1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "mes_api_def.h"
39 
40 /* Size of the per-pipe EOP queue */
41 #define CIK_HPD_EOP_BYTES_LOG2 11
42 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
43 
44 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
45 				  u32 pasid, unsigned int vmid);
46 
47 static int execute_queues_cpsch(struct device_queue_manager *dqm,
48 				enum kfd_unmap_queues_filter filter,
49 				uint32_t filter_param);
50 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
51 				enum kfd_unmap_queues_filter filter,
52 				uint32_t filter_param, bool reset);
53 
54 static int map_queues_cpsch(struct device_queue_manager *dqm);
55 
56 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
57 				struct queue *q);
58 
59 static inline void deallocate_hqd(struct device_queue_manager *dqm,
60 				struct queue *q);
61 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
62 static int allocate_sdma_queue(struct device_queue_manager *dqm,
63 				struct queue *q, const uint32_t *restore_sdma_id);
64 static void kfd_process_hw_exception(struct work_struct *work);
65 
66 static inline
67 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
68 {
69 	if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
70 		return KFD_MQD_TYPE_SDMA;
71 	return KFD_MQD_TYPE_CP;
72 }
73 
74 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
75 {
76 	int i;
77 	int pipe_offset = (mec * dqm->dev->shared_resources.num_pipe_per_mec
78 		+ pipe) * dqm->dev->shared_resources.num_queue_per_pipe;
79 
80 	/* queue is available for KFD usage if bit is 1 */
81 	for (i = 0; i <  dqm->dev->shared_resources.num_queue_per_pipe; ++i)
82 		if (test_bit(pipe_offset + i,
83 			      dqm->dev->shared_resources.cp_queue_bitmap))
84 			return true;
85 	return false;
86 }
87 
88 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
89 {
90 	return bitmap_weight(dqm->dev->shared_resources.cp_queue_bitmap,
91 				KGD_MAX_QUEUES);
92 }
93 
94 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
95 {
96 	return dqm->dev->shared_resources.num_queue_per_pipe;
97 }
98 
99 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
100 {
101 	return dqm->dev->shared_resources.num_pipe_per_mec;
102 }
103 
104 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
105 {
106 	return kfd_get_num_sdma_engines(dqm->dev) +
107 		kfd_get_num_xgmi_sdma_engines(dqm->dev);
108 }
109 
110 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
111 {
112 	return kfd_get_num_sdma_engines(dqm->dev) *
113 		dqm->dev->device_info.num_sdma_queues_per_engine;
114 }
115 
116 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
117 {
118 	return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
119 		dqm->dev->device_info.num_sdma_queues_per_engine;
120 }
121 
122 static inline uint64_t get_reserved_sdma_queues_bitmap(struct device_queue_manager *dqm)
123 {
124 	return dqm->dev->device_info.reserved_sdma_queues_bitmap;
125 }
126 
127 void program_sh_mem_settings(struct device_queue_manager *dqm,
128 					struct qcm_process_device *qpd)
129 {
130 	return dqm->dev->kfd2kgd->program_sh_mem_settings(
131 						dqm->dev->adev, qpd->vmid,
132 						qpd->sh_mem_config,
133 						qpd->sh_mem_ape1_base,
134 						qpd->sh_mem_ape1_limit,
135 						qpd->sh_mem_bases);
136 }
137 
138 static void kfd_hws_hang(struct device_queue_manager *dqm)
139 {
140 	/*
141 	 * Issue a GPU reset if HWS is unresponsive
142 	 */
143 	dqm->is_hws_hang = true;
144 
145 	/* It's possible we're detecting a HWS hang in the
146 	 * middle of a GPU reset. No need to schedule another
147 	 * reset in this case.
148 	 */
149 	if (!dqm->is_resetting)
150 		schedule_work(&dqm->hw_exception_work);
151 }
152 
153 static int convert_to_mes_queue_type(int queue_type)
154 {
155 	int mes_queue_type;
156 
157 	switch (queue_type) {
158 	case KFD_QUEUE_TYPE_COMPUTE:
159 		mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
160 		break;
161 	case KFD_QUEUE_TYPE_SDMA:
162 		mes_queue_type = MES_QUEUE_TYPE_SDMA;
163 		break;
164 	default:
165 		WARN(1, "Invalid queue type %d", queue_type);
166 		mes_queue_type = -EINVAL;
167 		break;
168 	}
169 
170 	return mes_queue_type;
171 }
172 
173 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
174 			 struct qcm_process_device *qpd)
175 {
176 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
177 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
178 	struct mes_add_queue_input queue_input;
179 	int r, queue_type;
180 
181 	if (dqm->is_hws_hang)
182 		return -EIO;
183 
184 	memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
185 	queue_input.process_id = qpd->pqm->process->pasid;
186 	queue_input.page_table_base_addr =  qpd->page_table_base;
187 	queue_input.process_va_start = 0;
188 	queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
189 	/* MES unit for quantum is 100ns */
190 	queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM;  /* Equivalent to 10ms. */
191 	queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
192 	queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
193 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
194 	queue_input.inprocess_gang_priority = q->properties.priority;
195 	queue_input.gang_global_priority_level =
196 					AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
197 	queue_input.doorbell_offset = q->properties.doorbell_off;
198 	queue_input.mqd_addr = q->gart_mqd_addr;
199 	queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
200 	queue_input.paging = false;
201 	queue_input.tba_addr = qpd->tba_addr;
202 	queue_input.tma_addr = qpd->tma_addr;
203 
204 	queue_type = convert_to_mes_queue_type(q->properties.type);
205 	if (queue_type < 0) {
206 		pr_err("Queue type not supported with MES, queue:%d\n",
207 				q->properties.type);
208 		return -EINVAL;
209 	}
210 	queue_input.queue_type = (uint32_t)queue_type;
211 
212 	if (q->gws) {
213 		queue_input.gws_base = 0;
214 		queue_input.gws_size = qpd->num_gws;
215 	}
216 
217 	amdgpu_mes_lock(&adev->mes);
218 	r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
219 	amdgpu_mes_unlock(&adev->mes);
220 	if (r) {
221 		pr_err("failed to add hardware queue to MES, doorbell=0x%x\n",
222 			q->properties.doorbell_off);
223 		pr_err("MES might be in unrecoverable state, issue a GPU reset\n");
224 		kfd_hws_hang(dqm);
225 }
226 
227 	return r;
228 }
229 
230 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
231 			struct qcm_process_device *qpd)
232 {
233 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
234 	int r;
235 	struct mes_remove_queue_input queue_input;
236 
237 	if (dqm->is_hws_hang)
238 		return -EIO;
239 
240 	memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
241 	queue_input.doorbell_offset = q->properties.doorbell_off;
242 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
243 
244 	amdgpu_mes_lock(&adev->mes);
245 	r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
246 	amdgpu_mes_unlock(&adev->mes);
247 
248 	if (r) {
249 		pr_err("failed to remove hardware queue from MES, doorbell=0x%x\n",
250 			q->properties.doorbell_off);
251 		pr_err("MES might be in unrecoverable state, issue a GPU reset\n");
252 		kfd_hws_hang(dqm);
253 	}
254 
255 	return r;
256 }
257 
258 static int remove_all_queues_mes(struct device_queue_manager *dqm)
259 {
260 	struct device_process_node *cur;
261 	struct qcm_process_device *qpd;
262 	struct queue *q;
263 	int retval = 0;
264 
265 	list_for_each_entry(cur, &dqm->queues, list) {
266 		qpd = cur->qpd;
267 		list_for_each_entry(q, &qpd->queues_list, list) {
268 			if (q->properties.is_active) {
269 				retval = remove_queue_mes(dqm, q, qpd);
270 				if (retval) {
271 					pr_err("%s: Failed to remove queue %d for dev %d",
272 						__func__,
273 						q->properties.queue_id,
274 						dqm->dev->id);
275 					return retval;
276 				}
277 			}
278 		}
279 	}
280 
281 	return retval;
282 }
283 
284 static void increment_queue_count(struct device_queue_manager *dqm,
285 				  struct qcm_process_device *qpd,
286 				  struct queue *q)
287 {
288 	dqm->active_queue_count++;
289 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
290 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
291 		dqm->active_cp_queue_count++;
292 
293 	if (q->properties.is_gws) {
294 		dqm->gws_queue_count++;
295 		qpd->mapped_gws_queue = true;
296 	}
297 }
298 
299 static void decrement_queue_count(struct device_queue_manager *dqm,
300 				  struct qcm_process_device *qpd,
301 				  struct queue *q)
302 {
303 	dqm->active_queue_count--;
304 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
305 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
306 		dqm->active_cp_queue_count--;
307 
308 	if (q->properties.is_gws) {
309 		dqm->gws_queue_count--;
310 		qpd->mapped_gws_queue = false;
311 	}
312 }
313 
314 /*
315  * Allocate a doorbell ID to this queue.
316  * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
317  */
318 static int allocate_doorbell(struct qcm_process_device *qpd,
319 			     struct queue *q,
320 			     uint32_t const *restore_id)
321 {
322 	struct kfd_dev *dev = qpd->dqm->dev;
323 
324 	if (!KFD_IS_SOC15(dev)) {
325 		/* On pre-SOC15 chips we need to use the queue ID to
326 		 * preserve the user mode ABI.
327 		 */
328 
329 		if (restore_id && *restore_id != q->properties.queue_id)
330 			return -EINVAL;
331 
332 		q->doorbell_id = q->properties.queue_id;
333 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
334 			q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
335 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
336 		 * doorbell assignments based on the engine and queue id.
337 		 * The doobell index distance between RLC (2*i) and (2*i+1)
338 		 * for a SDMA engine is 512.
