1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/slab.h>
25 #include <linux/list.h>
26 #include <linux/types.h>
27 #include <linux/printk.h>
28 #include <linux/bitops.h>
29 #include <linux/sched.h>
30 #include "kfd_priv.h"
31 #include "kfd_device_queue_manager.h"
32 #include "kfd_mqd_manager.h"
33 #include "cik_regs.h"
34 #include "kfd_kernel_queue.h"
35 
36 /* Size of the per-pipe EOP queue */
37 #define CIK_HPD_EOP_BYTES_LOG2 11
38 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
39 
40 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
41 					unsigned int pasid, unsigned int vmid);
42 
43 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
44 					struct queue *q,
45 					struct qcm_process_device *qpd);
46 
47 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
48 static int destroy_queues_cpsch(struct device_queue_manager *dqm,
49 				bool preempt_static_queues, bool lock);
50 
51 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
52 					struct queue *q,
53 					struct qcm_process_device *qpd);
54 
55 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
56 				unsigned int sdma_queue_id);
57 
58 static inline
59 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
60 {
61 	if (type == KFD_QUEUE_TYPE_SDMA)
62 		return KFD_MQD_TYPE_SDMA;
63 	return KFD_MQD_TYPE_CP;
64 }
65 
66 unsigned int get_first_pipe(struct device_queue_manager *dqm)
67 {
68 	BUG_ON(!dqm || !dqm->dev);
69 	return dqm->dev->shared_resources.first_compute_pipe;
70 }
71 
72 unsigned int get_pipes_num(struct device_queue_manager *dqm)
73 {
74 	BUG_ON(!dqm || !dqm->dev);
75 	return dqm->dev->shared_resources.compute_pipe_count;
76 }
77 
78 static inline unsigned int get_pipes_num_cpsch(void)
79 {
80 	return PIPE_PER_ME_CP_SCHEDULING;
81 }
82 
83 void program_sh_mem_settings(struct device_queue_manager *dqm,
84 					struct qcm_process_device *qpd)
85 {
86 	return dqm->dev->kfd2kgd->program_sh_mem_settings(
87 						dqm->dev->kgd, qpd->vmid,
88 						qpd->sh_mem_config,
89 						qpd->sh_mem_ape1_base,
90 						qpd->sh_mem_ape1_limit,
91 						qpd->sh_mem_bases);
92 }
93 
94 static int allocate_vmid(struct device_queue_manager *dqm,
95 			struct qcm_process_device *qpd,
96 			struct queue *q)
97 {
98 	int bit, allocated_vmid;
99 
100 	if (dqm->vmid_bitmap == 0)
101 		return -ENOMEM;
102 
103 	bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
104 	clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
105 
106 	/* Kaveri kfd vmid's starts from vmid 8 */
107 	allocated_vmid = bit + KFD_VMID_START_OFFSET;
108 	pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
109 	qpd->vmid = allocated_vmid;
110 	q->properties.vmid = allocated_vmid;
111 
112 	set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
113 	program_sh_mem_settings(dqm, qpd);
114 
115 	return 0;
116 }
117 
118 static void deallocate_vmid(struct device_queue_manager *dqm,
119 				struct qcm_process_device *qpd,
120 				struct queue *q)
121 {
122 	int bit = qpd->vmid - KFD_VMID_START_OFFSET;
123 
124 	/* Release the vmid mapping */
125 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
126 
127 	set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
128 	qpd->vmid = 0;
129 	q->properties.vmid = 0;
130 }
131 
132 static int create_queue_nocpsch(struct device_queue_manager *dqm,
133 				struct queue *q,
134 				struct qcm_process_device *qpd,
135 				int *allocated_vmid)
136 {
137 	int retval;
138 
139 	BUG_ON(!dqm || !q || !qpd || !allocated_vmid);
140 
141 	pr_debug("kfd: In func %s\n", __func__);
142 	print_queue(q);
143 
144 	mutex_lock(&dqm->lock);
145 
146 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
147 		pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
148 				dqm->total_queue_count);
149 		mutex_unlock(&dqm->lock);
150 		return -EPERM;
151 	}
152 
153 	if (list_empty(&qpd->queues_list)) {
154 		retval = allocate_vmid(dqm, qpd, q);
155 		if (retval != 0) {
156 			mutex_unlock(&dqm->lock);
157 			return retval;
158 		}
159 	}
160 	*allocated_vmid = qpd->vmid;
161 	q->properties.vmid = qpd->vmid;
162 
163 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
164 		retval = create_compute_queue_nocpsch(dqm, q, qpd);
165 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
166 		retval = create_sdma_queue_nocpsch(dqm, q, qpd);
167 
168 	if (retval != 0) {
169 		if (list_empty(&qpd->queues_list)) {
170 			deallocate_vmid(dqm, qpd, q);
171 			*allocated_vmid = 0;
172 		}
173 		mutex_unlock(&dqm->lock);
174 		return retval;
175 	}
176 
177 	list_add(&q->list, &qpd->queues_list);
178 	if (q->properties.is_active)
179 		dqm->queue_count++;
180 
181 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
182 		dqm->sdma_queue_count++;
183 
184 	/*
185 	 * Unconditionally increment this counter, regardless of the queue's
186 	 * type or whether the queue is active.
