ret = -EINVAL; 638 goto unlock_rcu; 639 } 640 spin_lock(&ev->lock); 641 642 if (event_can_be_cpu_signaled(ev)) 643 set_event(ev); 644 else 645 ret = -EINVAL; 646 647 spin_unlock(&ev->lock); 648 unlock_rcu: 649 rcu_read_unlock(); 650 return ret; 651 } 652 653 static void reset_event(struct kfd_event *ev) 654 { 655 ev->signaled = false; 656 } 657 658 /* Assumes that p is current. */ 659 int kfd_reset_event(struct kfd_process *p, uint32_t event_id) 660 { 661 int ret = 0; 662 struct kfd_event *ev; 663 664 rcu_read_lock(); 665 666 ev = lookup_event_by_id(p, event_id); 667 if (!ev) { 668 ret = -EINVAL; 669 goto unlock_rcu; 670 } 671 spin_lock(&ev->lock); 672 673 if (event_can_be_cpu_signaled(ev)) 674 reset_event(ev); 675 else 676 ret = -EINVAL; 677 678 spin_unlock(&ev->lock); 679 unlock_rcu: 680 rcu_read_unlock(); 681 return ret; 682 683 } 684 685 static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev) 686 { 687 WRITE_ONCE(page_slots(p->signal_page)[ev->event_id], UNSIGNALED_EVENT_SLOT); 688 } 689 690 static void set_event_from_interrupt(struct kfd_process *p, 691 struct kfd_event *ev) 692 { 693 if (ev && event_can_be_gpu_signaled(ev)) { 694 acknowledge_signal(p, ev); 695 spin_lock(&ev->lock); 696 set_event(ev); 697 spin_unlock(&ev->lock); 698 } 699 } 700 701 void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id, 702 uint32_t valid_id_bits) 703 { 704 struct kfd_event *ev = NULL; 705 706 /* 707 * Because we are called from arbitrary context (workqueue) as opposed 708 * to process context, kfd_process could attempt to exit while we are 709 * running so the lookup function increments the process ref count. 710 */ 711 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 712 713 if (!p) 714 return; /* Presumably process exited. */ 715 716 rcu_read_lock(); 717 718 if (valid_id_bits) 719 ev = lookup_signaled_event_by_partial_id(p, partial_id, 720 valid_id_bits); 721 if (ev) { 722 set_event_from_interrupt(p, ev); 723 } else if (p->signal_page) { 724 /* 725 * Partial ID lookup failed. Assume that the event ID 726 * in the interrupt payload was invalid and do an 727 * exhaustive search of signaled events. 728 */ 729 uint64_t *slots = page_slots(p->signal_page); 730 uint32_t id; 731 732 if (valid_id_bits) 733 pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n", 734 partial_id, valid_id_bits); 735 736 if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) { 737 /* With relatively few events, it's faster to 738 * iterate over the event IDR 739 */ 740 idr_for_each_entry(&p->event_idr, ev, id) { 741 if (id >= KFD_SIGNAL_EVENT_LIMIT) 742 break; 743 744 if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) 745 set_event_from_interrupt(p, ev); 746 } 747 } else { 748 /* With relatively many events, it's faster to 749 * iterate over the signal slots and lookup 750 * only signaled events from the IDR. 751 */ 752 for (id = 0; id < KFD_SIGNAL_EVENT_LIMIT; id++) 753 if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) { 754 ev = lookup_event_by_id(p, id); 755 set_event_from_interrupt(p, ev); 756 } 757 } 758 } 759 760 rcu_read_unlock(); 761 kfd_unref_process(p); 762 } 763 764 static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events) 765 { 766 struct kfd_event_waiter *event_waiters; 767 uint32_t i; 768 769 event_waiters = kmalloc_array(num_events, 770 sizeof(struct kfd_event_waiter), 771 GFP_KERNEL); 772 if (!event_waiters) 773 return NULL; 774 775 for (i = 0; (event_waiters) && (i < num_events) ; i++) { 776 init_wait(&event_waiters[i].wait); 777 event_waiters[i].activated = false; 778 } 779 780 return event_waiters; 781 } 782 783 static int init_event_waiter(struct kfd_process *p, 784 struct