339 		 */
340 
341 		uint32_t *idx_offset = dev->shared_resources.sdma_doorbell_idx;
342 		uint32_t valid_id = idx_offset[q->properties.sdma_engine_id]
343 						+ (q->properties.sdma_queue_id & 1)
344 						* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
345 						+ (q->properties.sdma_queue_id >> 1);
346 
347 		if (restore_id && *restore_id != valid_id)
348 			return -EINVAL;
349 		q->doorbell_id = valid_id;
350 	} else {
351 		/* For CP queues on SOC15 */
352 		if (restore_id) {
353 			/* make sure that ID is free  */
354 			if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
355 				return -EINVAL;
356 
357 			q->doorbell_id = *restore_id;
358 		} else {
359 			/* or reserve a free doorbell ID */
360 			unsigned int found;
361 
362 			found = find_first_zero_bit(qpd->doorbell_bitmap,
363 						KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
364 			if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
365 				pr_debug("No doorbells available");
366 				return -EBUSY;
367 			}
368 			set_bit(found, qpd->doorbell_bitmap);
369 			q->doorbell_id = found;
370 		}
371 	}
372 
373 	q->properties.doorbell_off =
374 		kfd_get_doorbell_dw_offset_in_bar(dev, qpd_to_pdd(qpd),
375 					  q->doorbell_id);
376 	return 0;
377 }
378 
379 static void deallocate_doorbell(struct qcm_process_device *qpd,
380 				struct queue *q)
381 {
382 	unsigned int old;
383 	struct kfd_dev *dev = qpd->dqm->dev;
384 
385 	if (!KFD_IS_SOC15(dev) ||
386 	    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
387 	    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
388 		return;
389 
390 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
391 	WARN_ON(!old);
392 }
393 
394 static void program_trap_handler_settings(struct device_queue_manager *dqm,
395 				struct qcm_process_device *qpd)
396 {
397 	if (dqm->dev->kfd2kgd->program_trap_handler_settings)
398 		dqm->dev->kfd2kgd->program_trap_handler_settings(
399 						dqm->dev->adev, qpd->vmid,
400 						qpd->tba_addr, qpd->tma_addr);
401 }
402 
403 static int allocate_vmid(struct device_queue_manager *dqm,
404 			struct qcm_process_device *qpd,
405 			struct queue *q)
406 {
407 	int allocated_vmid = -1, i;
408 
409 	for (i = dqm->dev->vm_info.first_vmid_kfd;
410 			i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
411 		if (!dqm->vmid_pasid[i]) {
412 			allocated_vmid = i;
413 			break;
414 		}
415 	}
416 
417 	if (allocated_vmid < 0) {
418 		pr_err("no more vmid to allocate\n");
419 		return -ENOSPC;
420 	}
421 
422 	pr_debug("vmid allocated: %d\n", allocated_vmid);
423 
424 	dqm->vmid_pasid[allocated_vmid] = q->process->pasid;
425 
426 	set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid);
427 
428 	qpd->vmid = allocated_vmid;
429 	q->properties.vmid = allocated_vmid;
430 
431 	program_sh_mem_settings(dqm, qpd);
432 
433 	if (KFD_IS_SOC15(dqm->dev) && dqm->dev->cwsr_enabled)
434 		program_trap_handler_settings(dqm, qpd);
435 
436 	/* qpd->page_table_base is set earlier when register_process()
437 	 * is called, i.e. when the first queue is created.
438 	 */
439 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
440 			qpd->vmid,
441 			qpd->page_table_base);
442 	/* invalidate the VM context after pasid and vmid mapping is set up */
443 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
444 
445 	if (dqm->dev->kfd2kgd->set_scratch_backing_va)
446 		dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
447 				qpd->sh_hidden_private_base, qpd->vmid);
448 
449 	return 0;
450 }
451 
452 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev,
453 				struct qcm_process_device *qpd)
454 {
455 	const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
456 	int ret;
457 
458 	if (!qpd->ib_kaddr)
459 		return -ENOMEM;
460 
461 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
462 	if (ret)
463 		return ret;
464 
465 	return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
466 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
467 				pmf->release_mem_size / sizeof(uint32_t));
468 }
469 
470 static void deallocate_vmid(struct device_queue_manager *dqm,
471 				struct qcm_process_device *qpd,
472 				struct queue *q)
473 {
474 	/* On GFX v7, CP doesn't flush TC at dequeue */
475 	if (q->device->adev->asic_type == CHIP_HAWAII)
476 		if (flush_texture_cache_nocpsch(q->device, qpd))
477 			pr_err("Failed to flush TC\n");
478 
479 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
480 
481 	/* Release the vmid mapping */
482 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
483 	dqm->vmid_pasid[qpd->vmid] = 0;
484 
485 	qpd->vmid = 0;
486 	q->properties.vmid = 0;
487 }
488 
489 static int create_queue_nocpsch(struct device_queue_manager *dqm,
490 				struct queue *q,
491 				struct qcm_process_device *qpd,
492 				const struct kfd_criu_queue_priv_data *qd,
493 				const void *restore_mqd, const void *restore_ctl_stack)
494 {
495 	struct mqd_manager *mqd_mgr;
496 	int retval;
497 
498 	dqm_lock(dqm);
499 
500 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
501 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
502 				dqm->total_queue_count);
503 		retval = -EPERM;
504 		goto out_unlock;
505 	}
506 
507 	if (list_empty(&qpd->queues_list)) {
508 		retval = allocate_vmid(dqm, qpd, q);
509 		if (retval)
510 			goto out_unlock;
511 	}
512 	q->properties.vmid = qpd->vmid;
513 	/*
514 	 * Eviction state logic: mark all queues as evicted, even ones
515 	 * not currently active. Restoring inactive queues later only
516 	 * updates the is_evicted flag but is a no-op otherwise.
517 	 */
518 	q->properties.is_evicted = !!qpd->evicted;
519 
520 	q->properties.tba_addr = qpd->tba_addr;
521 	q->properties.tma_addr = qpd->tma_addr;
522 
523 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
524 			q->properties.type)];
525 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
526 		retval = allocate_hqd(dqm, q);
527 		if (retval)
528 			goto deallocate_vmid;
529 		pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
530 			q->pipe, q->queue);
531 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
532 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
533 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
534 		if (retval)
535 			goto deallocate_vmid;
536 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
537 	}
538 
539 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
540 	if (retval)
541 		goto out_deallocate_hqd;
542 
543 	/* Temporarily release dqm lock to avoid a circular lock dependency */
544 	dqm_unlock(dqm);
545 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
546 	dqm_lock(dqm);
547 
548 	if (!q->mqd_mem_obj) {
549 		retval = -ENOMEM;
550 		goto out_deallocate_doorbell;
551 	}
552 
553 	if (qd)
554 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
555 				     &q->properties, restore_mqd, restore_ctl_stack,
556 				     qd->ctl_stack_size);
557 	else
558 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
559 					&q->gart_mqd_addr, &q->properties);
560 
561 	if (q->properties.is_active) {
562 		if (!dqm->sched_running) {
563 			WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
564 			goto add_queue_to_list;
565 		}
566 
567 		if (WARN(q->process->mm != current->mm,
568 					"should only run in user thread"))
569 			retval = -EFAULT;
570 		else
571 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
572 					q->queue, &q->properties, current->mm);
573 		if (retval)
574 			goto out_free_mqd;
575 	}
576 
577 add_queue_to_list:
578 	list_add(&q->list, &qpd->queues_list);
579 	qpd->queue_count++;
580 	if (q->properties.is_active)
581 		increment_queue_count(dqm, qpd, q);
582 
583 	/*
584 	 * Unconditionally increment this counter, regardless of the queue's
585 	 * type or whether the queue is active.
586 	 */
587 	dqm->total_queue_count++;
588 	pr_debug("Total of %d queues are accountable so far\n",
589 			dqm->total_queue_count);
590 	goto out_unlock;
591 
592 out_free_mqd:
593 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
594 out_deallocate_doorbell:
595 	deallocate_doorbell(qpd, q);
596 out_deallocate_hqd:
597 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
598 		deallocate_hqd(dqm, q);
599 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
600 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
601 		deallocate_sdma_queue(dqm, q);
602 deallocate_vmid:
603 	if (list_empty(&qpd->queues_list))
604 		deallocate_vmid(dqm, qpd, q);
605 out_unlock:
606 	dqm_unlock(dqm);
607 	return retval;
608 }
609 
610 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
611 {
612 	bool set;
613 	int pipe, bit, i;
614 
615 	set = false;
616 
617 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
618 			i < get_pipes_per_mec(dqm);
619 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
620 
621 		if (!is_pipe_enabled(dqm, 0, pipe))
622 			continue;
623 
624 		if (dqm->allocated_queues[pipe] != 0) {
625 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
626 			dqm->allocated_queues[pipe] &= ~(1 << bit);
627 			q->pipe = pipe;
628 			q->queue = bit;
629 			set = true;
630 			break;
631 		}
632 	}
633 
634 	if (!set)
635 		return -EBUSY;
636 
637 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
638 	/* horizontal hqd allocation */
639 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
640 
641 	return 0;
642 }
643 
644 static inline void deallocate_hqd(struct device_queue_manager *dqm,
645 				struct queue *q)
646 {
647 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
648 }
649 
650 #define SQ_IND_CMD_CMD_KILL		0x00000003
651 #define SQ_IND_CMD_MODE_BROADCAST	0x00000001
652 
653 static int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p)
654 {
655 	int status = 0;
656 	unsigned int vmid;
657 	uint16_t queried_pasid;
658 	union SQ_CMD_BITS reg_sq_cmd;
659 	union GRBM_GFX_INDEX_BITS reg_gfx_index;
660 	struct kfd_process_device *pdd;
661 	int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
662 	int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
663 
664 	reg_sq_cmd.u32All = 0;
665 	reg_gfx_index.u32All = 0;
666 
667 	pr_debug("Killing all process wavefronts\n");
668 
669 	if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
670 		pr_err("no vmid pasid mapping supported \n");
671 		return -EOPNOTSUPP;
672 	}
673 
674 	/* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
675 	 * ATC_VMID15_PASID_MAPPING
676 	 * to check which VMID the current process is mapped to.