187 	 */
188 	dqm->total_queue_count++;
189 	pr_debug("Total of %d queues are accountable so far\n",
190 			dqm->total_queue_count);
191 
192 	mutex_unlock(&dqm->lock);
193 	return 0;
194 }
195 
196 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
197 {
198 	bool set;
199 	int pipe, bit, i;
200 
201 	set = false;
202 
203 	for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_num(dqm);
204 			pipe = ((pipe + 1) % get_pipes_num(dqm)), ++i) {
205 		if (dqm->allocated_queues[pipe] != 0) {
206 			bit = find_first_bit(
207 				(unsigned long *)&dqm->allocated_queues[pipe],
208 				QUEUES_PER_PIPE);
209 
210 			clear_bit(bit,
211 				(unsigned long *)&dqm->allocated_queues[pipe]);
212 			q->pipe = pipe;
213 			q->queue = bit;
214 			set = true;
215 			break;
216 		}
217 	}
218 
219 	if (!set)
220 		return -EBUSY;
221 
222 	pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
223 				__func__, q->pipe, q->queue);
224 	/* horizontal hqd allocation */
225 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);
226 
227 	return 0;
228 }
229 
230 static inline void deallocate_hqd(struct device_queue_manager *dqm,
231 				struct queue *q)
232 {
233 	set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
234 }
235 
236 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
237 					struct queue *q,
238 					struct qcm_process_device *qpd)
239 {
240 	int retval;
241 	struct mqd_manager *mqd;
242 
243 	BUG_ON(!dqm || !q || !qpd);
244 
245 	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
246 	if (mqd == NULL)
247 		return -ENOMEM;
248 
249 	retval = allocate_hqd(dqm, q);
250 	if (retval != 0)
251 		return retval;
252 
253 	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
254 				&q->gart_mqd_addr, &q->properties);
255 	if (retval != 0) {
256 		deallocate_hqd(dqm, q);
257 		return retval;
258 	}
259 
260 	pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
261 			q->pipe,
262 			q->queue);
263 
264 	retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
265 			q->queue, (uint32_t __user *) q->properties.write_ptr);
266 	if (retval != 0) {
267 		deallocate_hqd(dqm, q);
268 		mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
269 		return retval;
270 	}
271 
272 	return 0;
273 }
274 
275 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
276 				struct qcm_process_device *qpd,
277 				struct queue *q)
278 {
279 	int retval;
280 	struct mqd_manager *mqd;
281 
282 	BUG_ON(!dqm || !q || !q->mqd || !qpd);
283 
284 	retval = 0;
285 
286 	pr_debug("kfd: In Func %s\n", __func__);
287 
288 	mutex_lock(&dqm->lock);
289 
290 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
291 		mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
292 		if (mqd == NULL) {
293 			retval = -ENOMEM;
294 			goto out;
295 		}
296 		deallocate_hqd(dqm, q);
297 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
298 		mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
299 		if (mqd == NULL) {
300 			retval = -ENOMEM;
301 			goto out;
302 		}
303 		dqm->sdma_queue_count--;
304 		deallocate_sdma_queue(dqm, q->sdma_id);
305 	} else {
306 		pr_debug("q->properties.type is invalid (%d)\n",
307 				q->properties.type);
308 		retval = -EINVAL;
309 		goto out;
310 	}
311 
312 	retval = mqd->destroy_mqd(mqd, q->mqd,
313 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
314 				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
315 				q->pipe, q->queue);
316 
317 	if (retval != 0)
318 		goto out;
319 
320 	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
321 
322 	list_del(&q->list);
323 	if (list_empty(&qpd->queues_list))
324 		deallocate_vmid(dqm, qpd, q);
325 	if (q->properties.is_active)
326 		dqm->queue_count--;
327 
328 	/*
329 	 * Unconditionally decrement this counter, regardless of the queue's
330 	 * type
331 	 */
332 	dqm->total_queue_count--;
333 	pr_debug("Total of %d queues are accountable so far\n",