kfd_event_waiter *waiter, 785 uint32_t event_id) 786 { 787 struct kfd_event *ev = lookup_event_by_id(p, event_id); 788 789 if (!ev) 790 return -EINVAL; 791 792 spin_lock(&ev->lock); 793 waiter->event = ev; 794 waiter->activated = ev->signaled; 795 ev->signaled = ev->signaled && !ev->auto_reset; 796 if (!waiter->activated) 797 add_wait_queue(&ev->wq, &waiter->wait); 798 spin_unlock(&ev->lock); 799 800 return 0; 801 } 802 803 /* test_event_condition - Test condition of events being waited for 804 * @all: Return completion only if all events have signaled 805 * @num_events: Number of events to wait for 806 * @event_waiters: Array of event waiters, one per event 807 * 808 * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have 809 * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all) 810 * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of 811 * the events have been destroyed. 812 */ 813 static uint32_t test_event_condition(bool all, uint32_t num_events, 814 struct kfd_event_waiter *event_waiters) 815 { 816 uint32_t i; 817 uint32_t activated_count = 0; 818 819 for (i = 0; i < num_events; i++) { 820 if (!READ_ONCE(event_waiters[i].event)) 821 return KFD_IOC_WAIT_RESULT_FAIL; 822 823 if (READ_ONCE(event_waiters[i].activated)) { 824 if (!all) 825 return KFD_IOC_WAIT_RESULT_COMPLETE; 826 827 activated_count++; 828 } 829 } 830 831 return activated_count == num_events ? 832 KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT; 833 } 834 835 /* 836 * Copy event specific data, if defined. 837 * Currently only memory exception events have additional data to copy to user 838 */ 839 static int copy_signaled_event_data(uint32_t num_events, 840 struct kfd_event_waiter *event_waiters, 841 struct kfd_event_data __user *data) 842 { 843 struct kfd_hsa_memory_exception_data *src; 844 struct kfd_hsa_memory_exception_data __user *dst; 845 struct kfd_event_waiter *waiter; 846 struct kfd_event *event; 847 uint32_t i; 848 849 for (i = 0; i < num_events; i++) { 850 waiter = &event_waiters[i]; 851 event = waiter->event; 852 if (!event) 853 return -EINVAL; /* event was destroyed */ 854 if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) { 855 dst = &data[i].memory_exception_data; 856 src = &event->memory_exception_data; 857 if (copy_to_user(dst, src, 858 sizeof(struct kfd_hsa_memory_exception_data))) 859 return -EFAULT; 860 } 861 } 862 863 return 0; 864 } 865 866 static long user_timeout_to_jiffies(uint32_t user_timeout_ms) 867 { 868 if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE) 869 return 0; 870 871 if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE) 872 return MAX_SCHEDULE_TIMEOUT; 873 874 /* 875 * msecs_to_jiffies interprets all values above 2^31-1 as infinite, 876 * but we consider them finite. 877 * This hack is wrong, but nobody is likely to notice. 878 */ 879 user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF); 880 881 return msecs_to_jiffies(user_timeout_ms) + 1; 882 } 883 884 static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters) 885 { 886 uint32_t i; 887 888 for (i = 0; i < num_events; i++) 889 if (waiters[i].event) { 890 spin_lock(&waiters[i].event->lock); 891 remove_wait_queue(&waiters[i].event->wq, 892 &waiters[i].wait); 893 spin_unlock(&waiters[i].event->lock); 894 } 895 896 kfree(waiters); 897 } 898 899 int kfd_wait_on_events(struct kfd_process *p, 900 uint32_t num_events, void __user *data, 901 bool all, uint32_t user_timeout_ms, 902 uint32_t *wait_result) 903 { 904 struct kfd_event_data __user *events = 905 (struct kfd_event_data __user *) data; 906 uint32_t i; 907 int ret = 0; 908 909 struct kfd_event_waiter *event_waiters = NULL; 910 long timeout = user_timeout_to_jiffies(user_timeout_ms); 911 912 event_waiters = alloc_event_waiters(num_events); 913 if (!event_waiters) { 914 ret = -ENOMEM; 915 goto out; 916 } 917 918 /* Use p->event_mutex here to protect against concurrent creation and 919 * destruction of events while we initialize event_waiters. 