677 	 */
678 
679 	for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
680 		status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
681 				(dev->adev, vmid, &queried_pasid);
682 
683 		if (status && queried_pasid == p->pasid) {
684 			pr_debug("Killing wave fronts of vmid %d and pasid 0x%x\n",
685 					vmid, p->pasid);
686 			break;
687 		}
688 	}
689 
690 	if (vmid > last_vmid_to_scan) {
691 		pr_err("Didn't find vmid for pasid 0x%x\n", p->pasid);
692 		return -EFAULT;
693 	}
694 
695 	/* taking the VMID for that process on the safe way using PDD */
696 	pdd = kfd_get_process_device_data(dev, p);
697 	if (!pdd)
698 		return -EFAULT;
699 
700 	reg_gfx_index.bits.sh_broadcast_writes = 1;
701 	reg_gfx_index.bits.se_broadcast_writes = 1;
702 	reg_gfx_index.bits.instance_broadcast_writes = 1;
703 	reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
704 	reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
705 	reg_sq_cmd.bits.vm_id = vmid;
706 
707 	dev->kfd2kgd->wave_control_execute(dev->adev,
708 					reg_gfx_index.u32All,
709 					reg_sq_cmd.u32All);
710 
711 	return 0;
712 }
713 
714 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
715  * to avoid asynchronized access
716  */
717 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
718 				struct qcm_process_device *qpd,
719 				struct queue *q)
720 {
721 	int retval;
722 	struct mqd_manager *mqd_mgr;
723 
724 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
725 			q->properties.type)];
726 
727 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
728 		deallocate_hqd(dqm, q);
729 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
730 		deallocate_sdma_queue(dqm, q);
731 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
732 		deallocate_sdma_queue(dqm, q);
733 	else {
734 		pr_debug("q->properties.type %d is invalid\n",
735 				q->properties.type);
736 		return -EINVAL;
737 	}
738 	dqm->total_queue_count--;
739 
740 	deallocate_doorbell(qpd, q);
741 
742 	if (!dqm->sched_running) {
743 		WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
744 		return 0;
745 	}
746 
747 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
748 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
749 				KFD_UNMAP_LATENCY_MS,
750 				q->pipe, q->queue);
751 	if (retval == -ETIME)
752 		qpd->reset_wavefronts = true;
753 
754 	list_del(&q->list);
755 	if (list_empty(&qpd->queues_list)) {
756 		if (qpd->reset_wavefronts) {
757 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
758 					dqm->dev);
759 			/* dbgdev_wave_reset_wavefronts has to be called before
760 			 * deallocate_vmid(), i.e. when vmid is still in use.
761 			 */
762 			dbgdev_wave_reset_wavefronts(dqm->dev,
763 					qpd->pqm->process);
764 			qpd->reset_wavefronts = false;
765 		}
766 
767 		deallocate_vmid(dqm, qpd, q);
768 	}
769 	qpd->queue_count--;
770 	if (q->properties.is_active)
771 		decrement_queue_count(dqm, qpd, q);
772 
773 	return retval;
774 }
775 
776 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
777 				struct qcm_process_device *qpd,
778 				struct queue *q)
779 {
780 	int retval;
781 	uint64_t sdma_val = 0;
782 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
783 	struct mqd_manager *mqd_mgr =
784 		dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
785 
786 	/* Get the SDMA queue stats */
787 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
788 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
789 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
790 							&sdma_val);
791 		if (retval)
792 			pr_err("Failed to read SDMA queue counter for queue: %d\n",
793 				q->properties.queue_id);
794 	}
795 
796 	dqm_lock(dqm);
797 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
798 	if (!retval)
799 		pdd->sdma_past_activity_counter += sdma_val;
800 	dqm_unlock(dqm);
801 
802 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
803 
804 	return retval;
805 }
806 
807 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
808 			struct mqd_update_info *minfo)
809 {
810 	int retval = 0;
811 	struct mqd_manager *mqd_mgr;
812 	struct kfd_process_device *pdd;
813 	bool prev_active = false;
814 	bool add_queue = false;
815 
816 	dqm_lock(dqm);
817 	pdd = kfd_get_process_device_data(q->device, q->process);
818 	if (!pdd) {
819 		retval = -ENODEV;
820 		goto out_unlock;
821 	}
822 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
823 			q->properties.type)];
824 
825 	/* Save previous activity state for counters */
826 	prev_active = q->properties.is_active;
827 
828 	/* Make sure the queue is unmapped before updating the MQD */
829 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
830 		if (!dqm->dev->shared_resources.enable_mes)
831 			retval = unmap_queues_cpsch(dqm,
832 						    KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, false);
833 		else if (prev_active)
834 			retval = remove_queue_mes(dqm, q, &pdd->qpd);
835 
836 		if (retval) {
837 			pr_err("unmap queue failed\n");
838 			goto out_unlock;
839 		}
840 	} else if (prev_active &&
841 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
842 		    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
843 		    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
844 
845 		if (!dqm->sched_running) {
846 			WARN_ONCE(1, "Update non-HWS queue while stopped\n");
847 			goto out_unlock;
848 		}
849 
850 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
851 				(dqm->dev->cwsr_enabled ?
852 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
853 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
854 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
855 		if (retval) {
856 			pr_err("destroy mqd failed\n");
857 			goto out_unlock;
858 		}
859 	}
860 
861 	mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
862 
863 	/*
864 	 * check active state vs. the previous state and modify
865 	 * counter accordingly. map_queues_cpsch uses the
866 	 * dqm->active_queue_count to determine whether a new runlist must be
867 	 * uploaded.
868 	 */
869 	if (q->properties.is_active && !prev_active) {
870 		increment_queue_count(dqm, &pdd->qpd, q);
871 	} else if (!q->properties.is_active && prev_active) {
872 		decrement_queue_count(dqm, &pdd->qpd, q);
873 	} else if (q->gws && !q->properties.is_gws) {
874 		if (q->properties.is_active) {
875 			dqm->gws_queue_count++;
876 			pdd->qpd.mapped_gws_queue = true;
877 		}
878 		q->properties.is_gws = true;
879 	} else if (!q->gws && q->properties.is_gws) {
880 		if (q->properties.is_active) {
881 			dqm->gws_queue_count--;
882 			pdd->qpd.mapped_gws_queue = false;
883 		}
884 		q->properties.is_gws = false;
885 	}
886 
887 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
888 		if (!dqm->dev->shared_resources.enable_mes)
889 			retval = map_queues_cpsch(dqm);
890 		else if (add_queue)
891 			retval = add_queue_mes(dqm, q, &pdd->qpd);
892 	} else if (q->properties.is_active &&
893 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
894 		  q->properties.type == KFD_QUEUE_TYPE_SDMA ||
895 		  q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
896 		if (WARN(q->process->mm != current->mm,
897 			 "should only run in user thread"))
898 			retval = -EFAULT;
899 		else
900 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
901 						   q->pipe, q->queue,
902 						   &q->properties, current->mm);
903 	}
904 
905 out_unlock:
906 	dqm_unlock(dqm);
907 	return retval;
908 }
909 
910 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
911 					struct qcm_process_device *qpd)
912 {
913 	struct queue *q;
914 	struct mqd_manager *mqd_mgr;
915 	struct kfd_process_device *pdd;
916 	int retval, ret = 0;
917 
918 	dqm_lock(dqm);
919 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
920 		goto out;
921 
922 	pdd = qpd_to_pdd(qpd);
923 	pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
924 			    pdd->process->pasid);
925 
926 	pdd->last_evict_timestamp = get_jiffies_64();
927 	/* Mark all queues as evicted. Deactivate all active queues on
928 	 * the qpd.
929 	 */
930 	list_for_each_entry(q, &qpd->queues_list, list) {
931 		q->properties.is_evicted = true;
932 		if (!q->properties.is_active)
933 			continue;
934 
935 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
936 				q->properties.type)];
937 		q->properties.is_active = false;
938 		decrement_queue_count(dqm, qpd, q);
939 
940 		if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
941 			continue;
942 
943 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
944 				(dqm->dev->cwsr_enabled ?
945 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
946 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
947 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
948 		if (retval && !ret)
949 			/* Return the first error, but keep going to
950 			 * maintain a consistent eviction state
951 			 */
952 			ret = retval;
953 	}
954 
955 out:
956 	dqm_unlock(dqm);
957 	return ret;
958 }
959 
960 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
961 				      struct qcm_process_device *qpd)
962 {
963 	struct queue *q;
964 	struct kfd_process_device *pdd;
965 	int retval = 0;
966 
967 	dqm_lock(dqm);
968 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
969 		goto out;
970 
971 	pdd = qpd_to_pdd(qpd);
972 	pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
973 			    pdd->process->pasid);
974 
975 	/* Mark all queues as evicted. Deactivate all active queues on
976 	 * the qpd.
977 	 */
978 	list_for_each_entry(q, &qpd->queues_list, list) {
979 		q->properties.is_evicted = true;
980 		if (!q->properties.is_active)
981 			continue;
982 
983 		q->properties.is_active = false;
984 		decrement_queue_count(dqm, qpd, q);
985 
986 		if (dqm->dev->shared_resources.enable_mes) {
987 			retval = remove_queue_mes(dqm, q, qpd);
988 			if (retval) {
989 				pr_err("Failed to evict queue %d\n",
990 					q->properties.queue_id);
991 				goto out;
992 			}
993 		}
994 	}
995 	pdd->last_evict_timestamp = get_jiffies_64();
996 	if (!dqm->dev->shared_resources.enable_mes)
997 		retval = execute_queues_cpsch(dqm,
998 					      qpd->is_debug ?