334 			dqm->total_queue_count);
335 
336 out:
337 	mutex_unlock(&dqm->lock);
338 	return retval;
339 }
340 
341 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
342 {
343 	int retval;
344 	struct mqd_manager *mqd;
345 	bool prev_active = false;
346 
347 	BUG_ON(!dqm || !q || !q->mqd);
348 
349 	mutex_lock(&dqm->lock);
350 	mqd = dqm->ops.get_mqd_manager(dqm,
351 			get_mqd_type_from_queue_type(q->properties.type));
352 	if (mqd == NULL) {
353 		mutex_unlock(&dqm->lock);
354 		return -ENOMEM;
355 	}
356 
357 	if (q->properties.is_active)
358 		prev_active = true;
359 
360 	/*
361 	 *
362 	 * check active state vs. the previous state
363 	 * and modify counter accordingly
364 	 */
365 	retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
366 	if ((q->properties.is_active) && (!prev_active))
367 		dqm->queue_count++;
368 	else if ((!q->properties.is_active) && (prev_active))
369 		dqm->queue_count--;
370 
371 	if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
372 		retval = execute_queues_cpsch(dqm, false);
373 
374 	mutex_unlock(&dqm->lock);
375 	return retval;
376 }
377 
378 static struct mqd_manager *get_mqd_manager_nocpsch(
379 		struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
380 {
381 	struct mqd_manager *mqd;
382 
383 	BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);
384 
385 	pr_debug("kfd: In func %s mqd type %d\n", __func__, type);
386 
387 	mqd = dqm->mqds[type];
388 	if (!mqd) {
389 		mqd = mqd_manager_init(type, dqm->dev);
390 		if (mqd == NULL)
391 			pr_err("kfd: mqd manager is NULL");
392 		dqm->mqds[type] = mqd;
393 	}
394 
395 	return mqd;
396 }
397 
398 static int register_process_nocpsch(struct device_queue_manager *dqm,
399 					struct qcm_process_device *qpd)
400 {
401 	struct device_process_node *n;
402 	int retval;
403 
404 	BUG_ON(!dqm || !qpd);
405 
406 	pr_debug("kfd: In func %s\n", __func__);
407 
408 	n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
409 	if (!n)
410 		return -ENOMEM;
411 
412 	n->qpd = qpd;
413 
414 	mutex_lock(&dqm->lock);
415 	list_add(&n->list, &dqm->queues);
416 
417 	retval = dqm->ops_asic_specific.register_process(dqm, qpd);
418 
419 	dqm->processes_count++;
420 
421 	mutex_unlock(&dqm->lock);
422 
423 	return retval;
424 }
425 
426 static int unregister_process_nocpsch(struct device_queue_manager *dqm,
427 					struct qcm_process_device *qpd)
428 {
429 	int retval;
430 	struct device_process_node *cur, *next;
431 
432 	BUG_ON(!dqm || !qpd);
433 
434 	pr_debug("In func %s\n", __func__);
435 
436 	pr_debug("qpd->queues_list is %s\n",
437 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
438 
439 	retval = 0;
440 	mutex_lock(&dqm->lock);
441 
442 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
443 		if (qpd == cur->qpd) {
444 			list_del(&cur->list);
445 			kfree(cur);
446 			dqm->processes_count--;
447 			goto out;
448 		}
449 	}
450 	/* qpd not found in dqm list */
451 	retval = 1;
452 out:
453 	mutex_unlock(&dqm->lock);
454 	return retval;
455 }
456 
457 static int
458 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
459 			unsigned int vmid)
460 {
461 	uint32_t pasid_mapping;
462 
463 	pasid_mapping = (pasid == 0) ? 0 :
464 		(uint32_t)pasid |
465 		ATC_VMID_PASID_MAPPING_VALID;
466 
467 	return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
468 						dqm->dev->kgd, pasid_mapping,
469 						vmid);
470 }
471 
472 int init_pipelines(struct device_queue_manager *dqm,
473 			unsigned int pipes_num, unsigned int first_pipe)
474 {
475 	void *hpdptr;
476 	struct mqd_manager *mqd;
477 	unsigned int i, err, inx;
478 	uint64_t pipe_hpd_addr;
479 
480 	BUG_ON(!dqm || !dqm->dev);
481 
482 	pr_debug("kfd: In func %s\n", __func__);
483 
484 	/*
485 	 * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
486 	 * The driver never accesses this memory after zeroing it.