920 */ 921 mutex_lock(&p->event_mutex); 922 923 for (i = 0; i < num_events; i++) { 924 struct kfd_event_data event_data; 925 926 if (copy_from_user(&event_data, &events[i], 927 sizeof(struct kfd_event_data))) { 928 ret = -EFAULT; 929 goto out_unlock; 930 } 931 932 ret = init_event_waiter(p, &event_waiters[i], 933 event_data.event_id); 934 if (ret) 935 goto out_unlock; 936 } 937 938 /* Check condition once. */ 939 *wait_result = test_event_condition(all, num_events, event_waiters); 940 if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) { 941 ret = copy_signaled_event_data(num_events, 942 event_waiters, events); 943 goto out_unlock; 944 } else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) { 945 /* This should not happen. Events shouldn't be 946 * destroyed while we're holding the event_mutex 947 */ 948 goto out_unlock; 949 } 950 951 mutex_unlock(&p->event_mutex); 952 953 while (true) { 954 if (fatal_signal_pending(current)) { 955 ret = -EINTR; 956 break; 957 } 958 959 if (signal_pending(current)) { 960 /* 961 * This is wrong when a nonzero, non-infinite timeout 962 * is specified. We need to use 963 * ERESTARTSYS_RESTARTBLOCK, but struct restart_block 964 * contains a union with data for each user and it's 965 * in generic kernel code that I don't want to 966 * touch yet. 967 */ 968 ret = -ERESTARTSYS; 969 break; 970 } 971 972 /* Set task state to interruptible sleep before 973 * checking wake-up conditions. A concurrent wake-up 974 * will put the task back into runnable state. In that 975 * case schedule_timeout will not put the task to 976 * sleep and we'll get a chance to re-check the 977 * updated conditions almost immediately. Otherwise, 978 * this race condition would lead to a soft hang or a 979 * very long sleep. 980 */ 981 set_current_state(TASK_INTERRUPTIBLE); 982 983 *wait_result = test_event_condition(all, num_events, 984 event_waiters); 985 if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT) 986 break; 987 988 if (timeout <= 0) 989 break; 990 991 timeout = schedule_timeout(timeout); 992 } 993 __set_current_state(TASK_RUNNING); 994 995 mutex_lock(&p->event_mutex); 996 /* copy_signaled_event_data may sleep. So this has to happen 997 * after the task state is set back to RUNNING. 998 * 999 * The event may also have been destroyed after signaling. So 1000 * copy_signaled_event_data also must confirm that the event 1001 * still exists. Therefore this must be under the p->event_mutex 1002 * which is also held when events are destroyed. 1003 */ 1004 if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) 1005 ret = copy_signaled_event_data(num_events, 1006 event_waiters, events); 1007 1008 out_unlock: 1009 free_waiters(num_events, event_waiters); 1010 mutex_unlock(&p->event_mutex); 1011 out: 1012 if (ret) 1013 *wait_result = KFD_IOC_WAIT_RESULT_FAIL; 1014 else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL) 1015 ret = -EIO; 1016 1017 return ret; 1018 } 1019 1020 int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma) 1021 { 1022 unsigned long pfn; 1023 struct kfd_signal_page *page; 1024 int ret; 1025 1026 /* check required size doesn't exceed the allocated size */ 1027 if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) < 1028 get_order(vma->vm_end - vma->vm_start)) { 1029 pr_err("Event page mmap requested illegal size\n"); 1030 return -EINVAL; 1031 } 1032 