999 					      KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1000 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1001 
1002 out:
1003 	dqm_unlock(dqm);
1004 	return retval;
1005 }
1006 
1007 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1008 					  struct qcm_process_device *qpd)
1009 {
1010 	struct mm_struct *mm = NULL;
1011 	struct queue *q;
1012 	struct mqd_manager *mqd_mgr;
1013 	struct kfd_process_device *pdd;
1014 	uint64_t pd_base;
1015 	uint64_t eviction_duration;
1016 	int retval, ret = 0;
1017 
1018 	pdd = qpd_to_pdd(qpd);
1019 	/* Retrieve PD base */
1020 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1021 
1022 	dqm_lock(dqm);
1023 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1024 		goto out;
1025 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1026 		qpd->evicted--;
1027 		goto out;
1028 	}
1029 
1030 	pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1031 			    pdd->process->pasid);
1032 
1033 	/* Update PD Base in QPD */
1034 	qpd->page_table_base = pd_base;
1035 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1036 
1037 	if (!list_empty(&qpd->queues_list)) {
1038 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1039 				dqm->dev->adev,
1040 				qpd->vmid,
1041 				qpd->page_table_base);
1042 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1043 	}
1044 
1045 	/* Take a safe reference to the mm_struct, which may otherwise
1046 	 * disappear even while the kfd_process is still referenced.
1047 	 */
1048 	mm = get_task_mm(pdd->process->lead_thread);
1049 	if (!mm) {
1050 		ret = -EFAULT;
1051 		goto out;
1052 	}
1053 
1054 	/* Remove the eviction flags. Activate queues that are not
1055 	 * inactive for other reasons.
1056 	 */
1057 	list_for_each_entry(q, &qpd->queues_list, list) {
1058 		q->properties.is_evicted = false;
1059 		if (!QUEUE_IS_ACTIVE(q->properties))
1060 			continue;
1061 
1062 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1063 				q->properties.type)];
1064 		q->properties.is_active = true;
1065 		increment_queue_count(dqm, qpd, q);
1066 
1067 		if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1068 			continue;
1069 
1070 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1071 				       q->queue, &q->properties, mm);
1072 		if (retval && !ret)
1073 			/* Return the first error, but keep going to
1074 			 * maintain a consistent eviction state
1075 			 */
1076 			ret = retval;
1077 	}
1078 	qpd->evicted = 0;
1079 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1080 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1081 out:
1082 	if (mm)
1083 		mmput(mm);
1084 	dqm_unlock(dqm);
1085 	return ret;
1086 }
1087 
1088 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1089 					struct qcm_process_device *qpd)
1090 {
1091 	struct queue *q;
1092 	struct kfd_process_device *pdd;
1093 	uint64_t pd_base;
1094 	uint64_t eviction_duration;
1095 	int retval = 0;
1096 
1097 	pdd = qpd_to_pdd(qpd);
1098 	/* Retrieve PD base */
1099 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1100 
1101 	dqm_lock(dqm);
1102 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1103 		goto out;
1104 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1105 		qpd->evicted--;
1106 		goto out;
1107 	}
1108 
1109 	pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1110 			    pdd->process->pasid);
1111 
1112 	/* Update PD Base in QPD */
1113 	qpd->page_table_base = pd_base;
1114 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1115 
1116 	/* activate all active queues on the qpd */
1117 	list_for_each_entry(q, &qpd->queues_list, list) {
1118 		q->properties.is_evicted = false;
1119 		if (!QUEUE_IS_ACTIVE(q->properties))
1120 			continue;
1121 
1122 		q->properties.is_active = true;
1123 		increment_queue_count(dqm, &pdd->qpd, q);
1124 
1125 		if (dqm->dev->shared_resources.enable_mes) {
1126 			retval = add_queue_mes(dqm, q, qpd);
1127 			if (retval) {
1128 				pr_err("Failed to restore queue %d\n",
1129 					q->properties.queue_id);
1130 				goto out;
1131 			}
1132 		}
1133 	}
1134 	if (!dqm->dev->shared_resources.enable_mes)
1135 		retval = execute_queues_cpsch(dqm,
1136 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1137 	qpd->evicted = 0;
1138 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1139 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1140 out:
1141 	dqm_unlock(dqm);
1142 	return retval;
1143 }
1144 
1145 static int register_process(struct device_queue_manager *dqm,
1146 					struct qcm_process_device *qpd)
1147 {
1148 	struct device_process_node *n;
1149 	struct kfd_process_device *pdd;
1150 	uint64_t pd_base;
1151 	int retval;
1152 
1153 	n = kzalloc(sizeof(*n), GFP_KERNEL);
1154 	if (!n)
1155 		return -ENOMEM;
1156 
1157 	n->qpd = qpd;
1158 
1159 	pdd = qpd_to_pdd(qpd);
1160 	/* Retrieve PD base */
1161 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1162 
1163 	dqm_lock(dqm);
1164 	list_add(&n->list, &dqm->queues);
1165 
1166 	/* Update PD Base in QPD */
1167 	qpd->page_table_base = pd_base;
1168 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1169 
1170 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
1171 
1172 	dqm->processes_count++;
1173 
1174 	dqm_unlock(dqm);
1175 
1176 	/* Outside the DQM lock because under the DQM lock we can't do
1177 	 * reclaim or take other locks that others hold while reclaiming.
1178 	 */
1179 	kfd_inc_compute_active(dqm->dev);
1180 
1181 	return retval;
1182 }
1183 
1184 static int unregister_process(struct device_queue_manager *dqm,
1185 					struct qcm_process_device *qpd)
1186 {
1187 	int retval;
1188 	struct device_process_node *cur, *next;
1189 
1190 	pr_debug("qpd->queues_list is %s\n",
1191 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
1192 
1193 	retval = 0;
1194 	dqm_lock(dqm);
1195 
1196 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1197 		if (qpd == cur->qpd) {
1198 			list_del(&cur->list);
1199 			kfree(cur);
1200 			dqm->processes_count--;
1201 			goto out;
1202 		}
1203 	}
1204 	/* qpd not found in dqm list */
1205 	retval = 1;
1206 out:
1207 	dqm_unlock(dqm);
1208 
1209 	/* Outside the DQM lock because under the DQM lock we can't do
1210 	 * reclaim or take other locks that others hold while reclaiming.
1211 	 */
1212 	if (!retval)
1213 		kfd_dec_compute_active(dqm->dev);
1214 
1215 	return retval;
1216 }
1217 
1218 static int
1219 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1220 			unsigned int vmid)
1221 {
1222 	return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1223 						dqm->dev->adev, pasid, vmid);
1224 }
1225 
1226 static void init_interrupts(struct device_queue_manager *dqm)
1227 {
1228 	unsigned int i;
1229 
1230 	for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
1231 		if (is_pipe_enabled(dqm, 0, i))
1232 			dqm->dev->kfd2kgd->init_interrupts(dqm->dev->adev, i);
1233 }
1234 
1235 static int initialize_nocpsch(struct device_queue_manager *dqm)
1236 {
1237 	int pipe, queue;
1238 
1239 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1240 
1241 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1242 					sizeof(unsigned int), GFP_KERNEL);
1243 	if (!dqm->allocated_queues)
1244 		return -ENOMEM;
1245 
1246 	mutex_init(&dqm->lock_hidden);
1247 	INIT_LIST_HEAD(&dqm->queues);
1248 	dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1249 	dqm->active_cp_queue_count = 0;
1250 	dqm->gws_queue_count = 0;
1251 
1252 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1253 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1254 
1255 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1256 			if (test_bit(pipe_offset + queue,
1257 				     dqm->dev->shared_resources.cp_queue_bitmap))
1258 				dqm->allocated_queues[pipe] |= 1 << queue;
1259 	}
1260 
1261 	memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1262 
1263 	dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm));
1264 	dqm->sdma_bitmap &= ~(get_reserved_sdma_queues_bitmap(dqm));
1265 	pr_info("sdma_bitmap: %llx\n", dqm->sdma_bitmap);
1266 
1267 	dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm));
1268 
1269 	return 0;
1270 }
1271 
1272 static void uninitialize(struct device_queue_manager *dqm)
1273 {
1274 	int i;
1275 
1276 	WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1277 
1278 	kfree(dqm->allocated_queues);
1279 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1280 		kfree(dqm->mqd_mgrs[i]);
1281 	mutex_destroy(&dqm->lock_hidden);
1282 }
1283 
1284 static int start_nocpsch(struct device_queue_manager *dqm)
1285 {
1286 	int r = 0;
1287 
1288 	pr_info("SW scheduler is used");
1289 	init_interrupts(dqm);
1290 
1291 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1292 		r = pm_init(&dqm->packet_mgr, dqm);
1293 	if (!r)
1294 		dqm->sched_running = true;
1295 
1296 	return r;
1297 }
1298 
1299 static int stop_nocpsch(struct device_queue_manager *dqm)
1300 {
1301 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1302 		pm_uninit(&dqm->packet_mgr, false);
1303 	dqm->sched_running = false;
1304 
1305 	return 0;
1306 }
1307 
1308 static void pre_reset(struct device_queue_manager *dqm)