487 	 * It doesn't even have to be saved/restored on suspend/resume
488 	 * because it contains no data when there are no active queues.
489 	 */
490 
491 	err = kfd_gtt_sa_allocate(dqm->dev, CIK_HPD_EOP_BYTES * pipes_num,
492 					&dqm->pipeline_mem);
493 
494 	if (err) {
495 		pr_err("kfd: error allocate vidmem num pipes: %d\n",
496 			pipes_num);
497 		return -ENOMEM;
498 	}
499 
500 	hpdptr = dqm->pipeline_mem->cpu_ptr;
501 	dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;
502 
503 	memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);
504 
505 	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
506 	if (mqd == NULL) {
507 		kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
508 		return -ENOMEM;
509 	}
510 
511 	for (i = 0; i < pipes_num; i++) {
512 		inx = i + first_pipe;
513 		/*
514 		 * HPD buffer on GTT is allocated by amdkfd, no need to waste
515 		 * space in GTT for pipelines we don't initialize
516 		 */
517 		pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
518 		pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
519 		/* = log2(bytes/4)-1 */
520 		dqm->dev->kfd2kgd->init_pipeline(dqm->dev->kgd, inx,
521 				CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
522 	}
523 
524 	return 0;
525 }
526 
527 static void init_interrupts(struct device_queue_manager *dqm)
528 {
529 	unsigned int i;
530 
531 	BUG_ON(dqm == NULL);
532 
533 	for (i = 0 ; i < get_pipes_num(dqm) ; i++)
534 		dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd,
535 				i + get_first_pipe(dqm));
536 }
537 
538 static int init_scheduler(struct device_queue_manager *dqm)
539 {
540 	int retval;
541 
542 	BUG_ON(!dqm);
543 
544 	pr_debug("kfd: In %s\n", __func__);
545 
546 	retval = init_pipelines(dqm, get_pipes_num(dqm), get_first_pipe(dqm));
547 	return retval;
548 }
549 
550 static int initialize_nocpsch(struct device_queue_manager *dqm)
551 {
552 	int i;
553 
554 	BUG_ON(!dqm);
555 
556 	pr_debug("kfd: In func %s num of pipes: %d\n",
557 			__func__, get_pipes_num(dqm));
558 
559 	mutex_init(&dqm->lock);
560 	INIT_LIST_HEAD(&dqm->queues);
561 	dqm->queue_count = dqm->next_pipe_to_allocate = 0;
562 	dqm->sdma_queue_count = 0;
563 	dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
564 					sizeof(unsigned int), GFP_KERNEL);
565 	if (!dqm->allocated_queues) {
566 		mutex_destroy(&dqm->lock);
567 		return -ENOMEM;
568 	}
569 
570 	for (i = 0; i < get_pipes_num(dqm); i++)
571 		dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;
572 
573 	dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
574 	dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
575 
576 	init_scheduler(dqm);
577 	return 0;
578 }
579 
580 static void uninitialize_nocpsch(struct device_queue_manager *dqm)
581 {
582 	int i;
583 
584 	BUG_ON(!dqm);
585 
586 	BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
587 
588 	kfree(dqm->allocated_queues);
589 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
590 		kfree(dqm->mqds[i]);
591 	mutex_destroy(&dqm->lock);
592 	kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
593 }
594 
595 static int start_nocpsch(struct device_queue_manager *dqm)
596 {
597 	init_interrupts(dqm);
598 	return 0;
599 }
600 
601 static int stop_nocpsch(struct device_queue_manager *dqm)
602 {
603 	return 0;
604 }
605 
606 static int allocate_sdma_queue(struct device_queue_manager *dqm,
607 				unsigned int *sdma_queue_id)
608 {
609 	int bit;
610 
611 	if (dqm->sdma_bitmap == 0)
612 		return -ENOMEM;
613 
614 	bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap,
615 				CIK_SDMA_QUEUES);
616 
617 	clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap);