1033 page = p->signal_page; 1034 if (!page) { 1035 /* Probably KFD bug, but mmap is user-accessible. */ 1036 pr_debug("Signal page could not be found\n"); 1037 return -EINVAL; 1038 } 1039 1040 pfn = __pa(page->kernel_address); 1041 pfn >>= PAGE_SHIFT; 1042 1043 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE 1044 | VM_DONTDUMP | VM_PFNMAP; 1045 1046 pr_debug("Mapping signal page\n"); 1047 pr_debug(" start user address == 0x%08lx\n", vma->vm_start); 1048 pr_debug(" end user address == 0x%08lx\n", vma->vm_end); 1049 pr_debug(" pfn == 0x%016lX\n", pfn); 1050 pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags); 1051 pr_debug(" size == 0x%08lX\n", 1052 vma->vm_end - vma->vm_start); 1053 1054 page->user_address = (uint64_t __user *)vma->vm_start; 1055 1056 /* mapping the page to user process */ 1057 ret = remap_pfn_range(vma, vma->vm_start, pfn, 1058 vma->vm_end - vma->vm_start, vma->vm_page_prot); 1059 if (!ret) 1060 p->signal_mapped_size = vma->vm_end - vma->vm_start; 1061 1062 return ret; 1063 } 1064 1065 /* 1066 * Assumes that p is not going away. 1067 */ 1068 static void lookup_events_by_type_and_signal(struct kfd_process *p, 1069 int type, void *event_data) 1070 { 1071 struct kfd_hsa_memory_exception_data *ev_data; 1072 struct kfd_event *ev; 1073 uint32_t id; 1074 bool send_signal = true; 1075 1076 ev_data = (struct kfd_hsa_memory_exception_data *) event_data; 1077 1078 rcu_read_lock(); 1079 1080 id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1081 idr_for_each_entry_continue(&p->event_idr, ev, id) 1082 if (ev->type == type) { 1083 send_signal = false; 1084 dev_dbg(kfd_device, 1085 "Event found: id %X type %d", 1086 ev->event_id, ev->type); 1087 spin_lock(&ev->lock); 1088 set_event(ev); 1089 if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data) 1090 ev->memory_exception_data = *ev_data; 1091 spin_unlock(&ev->lock); 1092 } 1093 1094 if (type == KFD_EVENT_TYPE_MEMORY) { 1095 dev_warn(kfd_device, 1096 "Sending SIGSEGV to process %d (pasid 0x%x)", 1097 p->lead_thread->pid, p->pasid); 1098 send_sig(SIGSEGV, p->lead_thread, 0); 1099 } 1100 1101 /* Send SIGTERM no event of type "type" has been found*/ 1102 if (send_signal) { 1103 if (send_sigterm) { 1104 dev_warn(kfd_device, 1105 "Sending SIGTERM to process %d (pasid 0x%x)", 1106 p->lead_thread->pid, p->pasid); 1107 send_sig(SIGTERM, p->lead_thread, 0); 1108 } else { 1109 dev_err(kfd_device, 1110 "Process %d (pasid 0x%x) got unhandled exception", 1111 p->lead_thread->pid, p->pasid); 1112 } 1113 } 1114 1115 rcu_read_unlock(); 1116 } 1117 1118 #ifdef KFD_SUPPORT_IOMMU_V2 1119 void kfd_signal_iommu_event(struct kfd_dev *dev, u32 pasid, 1120 unsigned long address, bool is_write_requested, 1121 bool is_execute_requested) 1122 { 1123 struct kfd_hsa_memory_exception_data memory_exception_data; 1124 struct vm_area_struct *vma; 1125 int user_gpu_id; 1126 1127 /* 1128 * Because we are called from arbitrary context (workqueue) as opposed 1129 * to process context, kfd_process could attempt to exit while we are 1130 * running so the lookup function increments the process ref count. 1131 */ 1132 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1133 struct mm_struct *mm; 1134 1135 if (!p) 1136 return; /* Presumably process exited. */ 1137 1138 /* Take a safe reference to the mm_struct, which may otherwise 1139 * disappear even while the kfd_process is still referenced. 