1309 {
1310 	dqm_lock(dqm);
1311 	dqm->is_resetting = true;
1312 	dqm_unlock(dqm);
1313 }
1314 
1315 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1316 				struct queue *q, const uint32_t *restore_sdma_id)
1317 {
1318 	int bit;
1319 
1320 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1321 		if (dqm->sdma_bitmap == 0) {
1322 			pr_err("No more SDMA queue to allocate\n");
1323 			return -ENOMEM;
1324 		}
1325 
1326 		if (restore_sdma_id) {
1327 			/* Re-use existing sdma_id */
1328 			if (!(dqm->sdma_bitmap & (1ULL << *restore_sdma_id))) {
1329 				pr_err("SDMA queue already in use\n");
1330 				return -EBUSY;
1331 			}
1332 			dqm->sdma_bitmap &= ~(1ULL << *restore_sdma_id);
1333 			q->sdma_id = *restore_sdma_id;
1334 		} else {
1335 			/* Find first available sdma_id */
1336 			bit = __ffs64(dqm->sdma_bitmap);
1337 			dqm->sdma_bitmap &= ~(1ULL << bit);
1338 			q->sdma_id = bit;
1339 		}
1340 
1341 		q->properties.sdma_engine_id = q->sdma_id %
1342 				kfd_get_num_sdma_engines(dqm->dev);
1343 		q->properties.sdma_queue_id = q->sdma_id /
1344 				kfd_get_num_sdma_engines(dqm->dev);
1345 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1346 		if (dqm->xgmi_sdma_bitmap == 0) {
1347 			pr_err("No more XGMI SDMA queue to allocate\n");
1348 			return -ENOMEM;
1349 		}
1350 		if (restore_sdma_id) {
1351 			/* Re-use existing sdma_id */
1352 			if (!(dqm->xgmi_sdma_bitmap & (1ULL << *restore_sdma_id))) {
1353 				pr_err("SDMA queue already in use\n");
1354 				return -EBUSY;
1355 			}
1356 			dqm->xgmi_sdma_bitmap &= ~(1ULL << *restore_sdma_id);
1357 			q->sdma_id = *restore_sdma_id;
1358 		} else {
1359 			bit = __ffs64(dqm->xgmi_sdma_bitmap);
1360 			dqm->xgmi_sdma_bitmap &= ~(1ULL << bit);
1361 			q->sdma_id = bit;
1362 		}
1363 		/* sdma_engine_id is sdma id including
1364 		 * both PCIe-optimized SDMAs and XGMI-
1365 		 * optimized SDMAs. The calculation below
1366 		 * assumes the first N engines are always
1367 		 * PCIe-optimized ones
1368 		 */
1369 		q->properties.sdma_engine_id =
1370 			kfd_get_num_sdma_engines(dqm->dev) +
1371 			q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1372 		q->properties.sdma_queue_id = q->sdma_id /
1373 			kfd_get_num_xgmi_sdma_engines(dqm->dev);
1374 	}
1375 
1376 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1377 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1378 
1379 	return 0;
1380 }
1381 
1382 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1383 				struct queue *q)
1384 {
1385 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1386 		if (q->sdma_id >= get_num_sdma_queues(dqm))
1387 			return;
1388 		dqm->sdma_bitmap |= (1ULL << q->sdma_id);
1389 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1390 		if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1391 			return;
1392 		dqm->xgmi_sdma_bitmap |= (1ULL << q->sdma_id);
1393 	}
1394 }
1395 
1396 /*
1397  * Device Queue Manager implementation for cp scheduler
1398  */
1399 
1400 static int set_sched_resources(struct device_queue_manager *dqm)
1401 {
1402 	int i, mec;
1403 	struct scheduling_resources res;
1404 
1405 	res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap;
1406 
1407 	res.queue_mask = 0;
1408 	for (i = 0; i < KGD_MAX_QUEUES; ++i) {
1409 		mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
1410 			/ dqm->dev->shared_resources.num_pipe_per_mec;
1411 
1412 		if (!test_bit(i, dqm->dev->shared_resources.cp_queue_bitmap))
1413 			continue;
1414 
1415 		/* only acquire queues from the first MEC */
1416 		if (mec > 0)
1417 			continue;
1418 
1419 		/* This situation may be hit in the future if a new HW
1420 		 * generation exposes more than 64 queues. If so, the
1421 		 * definition of res.queue_mask needs updating
1422 		 */
1423 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1424 			pr_err("Invalid queue enabled by amdgpu: %d\n", i);
1425 			break;
1426 		}
1427 
1428 		res.queue_mask |= 1ull
1429 			<< amdgpu_queue_mask_bit_to_set_resource_bit(
1430 				dqm->dev->adev, i);
1431 	}
1432 	res.gws_mask = ~0ull;
1433 	res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1434 
1435 	pr_debug("Scheduling resources:\n"
1436 			"vmid mask: 0x%8X\n"
1437 			"queue mask: 0x%8llX\n",
1438 			res.vmid_mask, res.queue_mask);
1439 
1440 	return pm_send_set_resources(&dqm->packet_mgr, &res);
1441 }
1442 
1443 static int initialize_cpsch(struct device_queue_manager *dqm)
1444 {
1445 	uint64_t num_sdma_queues;
1446 	uint64_t num_xgmi_sdma_queues;
1447 
1448 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1449 
1450 	mutex_init(&dqm->lock_hidden);
1451 	INIT_LIST_HEAD(&dqm->queues);
1452 	dqm->active_queue_count = dqm->processes_count = 0;
1453 	dqm->active_cp_queue_count = 0;
1454 	dqm->gws_queue_count = 0;
1455 	dqm->active_runlist = false;
1456 
1457 	num_sdma_queues = get_num_sdma_queues(dqm);
1458 	if (num_sdma_queues >= BITS_PER_TYPE(dqm->sdma_bitmap))
1459 		dqm->sdma_bitmap = ULLONG_MAX;
1460 	else
1461 		dqm->sdma_bitmap = (BIT_ULL(num_sdma_queues) - 1);
1462 
1463 	dqm->sdma_bitmap &= ~(get_reserved_sdma_queues_bitmap(dqm));
1464 	pr_info("sdma_bitmap: %llx\n", dqm->sdma_bitmap);
1465 
1466 	num_xgmi_sdma_queues = get_num_xgmi_sdma_queues(dqm);
1467 	if (num_xgmi_sdma_queues >= BITS_PER_TYPE(dqm->xgmi_sdma_bitmap))
1468 		dqm->xgmi_sdma_bitmap = ULLONG_MAX;
1469 	else
1470 		dqm->xgmi_sdma_bitmap = (BIT_ULL(num_xgmi_sdma_queues) - 1);
1471 
1472 	INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1473 
1474 	return 0;
1475 }
1476 
1477 static int start_cpsch(struct device_queue_manager *dqm)
1478 {
1479 	int retval;
1480 
1481 	retval = 0;
1482 
1483 	dqm_lock(dqm);
1484 
1485 	if (!dqm->dev->shared_resources.enable_mes) {
1486 		retval = pm_init(&dqm->packet_mgr, dqm);
1487 		if (retval)
1488 			goto fail_packet_manager_init;
1489 
1490 		retval = set_sched_resources(dqm);
1491 		if (retval)
1492 			goto fail_set_sched_resources;
1493 	}
1494 	pr_debug("Allocating fence memory\n");
1495 
1496 	/* allocate fence memory on the gart */
1497 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1498 					&dqm->fence_mem);
1499 
1500 	if (retval)
1501 		goto fail_allocate_vidmem;
1502 
1503 	dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1504 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1505 
1506 	init_interrupts(dqm);
1507 
1508 	/* clear hang status when driver try to start the hw scheduler */
1509 	dqm->is_hws_hang = false;
1510 	dqm->is_resetting = false;
1511 	dqm->sched_running = true;
1512 	if (!dqm->dev->shared_resources.enable_mes)
1513 		execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1514 	dqm_unlock(dqm);
1515 
1516 	return 0;
1517 fail_allocate_vidmem:
1518 fail_set_sched_resources:
1519 	if (!dqm->dev->shared_resources.enable_mes)
1520 		pm_uninit(&dqm->packet_mgr, false);
1521 fail_packet_manager_init:
1522 	dqm_unlock(dqm);
1523 	return retval;
1524 }
1525 
1526 static int stop_cpsch(struct device_queue_manager *dqm)
1527 {
1528 	bool hanging;
1529 
1530 	dqm_lock(dqm);
1531 	if (!dqm->sched_running) {
1532 		dqm_unlock(dqm);
1533 		return 0;
1534 	}
1535 
1536 	if (!dqm->is_hws_hang) {
1537 		if (!dqm->dev->shared_resources.enable_mes)
1538 			unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, false);
1539 		else
1540 			remove_all_queues_mes(dqm);
1541 	}
1542 
1543 	hanging = dqm->is_hws_hang || dqm->is_resetting;
1544 	dqm->sched_running = false;
1545 
1546 	if (!dqm->dev->shared_resources.enable_mes)
1547 		pm_release_ib(&dqm->packet_mgr);
1548 
1549 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1550 	if (!dqm->dev->shared_resources.enable_mes)
1551 		pm_uninit(&dqm->packet_mgr, hanging);
1552 	dqm_unlock(dqm);
1553 
1554 	return 0;
1555 }
1556 
1557 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1558 					struct kernel_queue *kq,
1559 					struct qcm_process_device *qpd)
1560 {
1561 	dqm_lock(dqm);
1562 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1563 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1564 				dqm->total_queue_count);
1565 		dqm_unlock(dqm);
1566 		return -EPERM;
1567 	}
1568 
1569 	/*
1570 	 * Unconditionally increment this counter, regardless of the queue's
1571 	 * type or whether the queue is active.
1572 	 */
1573 	dqm->total_queue_count++;
1574 	pr_debug("Total of %d queues are accountable so far\n",
1575 			dqm->total_queue_count);
1576 
1577 	list_add(&kq->list, &qpd->priv_queue_list);
1578 	increment_queue_count(dqm, qpd, kq->queue);
1579 	qpd->is_debug = true;
1580 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1581 	dqm_unlock(dqm);
1582 
1583 	return 0;
1584 }
1585 
1586 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1587 					struct kernel_queue *kq,
1588 					struct qcm_process_device *qpd)
1589 {
1590 	dqm_lock(dqm);
1591 	list_del(&kq->list);
1592 	decrement_queue_count(dqm, qpd, kq->queue);
1593 	qpd->is_debug = false;
1594 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1595 	/*
1596 	 * Unconditionally decrement this counter, regardless of the queue's
1597 	 * type.
1598 	 */
1599 	dqm->total_queue_count--;
1600 	pr_debug("Total of %d queues are accountable so far\n",
1601 			dqm->total_queue_count);
1602 	dqm_unlock(dqm);
1603 }
1604 
1605 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1606 			struct qcm_process_device *qpd,
1607 			const struct kfd_criu_queue_priv_data *qd,
1608 			const void *restore_mqd, const void *restore_ctl_stack)
1609 {
1610 	int retval;
1611 	struct mqd_manager *mqd_mgr;
1612 
1613 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1614 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1615 				dqm->total_queue_count);
1616 		retval = -EPERM;
1617 		goto out;
1618 	}
1619 
1620 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1621 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1622 		dqm_lock(dqm);
1623 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
1624 		dqm_unlock(dqm);
1625 		if (retval)
1626 			goto out;
1627 	}
1628 
1629 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
1630 	if (retval)
1631 		goto out_deallocate_sdma_queue;
1632 
1633 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1634 			q->properties.type)];
1635 
1636 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1637 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1638 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1639 	q->properties.tba_addr = qpd->tba_addr;
1640 	q->properties.tma_addr = qpd->tma_addr;
1641 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
1642 	if (!q->mqd_mem_obj) {
1643 		retval = -ENOMEM;
1644 		goto out_deallocate_doorbell;
1645 	}
1646 
1647 	dqm_lock(dqm);
1648 	/*
1649 	 * Eviction state logic: mark all queues as evicted, even ones
1650 	 * not currently active. Restoring inactive queues later only
1651 	 * updates the is_evicted flag but is a no-op otherwise.
1652 	 */
1653 	q->properties.is_evicted = !!qpd->evicted;
1654 
1655 	if (qd)
1656 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
1657 				     &q->properties, restore_mqd, restore_ctl_stack,
1658 				     qd->ctl_stack_size);
1659 	else
1660 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
1661 					&q->gart_mqd_addr, &q->properties);
1662 
1663 	list_add(&q->list, &qpd->queues_list);
1664 	qpd->queue_count++;
1665 
1666 	if (q->properties.is_active) {
1667 		increment_queue_count(dqm, qpd, q);
1668 
1669 		if (!dqm->dev->shared_resources.enable_mes) {
1670 			retval = execute_queues_cpsch(dqm,
1671 					     KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1672 		} else {
1673 			retval = add_queue_mes(dqm, q, qpd);
1674 			if (retval)
1675 				goto cleanup_queue;
1676 		}
1677 	}
1678 
1679 	/*
1680 	 * Unconditionally increment this counter, regardless of the queue's
1681 	 * type or whether the queue is active.
1682 	 */
1683 	dqm->total_queue_count++;
1684 
1685 	pr_debug("Total of %d queues are accountable so far\n",
1686 			dqm->total_queue_count);
1687 
1688 	dqm_unlock(dqm);
1689 	return retval;
1690 
1691 cleanup_queue:
1692 	qpd->queue_count--;
1693 	list_del(&q->list);
1694 	if (q->properties.is_active)
1695 		decrement_queue_count(dqm, qpd, q);
1696 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1697 	dqm_unlock(dqm);
1698 out_deallocate_doorbell:
1699 	deallocate_doorbell(qpd, q);
1700 out_deallocate_sdma_queue:
1701 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1702 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1703 		dqm_lock(dqm);
1704 		deallocate_sdma_queue(dqm, q);
1705 		dqm_unlock(dqm);
1706 	}
1707 out:
1708 	return retval;
1709 }
1710 
1711 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1712 				uint64_t fence_value,
1713 				unsigned int timeout_ms)
1714 {
1715 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1716 
1717 	while (*fence_addr != fence_value) {
1718 		if (time_after(jiffies, end_jiffies)) {
1719 			pr_err("qcm fence wait loop timeout expired\n");
1720 			/* In HWS case, this is used to halt the driver thread
1721 			 * in order not to mess up CP states before doing
1722 			 * scandumps for FW debugging.
1723 			 */
1724 			while (halt_if_hws_hang)
1725 				schedule();
1726 
1727 			return -ETIME;
1728 		}
1729 		schedule();
1730 	}
1731 
1732 	return 0;
1733 }
1734 
1735 /* dqm->lock mutex has to be locked before calling this function */
1736 static int map_queues_cpsch(struct device_queue_manager *dqm)
1737 {
1738 	int retval;
1739 
1740 	if (!dqm->sched_running)
1741 		return 0;
1742 	if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
1743 		return 0;
1744 	if (dqm->active_runlist)
1745 		return 0;
1746 
1747 	retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
1748 	pr_debug("%s sent runlist\n", __func__);
1749 	if (retval) {
1750 		pr_err("failed to execute runlist\n");
1751 		return retval;
1752 	}
1753 	dqm->active_runlist = true;
1754 
1755 	return retval;
1756 }
1757 
1758 /* dqm->lock mutex has to be locked before calling this function */
1759 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1760 				enum kfd_unmap_queues_filter filter,
1761 				uint32_t filter_param, bool reset)
1762 {
1763 	int retval = 0;
1764 	struct mqd_manager *mqd_mgr;
1765 
1766 	if (!dqm->sched_running)
1767 		return 0;
1768 	if (dqm->is_hws_hang || dqm->is_resetting)
1769 		return -EIO;
1770 	if (!dqm->active_runlist)
1771 		return retval;
1772 
1773 	retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
1774 	if (retval)
1775 		return retval;
1776 
1777 	*dqm->fence_addr = KFD_FENCE_INIT;
1778 	pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
1779 				KFD_FENCE_COMPLETED);
1780 	/* should be timed out */
1781 	retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
1782 				queue_preemption_timeout_ms);
1783 	if (retval) {
1784 		pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1785 		kfd_hws_hang(dqm);
1786 		return retval;
1787 	}
1788 
1789 	/* In the current MEC firmware implementation, if compute queue
1790 	 * doesn't response to the preemption request in time, HIQ will
1791 	 * abandon the unmap request without returning any timeout error
1792 	 * to driver. Instead, MEC firmware will log the doorbell of the
1793 	 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
1794 	 * To make sure the queue unmap was successful, driver need to
1795 	 * check those fields
1796 	 */
1797 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
1798 	if (mqd_mgr->read_doorbell_id(dqm->packet_mgr.priv_queue->queue->mqd)) {
1799 		pr_err("HIQ MQD's queue_doorbell_id0 is not 0, Queue preemption time out\n");
1800 		while (halt_if_hws_hang)
1801 			schedule();
1802 		return -ETIME;
1803 	}
1804 
1805 	pm_release_ib(&dqm->packet_mgr);
1806 	dqm->active_runlist = false;
1807 
1808 	return retval;
1809 }
1810 
1811 /* only for compute queue */
1812 static int reset_queues_cpsch(struct device_queue_manager *dqm,
1813 			uint16_t pasid)
1814 {
1815 	int retval;
1816 
1817 	dqm_lock(dqm);
1818 
1819 	retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
1820 			pasid, true);
1821 
1822 	dqm_unlock(dqm);
1823 	return retval;
1824 }
1825 
1826 /* dqm->lock mutex has to be locked before calling this function */
1827 static int execute_queues_cpsch(struct device_queue_manager *dqm,
1828 				enum kfd_unmap_queues_filter filter,
1829 				uint32_t filter_param)
1830 {
1831 	int retval;
1832 
1833 	if (dqm->is_hws_hang)
1834 		return -EIO;
1835 	retval = unmap_queues_cpsch(dqm, filter, filter_param, false);
1836 	if (retval)
1837 		return retval;
1838 
1839 	return map_queues_cpsch(dqm);
1840 }
1841 
1842 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1843 				struct qcm_process_device *qpd,
1844 				struct queue *q)
1845 {
1846 	int retval;
1847 	struct mqd_manager *mqd_mgr;
1848 	uint64_t sdma_val = 0;
1849 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
1850 
1851 	/* Get the SDMA queue stats */
1852 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
1853 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1854 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
1855 							&sdma_val);
1856 		if (retval)
1857 			pr_err("Failed to read SDMA queue counter for queue: %d\n",
1858 				q->properties.queue_id);
1859 	}
1860 
1861 	retval = 0;
1862 
1863 	/* remove queue from list to prevent rescheduling after preemption */
1864 	dqm_lock(dqm);
1865 
1866 	if (qpd->is_debug) {
1867 		/*
1868 		 * error, currently we do not allow to destroy a queue
1869 		 * of a currently debugged process
1870 		 */
1871 		retval = -EBUSY;
1872 		goto failed_try_destroy_debugged_queue;
1873 
1874 	}
1875 
1876 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1877 			q->properties.type)];
1878 
1879 	deallocate_doorbell(qpd, q);
1880 
1881 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
1882 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1883 		deallocate_sdma_queue(dqm, q);
1884 		pdd->sdma_past_activity_counter += sdma_val;
1885 	}
1886 
1887 	list_del(&q->list);
1888 	qpd->queue_count--;
1889 	if (q->properties.is_active) {
1890 		if (!dqm->dev->shared_resources.enable_mes) {
1891 			decrement_queue_count(dqm, qpd, q);
1892 			retval = execute_queues_cpsch(dqm,
1893 						      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1894 			if (retval == -ETIME)
1895 				qpd->reset_wavefronts = true;
1896 		} else {
1897 			retval = remove_queue_mes(dqm, q, qpd);
1898 		}
1899 	}
1900 
1901 	/*
1902 	 * Unconditionally decrement this counter, regardless of the queue's
1903 	 * type
1904 	 */
1905 	dqm->total_queue_count--;
1906 	pr_debug("Total of %d queues are accountable so far\n",
1907 			dqm->total_queue_count);
1908 
1909 	dqm_unlock(dqm);
1910 
1911 	/* Do free_mqd after dqm_unlock(dqm) to avoid circular locking */
1912 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1913 
1914 	return retval;
1915 
1916 failed_try_destroy_debugged_queue:
1917 
1918 	dqm_unlock(dqm);
1919 	return retval;
1920 }
1921 
1922 /*
1923  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1924  * stay in user mode.