1140 */ 1141 mm = get_task_mm(p->lead_thread); 1142 if (!mm) { 1143 kfd_unref_process(p); 1144 return; /* Process is exiting */ 1145 } 1146 1147 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); 1148 if (unlikely(user_gpu_id == -EINVAL)) { 1149 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); 1150 return; 1151 } 1152 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 1153 1154 mmap_read_lock(mm); 1155 vma = find_vma(mm, address); 1156 1157 memory_exception_data.gpu_id = user_gpu_id; 1158 memory_exception_data.va = address; 1159 /* Set failure reason */ 1160 memory_exception_data.failure.NotPresent = 1; 1161 memory_exception_data.failure.NoExecute = 0; 1162 memory_exception_data.failure.ReadOnly = 0; 1163 if (vma && address >= vma->vm_start) { 1164 memory_exception_data.failure.NotPresent = 0; 1165 1166 if (is_write_requested && !(vma->vm_flags & VM_WRITE)) 1167 memory_exception_data.failure.ReadOnly = 1; 1168 else 1169 memory_exception_data.failure.ReadOnly = 0; 1170 1171 if (is_execute_requested && !(vma->vm_flags & VM_EXEC)) 1172 memory_exception_data.failure.NoExecute = 1; 1173 else 1174 memory_exception_data.failure.NoExecute = 0; 1175 } 1176 1177 mmap_read_unlock(mm); 1178 mmput(mm); 1179 1180 pr_debug("notpresent %d, noexecute %d, readonly %d\n", 1181 memory_exception_data.failure.NotPresent, 1182 memory_exception_data.failure.NoExecute, 1183 memory_exception_data.failure.ReadOnly); 1184 1185 /* Workaround on Raven to not kill the process when memory is freed 1186 * before IOMMU is able to finish processing all the excessive PPRs 1187 */ 1188 1189 if (KFD_GC_VERSION(dev) != IP_VERSION(9, 1, 0) && 1190 KFD_GC_VERSION(dev) != IP_VERSION(9, 2, 2) && 1191 KFD_GC_VERSION(dev) != IP_VERSION(9, 3, 0)) 1192 lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY, 1193 &memory_exception_data); 1194 1195 kfd_unref_process(p); 1196 } 1197 #endif /* KFD_SUPPORT_IOMMU_V2 */ 1198 1199 void kfd_signal_hw_exception_event(u32 pasid) 1200 { 1201 /* 1202 * Because we are called from arbitrary context (workqueue) as opposed 1203 * to process context, kfd_process could attempt to exit while we are 1204 * running so the lookup function increments the process ref count. 1205 */ 1206 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1207 1208 if (!p) 1209 return; /* Presumably process exited. */ 1210 1211 lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL); 1212 kfd_unref_process(p); 1213 } 1214 1215 void kfd_signal_vm_fault_event(struct kfd_dev *dev, u32 pasid, 1216 struct kfd_vm_fault_info *info) 1217 { 1218 struct kfd_event *ev; 1219 uint32_t id; 1220 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1221 struct kfd_hsa_memory_exception_data memory_exception_data; 1222 int user_gpu_id; 1223 1224 if (!p) 1225 return; /* Presumably process exited. */ 1226 1227 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); 1228 if (unlikely(user_gpu_id == -EINVAL)) { 1229 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); 1230 return; 1231 } 1232 1233 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 1234 memory_exception_data.gpu_id = user_gpu_id; 1235 memory_exception_data.failure.imprecise = true; 1236 /* Set failure reason */ 1237 if (info) { 1238 memory_exception_data.va = (info->page_addr) << PAGE_SHIFT; 1239 memory_exception_data.failure.NotPresent = 1240 info->prot_valid ? 1 : 0; 1241 memory_exception_data.failure.NoExecute = 1242 info->prot_exec ? 1 : 0; 1243 memory_exception_data.failure.ReadOnly = 1244 info->prot_write ? 1 : 0; 1245 memory_exception_data.failure.imprecise = 0; 1246 } 1247 1248 rcu_read_lock(); 1249 1250 id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1251 idr_for_each_entry_continue(&p->event_idr, ev, id) 1252 if (ev->type == KFD_EVENT_TYPE_MEMORY) { 1253 spin_lock(&ev->lock); 1254 ev->memory_exception_data = memory_exception_data; 1255 set_event(ev); 1256 spin_unlock(&ev->lock); 1257 } 1258 1259 rcu_read_unlock(); 1260 kfd_unref_process(p); 1261 } 1262 1263 void kfd_signal_reset_event(struct kfd_dev *dev) 1264 { 1265 struct kfd_hsa_hw_exception_data hw_exception_data; 1266 struct kfd_hsa_memory_exception_data memory_exception_data; 1267 struct kfd_process *p; 1268 struct kfd_event *ev; 1269 unsigned int temp; 1270 uint32_t id, idx; 1271 int reset_cause = atomic_read(&dev->sram_ecc_flag) ? 