1925  */
1926 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1927 /* APE1 limit is inclusive and 64K aligned. */
1928 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1929 
1930 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1931 				   struct qcm_process_device *qpd,
1932 				   enum cache_policy default_policy,
1933 				   enum cache_policy alternate_policy,
1934 				   void __user *alternate_aperture_base,
1935 				   uint64_t alternate_aperture_size)
1936 {
1937 	bool retval = true;
1938 
1939 	if (!dqm->asic_ops.set_cache_memory_policy)
1940 		return retval;
1941 
1942 	dqm_lock(dqm);
1943 
1944 	if (alternate_aperture_size == 0) {
1945 		/* base > limit disables APE1 */
1946 		qpd->sh_mem_ape1_base = 1;
1947 		qpd->sh_mem_ape1_limit = 0;
1948 	} else {
1949 		/*
1950 		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1951 		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
1952 		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1953 		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1954 		 * Verify that the base and size parameters can be
1955 		 * represented in this format and convert them.
1956 		 * Additionally restrict APE1 to user-mode addresses.
1957 		 */
1958 
1959 		uint64_t base = (uintptr_t)alternate_aperture_base;
1960 		uint64_t limit = base + alternate_aperture_size - 1;
1961 
1962 		if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
1963 		   (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
1964 			retval = false;
1965 			goto out;
1966 		}
1967 
1968 		qpd->sh_mem_ape1_base = base >> 16;
1969 		qpd->sh_mem_ape1_limit = limit >> 16;
1970 	}
1971 
1972 	retval = dqm->asic_ops.set_cache_memory_policy(
1973 			dqm,
1974 			qpd,
1975 			default_policy,
1976 			alternate_policy,
1977 			alternate_aperture_base,
1978 			alternate_aperture_size);
1979 
1980 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1981 		program_sh_mem_settings(dqm, qpd);
1982 
1983 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1984 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1985 		qpd->sh_mem_ape1_limit);
1986 
1987 out:
1988 	dqm_unlock(dqm);
1989 	return retval;
1990 }
1991 
1992 static int process_termination_nocpsch(struct device_queue_manager *dqm,
1993 		struct qcm_process_device *qpd)
1994 {
1995 	struct queue *q;
1996 	struct device_process_node *cur, *next_dpn;
1997 	int retval = 0;
1998 	bool found = false;
1999 
2000 	dqm_lock(dqm);
2001 
2002 	/* Clear all user mode queues */
2003 	while (!list_empty(&qpd->queues_list)) {
2004 		struct mqd_manager *mqd_mgr;
2005 		int ret;
2006 
2007 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2008 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2009 				q->properties.type)];
2010 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2011 		if (ret)
2012 			retval = ret;
2013 		dqm_unlock(dqm);
2014 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2015 		dqm_lock(dqm);
2016 	}
2017 
2018 	/* Unregister process */
2019 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2020 		if (qpd == cur->qpd) {
2021 			list_del(&cur->list);
2022 			kfree(cur);
2023 			dqm->processes_count--;
2024 			found = true;
2025 			break;
2026 		}
2027 	}
2028 
2029 	dqm_unlock(dqm);
2030 
2031 	/* Outside the DQM lock because under the DQM lock we can't do
2032 	 * reclaim or take other locks that others hold while reclaiming.
2033 	 */
2034 	if (found)
2035 		kfd_dec_compute_active(dqm->dev);
2036 
2037 	return retval;
2038 }
2039 
2040 static int get_wave_state(struct device_queue_manager *dqm,
2041 			  struct queue *q,
2042 			  void __user *ctl_stack,
2043 			  u32 *ctl_stack_used_size,
2044 			  u32 *save_area_used_size)
2045 {
2046 	struct mqd_manager *mqd_mgr;
2047 
2048 	dqm_lock(dqm);
2049 
2050 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2051 
2052 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2053 	    q->properties.is_active || !q->device->cwsr_enabled ||
2054 	    !mqd_mgr->get_wave_state) {
2055 		dqm_unlock(dqm);
2056 		return -EINVAL;
2057 	}
2058 
2059 	dqm_unlock(dqm);
2060 
2061 	/*
2062 	 * get_wave_state is outside the dqm lock to prevent circular locking
2063 	 * and the queue should be protected against destruction by the process
2064 	 * lock.
2065 	 */
2066 	return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, ctl_stack,
2067 			ctl_stack_used_size, save_area_used_size);
2068 }
2069 
2070 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2071 			const struct queue *q,
2072 			u32 *mqd_size,
2073 			u32 *ctl_stack_size)
2074 {
2075 	struct mqd_manager *mqd_mgr;
2076 	enum KFD_MQD_TYPE mqd_type =
2077 			get_mqd_type_from_queue_type(q->properties.type);
2078 
2079 	dqm_lock(dqm);
2080 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2081 	*mqd_size = mqd_mgr->mqd_size;
2082 	*ctl_stack_size = 0;
2083 
2084 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2085 		mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2086 
2087 	dqm_unlock(dqm);
2088 }
2089 
2090 static int checkpoint_mqd(struct device_queue_manager *dqm,
2091 			  const struct queue *q,
2092 			  void *mqd,
2093 			  void *ctl_stack)
2094 {
2095 	struct mqd_manager *mqd_mgr;
2096 	int r = 0;
2097 	enum KFD_MQD_TYPE mqd_type =
2098 			get_mqd_type_from_queue_type(q->properties.type);
2099 
2100 	dqm_lock(dqm);
2101 
2102 	if (q->properties.is_active || !q->device->cwsr_enabled) {
2103 		r = -EINVAL;
2104 		goto dqm_unlock;
2105 	}
2106 
2107 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2108 	if (!mqd_mgr->checkpoint_mqd) {
2109 		r = -EOPNOTSUPP;
2110 		goto dqm_unlock;
2111 	}
2112 
2113 	mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2114 
2115 dqm_unlock:
2116 	dqm_unlock(dqm);
2117 	return r;
2118 }
2119 
2120 static int process_termination_cpsch(struct device_queue_manager *dqm,
2121 		struct qcm_process_device *qpd)
2122 {
2123 	int retval;
2124 	struct queue *q;
2125 	struct kernel_queue *kq, *kq_next;
2126 	struct mqd_manager *mqd_mgr;
2127 	struct device_process_node *cur, *next_dpn;
2128 	enum kfd_unmap_queues_filter filter =
2129 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2130 	bool found = false;
2131 
2132 	retval = 0;
2133 
2134 	dqm_lock(dqm);
2135 
2136 	/* Clean all kernel queues */
2137 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2138 		list_del(&kq->list);
2139 		decrement_queue_count(dqm, qpd, kq->queue);
2140 		qpd->is_debug = false;
2141 		dqm->total_queue_count--;
2142 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2143 	}
2144 
2145 	/* Clear all user mode queues */
2146 	list_for_each_entry(q, &qpd->queues_list, list) {
2147 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2148 			deallocate_sdma_queue(dqm, q);
2149 		else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2150 			deallocate_sdma_queue(dqm, q);
2151 
2152 		if (q->properties.is_active) {
2153 			decrement_queue_count(dqm, qpd, q);
2154 
2155 			if (dqm->dev->shared_resources.enable_mes) {
2156 				retval = remove_queue_mes(dqm, q, qpd);
2157 				if (retval)
2158 					pr_err("Failed to remove queue %d\n",
2159 						q->properties.queue_id);
2160 			}
2161 		}
2162 
2163 		dqm->total_queue_count--;
2164 	}
2165 
2166 	/* Unregister process */
2167 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2168 		if (qpd == cur->qpd) {
2169 			list_del(&cur->list);
2170 			kfree(cur);
2171 			dqm->processes_count--;
2172 			found = true;
2173 			break;
2174 		}
2175 	}
2176 
2177 	if (!dqm->dev->shared_resources.enable_mes)
2178 		retval = execute_queues_cpsch(dqm, filter, 0);
2179 
2180 	if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
2181 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2182 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2183 		qpd->reset_wavefronts = false;
2184 	}
2185 
2186 	/* Lastly, free mqd resources.
2187 	 * Do free_mqd() after dqm_unlock to avoid circular locking.
2188 	 */
2189 	while (!list_empty(&qpd->queues_list)) {
2190 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2191 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2192 				q->properties.type)];
2193 		list_del(&q->list);
2194 		qpd->queue_count--;
2195 		dqm_unlock(dqm);
2196 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2197 		dqm_lock(dqm);
2198 	}
2199 	dqm_unlock(dqm);
2200 
2201 	/* Outside the DQM lock because under the DQM lock we can't do
2202 	 * reclaim or take other locks that others hold while reclaiming.
2203 	 */
2204 	if (found)
2205 		kfd_dec_compute_active(dqm->dev);
2206 
2207 	return retval;
2208 }
2209 
2210 static int init_mqd_managers(struct device_queue_manager *dqm)
2211 {
2212 	int i, j;
2213 	struct mqd_manager *mqd_mgr;
2214 
2215 	for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2216 		mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2217 		if (!mqd_mgr) {
2218 			pr_err("mqd manager [%d] initialization failed\n", i);
2219 			goto out_free;
2220 		}
2221 		dqm->mqd_mgrs[i] = mqd_mgr;
2222 	}
2223 
2224 	return 0;
2225 
2226 out_free:
2227 	for (j = 0; j < i; j++) {
2228 		kfree(dqm->mqd_mgrs[j]);
2229 		dqm->mqd_mgrs[j] = NULL;
2230 	}
2231 
2232 	return -ENOMEM;
2233 }
2234 
2235 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
2236 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2237 {
2238 	int retval;
2239 	struct kfd_dev *dev = dqm->dev;
2240 	struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2241 	uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2242 		get_num_all_sdma_engines(dqm) *
2243 		dev->device_info.num_sdma_queues_per_engine +
2244 		dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size;
2245 
2246 	retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2247 		&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2248 		(void *)&(mem_obj->cpu_ptr), false);
2249 
2250 	return retval;
2251 }
2252 
2253 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
2254 {
2255 	struct device_queue_manager *dqm;
2256 
2257 	pr_debug("Loading device queue manager\n");
2258 
2259 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2260 	if (!dqm)
2261 		return NULL;
2262 
2263 	switch (dev->adev->asic_type) {
2264 	/* HWS is not available on Hawaii. */
2265 	case CHIP_HAWAII:
2266 	/* HWS depends on CWSR for timely dequeue. CWSR is not
2267 	 * available on Tonga.
2268 	 *
2269 	 * FIXME: This argument also applies to Kaveri.
2270 	 */
2271 	case CHIP_TONGA:
2272 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2273 		break;
2274 	default:
2275 		dqm->sched_policy = sched_policy;
2276 		break;
2277 	}
2278 
2279 	dqm->dev = dev;
2280 	switch (dqm->sched_policy) {
2281 	case KFD_SCHED_POLICY_HWS:
2282 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2283 		/* initialize dqm for cp scheduling */
2284 		dqm->ops.create_queue = create_queue_cpsch;
2285 		dqm->ops.initialize = initialize_cpsch;
2286 		dqm->ops.start = start_cpsch;
2287 		dqm->ops.stop = stop_cpsch;
2288 		dqm->ops.pre_reset = pre_reset;
2289 		dqm->ops.destroy_queue = destroy_queue_cpsch;
2290 		dqm->ops.update_queue = update_queue;
2291 		dqm->ops.register_process = register_process;
2292 		dqm->ops.unregister_process = unregister_process;
2293 		dqm->ops.uninitialize = uninitialize;
2294 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2295 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2296 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2297 		dqm->ops.process_termination = process_termination_cpsch;
2298 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2299 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2300 		dqm->ops.get_wave_state = get_wave_state;
2301 		dqm->ops.reset_queues = reset_queues_cpsch;
2302 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2303 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2304 		break;
2305 	case KFD_SCHED_POLICY_NO_HWS:
2306 		/* initialize dqm for no cp scheduling */
2307 		dqm->ops.start = start_nocpsch;
2308 		dqm->ops.stop = stop_nocpsch;
2309 		dqm->ops.pre_reset = pre_reset;
2310 		dqm->ops.create_queue = create_queue_nocpsch;
2311 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
2312 		dqm->ops.update_queue = update_queue;
2313 		dqm->ops.register_process = register_process;
2314 		dqm->ops.unregister_process = unregister_process;
2315 		dqm->ops.initialize = initialize_nocpsch;
2316 		dqm->ops.uninitialize = uninitialize;
2317 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2318 		dqm->ops.process_termination = process_termination_nocpsch;
2319 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2320 		dqm->ops.restore_process_queues =
2321 			restore_process_queues_nocpsch;
2322 		dqm->ops.get_wave_state = get_wave_state;
2323 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2324 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2325 		break;
2326 	default:
2327 		pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
2328 		goto out_free;
2329 	}
2330 
2331 	switch (dev->adev->asic_type) {
2332 	case CHIP_CARRIZO:
2333 		device_queue_manager_init_vi(&dqm->asic_ops);
2334 		break;
2335 
2336 	case CHIP_KAVERI:
2337 		device_queue_manager_init_cik(&dqm->asic_ops);
2338 		break;
2339 
2340 	case CHIP_HAWAII:
2341 		device_queue_manager_init_cik_hawaii(&dqm->asic_ops);
2342 		break;
2343 
2344 	case CHIP_TONGA:
2345 	case CHIP_FIJI:
2346 	case CHIP_POLARIS10:
2347 	case CHIP_POLARIS11:
2348 	case CHIP_POLARIS12:
2349 	case CHIP_VEGAM:
2350 		device_queue_manager_init_vi_tonga(&dqm->asic_ops);
2351 		break;
2352 
2353 	default:
2354 		if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
2355 			device_queue_manager_init_v11(&dqm->asic_ops);
2356 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
2357 			device_queue_manager_init_v10_navi10(&dqm->asic_ops);
2358 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
2359 			device_queue_manager_init_v9(&dqm->asic_ops);
2360 		else {
2361 			WARN(1, "Unexpected ASIC family %u",
2362 			     dev->adev->asic_type);
2363 			goto out_free;
2364 		}
2365 	}
2366 
2367 	if (init_mqd_managers(dqm))
2368 		goto out_free;
2369 
2370 	if (allocate_hiq_sdma_mqd(dqm)) {
2371 		pr_err("Failed to allocate hiq sdma mqd trunk buffer\n");
2372 		goto out_free;
2373 	}
2374 
2375 	if (!dqm->ops.initialize(dqm))
2376 		return dqm;
2377 
2378 out_free:
2379 	kfree(dqm);
2380 	return NULL;
2381 }
2382 
2383 static void deallocate_hiq_sdma_mqd(struct kfd_dev *dev,
2384 				    struct kfd_mem_obj *mqd)
2385 {
2386 	WARN(!mqd, "No hiq sdma mqd trunk to free");
2387 
2388 	amdgpu_amdkfd_free_gtt_mem(dev->adev, mqd->gtt_mem);
2389 }
2390 
2391 void device_queue_manager_uninit(struct device_queue_manager *dqm)
2392 {
2393 	dqm->ops.uninitialize(dqm);
2394 	deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
2395 	kfree(dqm);
2396 }
2397 
2398 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid)
2399 {
2400 	struct kfd_process_device *pdd;
2401 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
2402 	int ret = 0;
2403 
2404 	if (!p)
2405 		return -EINVAL;
2406 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
2407 	pdd = kfd_get_process_device_data(dqm->dev, p);
2408 	if (pdd)
2409 		ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
2410 	kfd_unref_process(p);
2411 
2412 	return ret;
2413 }
2414 
2415 static void kfd_process_hw_exception(struct work_struct *work)
2416 {
2417 	struct device_queue_manager *dqm = container_of(work,
2418 			struct device_queue_manager, hw_exception_work);
2419 	amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
2420 }
2421 
2422 #if defined(CONFIG_DEBUG_FS)
2423 
2424 static void seq_reg_dump(struct seq_file *m,
2425 			 uint32_t (*dump)[2], uint32_t n_regs)
2426 {
2427 	uint32_t i, count;
2428 
2429 	for (i = 0, count = 0; i < n_regs; i++) {
2430 		if (count == 0 ||
2431 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
2432 			seq_printf(m, "%s    %08x: %08x",
2433 				   i ? "\n" : "",
2434 				   dump[i][0], dump[i][1]);
2435 			count = 7;
2436 		} else {
2437 			seq_printf(m, " %08x", dump[i][1]);
2438 			count--;
2439 		}
2440 	}
2441 
2442 	seq_puts(m, "\n");
2443 }
2444 
2445 int dqm_debugfs_hqds(struct seq_file *m, void *data)
2446 {
2447 	struct device_queue_manager *dqm = data;
2448 	uint32_t (*dump)[2], n_regs;
2449 	int pipe, queue;
2450 	int r = 0;
2451 
2452 	if (!dqm->sched_running) {
2453 		seq_puts(m, " Device is stopped\n");
2454 		return 0;
2455 	}
2456 
2457 	r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
2458 					KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE,
2459 					&dump, &n_regs);
2460 	if (!r) {
2461 		seq_printf(m, "  HIQ on MEC %d Pipe %d Queue %d\n",
2462 			   KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1,
2463 			   KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm),
2464 			   KFD_CIK_HIQ_QUEUE);
2465 		seq_reg_dump(m, dump, n_regs);
2466 
2467 		kfree(dump);
2468 	}
2469 
2470 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
2471 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
2472 
2473 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
2474 			if (!test_bit(pipe_offset + queue,
2475 				      dqm->dev->shared_resources.cp_queue_bitmap))
2476 				continue;
2477 
2478 			r = dqm->dev->kfd2kgd->hqd_dump(
2479 				dqm->dev->adev, pipe, queue, &dump, &n_regs);
2480 			if (r)
2481 				break;
2482 
2483 			seq_printf(m, "  CP Pipe %d, Queue %d\n",
2484 				  pipe, queue);
2485 			seq_reg_dump(m, dump, n_regs);
2486 
2487 			kfree(dump);
2488 		}
2489 	}
2490 
2491 	for (pipe = 0; pipe < get_num_all_sdma_engines(dqm); pipe++) {
2492 		for (queue = 0;
2493 		     queue < dqm->dev->device_info.num_sdma_queues_per_engine;
2494 		     queue++) {
2495 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
2496 				dqm->dev->adev, pipe, queue, &dump, &n_regs);
2497 			if (r)
2498 				break;
2499 
2500 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
2501 				  pipe, queue);
2502 			seq_reg_dump(m, dump, n_regs);
2503 
2504 			kfree(dump);
2505 		}
2506 	}
2507 
2508 	return r;
2509 }
2510 
2511 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
2512 {
2513 	int r = 0;
2514 
2515 	dqm_lock(dqm);
2516 	r = pm_debugfs_hang_hws(&dqm->packet_mgr);
2517 	if (r) {
2518 		dqm_unlock(dqm);
2519 		return r;
2520 	}
2521 	dqm->active_runlist = true;
2522 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
2523 	dqm_unlock(dqm);
2524 
2525 	return r;
2526 }
2527 
2528 #endif
2529