1272 KFD_HW_EXCEPTION_ECC : 1273 KFD_HW_EXCEPTION_GPU_HANG; 1274 1275 /* Whole gpu reset caused by GPU hang and memory is lost */ 1276 memset(&hw_exception_data, 0, sizeof(hw_exception_data)); 1277 hw_exception_data.memory_lost = 1; 1278 hw_exception_data.reset_cause = reset_cause; 1279 1280 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 1281 memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC; 1282 memory_exception_data.failure.imprecise = true; 1283 1284 idx = srcu_read_lock(&kfd_processes_srcu); 1285 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { 1286 int user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); 1287 1288 if (unlikely(user_gpu_id == -EINVAL)) { 1289 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); 1290 continue; 1291 } 1292 1293 rcu_read_lock(); 1294 1295 id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1296 idr_for_each_entry_continue(&p->event_idr, ev, id) { 1297 if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) { 1298 spin_lock(&ev->lock); 1299 ev->hw_exception_data = hw_exception_data; 1300 ev->hw_exception_data.gpu_id = user_gpu_id; 1301 set_event(ev); 1302 spin_unlock(&ev->lock); 1303 } 1304 if (ev->type == KFD_EVENT_TYPE_MEMORY && 1305 reset_cause == KFD_HW_EXCEPTION_ECC) { 1306 spin_lock(&ev->lock); 1307 ev->memory_exception_data = memory_exception_data; 1308 ev->memory_exception_data.gpu_id = user_gpu_id; 1309 set_event(ev); 1310 spin_unlock(&ev->lock); 1311 } 1312 } 1313 1314 rcu_read_unlock(); 1315 } 1316 srcu_read_unlock(&kfd_processes_srcu, idx); 1317 } 1318 1319 void kfd_signal_poison_consumed_event(struct kfd_dev *dev, u32 pasid) 1320 { 1321 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1322 struct kfd_hsa_memory_exception_data memory_exception_data; 1323 struct kfd_hsa_hw_exception_data hw_exception_data; 1324 struct kfd_event *ev; 1325 uint32_t id = KFD_FIRST_NONSIGNAL_EVENT_ID; 1326 int user_gpu_id; 1327 1328 if (!p) 1329 return; /* Presumably process exited. */ 1330 1331 user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id); 1332 if (unlikely(user_gpu_id == -EINVAL)) { 1333 WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id); 1334 return; 1335 } 1336 1337 memset(&hw_exception_data, 0, sizeof(hw_exception_data)); 1338 hw_exception_data.gpu_id = user_gpu_id; 1339 hw_exception_data.memory_lost = 1; 1340 hw_exception_data.reset_cause = KFD_HW_EXCEPTION_ECC; 1341 1342 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 1343 memory_exception_data.ErrorType = KFD_MEM_ERR_POISON_CONSUMED; 1344 memory_exception_data.gpu_id = user_gpu_id; 1345 memory_exception_data.failure.imprecise = true; 1346 1347 rcu_read_lock(); 1348 1349 idr_for_each_entry_continue(&p->event_idr, ev, id) { 1350 if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) { 1351 spin_lock(&ev->lock); 1352 ev->hw_exception_data = hw_exception_data; 1353 set_event(ev); 1354 spin_unlock(&ev->lock); 1355 } 1356 1357 if (ev->type == KFD_EVENT_TYPE_MEMORY) { 1358 spin_lock(&ev->lock); 1359 ev->memory_exception_data = memory_exception_data; 1360 set_event(ev); 1361 spin_unlock(&ev->lock); 1362 } 1363 } 1364 1365 rcu_read_unlock(); 1366 1367 /* user application will handle SIGBUS signal */ 1368 send_sig(SIGBUS, p->lead_thread, 0); 1369 1370 kfd_unref_process(p); 1371 } 1372