618 	*sdma_queue_id = bit;
619 
620 	return 0;
621 }
622 
623 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
624 				unsigned int sdma_queue_id)
625 {
626 	if (sdma_queue_id >= CIK_SDMA_QUEUES)
627 		return;
628 	set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap);
629 }
630 
631 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
632 					struct queue *q,
633 					struct qcm_process_device *qpd)
634 {
635 	struct mqd_manager *mqd;
636 	int retval;
637 
638 	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
639 	if (!mqd)
640 		return -ENOMEM;
641 
642 	retval = allocate_sdma_queue(dqm, &q->sdma_id);
643 	if (retval != 0)
644 		return retval;
645 
646 	q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
647 	q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM;
648 
649 	pr_debug("kfd: sdma id is:    %d\n", q->sdma_id);
650 	pr_debug("     sdma queue id: %d\n", q->properties.sdma_queue_id);
651 	pr_debug("     sdma engine id: %d\n", q->properties.sdma_engine_id);
652 
653 	dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd);
654 	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
655 				&q->gart_mqd_addr, &q->properties);
656 	if (retval != 0) {
657 		deallocate_sdma_queue(dqm, q->sdma_id);
658 		return retval;
659 	}
660 
661 	retval = mqd->load_mqd(mqd, q->mqd, 0,
662 				0, NULL);
663 	if (retval != 0) {
664 		deallocate_sdma_queue(dqm, q->sdma_id);
665 		mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
666 		return retval;
667 	}
668 
669 	return 0;
670 }
671 
672 /*
673  * Device Queue Manager implementation for cp scheduler
674  */
675 
676 static int set_sched_resources(struct device_queue_manager *dqm)
677 {
678 	struct scheduling_resources res;
679 	unsigned int queue_num, queue_mask;
680 
681 	BUG_ON(!dqm);
682 
683 	pr_debug("kfd: In func %s\n", __func__);
684 
685 	queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
686 	queue_mask = (1 << queue_num) - 1;
687 	res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
688 	res.vmid_mask <<= KFD_VMID_START_OFFSET;
689 	res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
690 	res.gws_mask = res.oac_mask = res.gds_heap_base =
691 						res.gds_heap_size = 0;
692 
693 	pr_debug("kfd: scheduling resources:\n"
694 			"      vmid mask: 0x%8X\n"
695 			"      queue mask: 0x%8llX\n",
696 			res.vmid_mask, res.queue_mask);
697 
698 	return pm_send_set_resources(&dqm->packets, &res);
699 }
700 
701 static int initialize_cpsch(struct device_queue_manager *dqm)
702 {
703 	int retval;
704 
705 	BUG_ON(!dqm);
706 
707 	pr_debug("kfd: In func %s num of pipes: %d\n",
708 			__func__, get_pipes_num_cpsch());
709 
710 	mutex_init(&dqm->lock);
711 	INIT_LIST_HEAD(&dqm->queues);
712 	dqm->queue_count = dqm->processes_count = 0;
713 	dqm->sdma_queue_count = 0;
714 	dqm->active_runlist = false;
715 	retval = dqm->ops_asic_specific.initialize(dqm);
716 	if (retval != 0)
717 		goto fail_init_pipelines;
718 
719 	return 0;
720 
721 fail_init_pipelines:
722 	mutex_destroy(&dqm->lock);
723 	return retval;
724 }
725 
726 static int start_cpsch(struct device_queue_manager *dqm)
727 {
728 	struct device_process_node *node;
729 	int retval;
730 
731 	BUG_ON(!dqm);
732 
733 	retval = 0;
734 
735 	retval = pm_init(&dqm->packets, dqm);
736 	if (retval != 0)
737 		goto fail_packet_manager_init;
738 
739 	retval = set_sched_resources(dqm);
740 	if (retval != 0)
741 		goto fail_set_sched_resources;
742 
743 	pr_debug("kfd: allocating fence memory\n");
744 
745 	/* allocate fence memory on the gart */
746 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
747 					&dqm->fence_mem);
748 
749 	if (retval != 0)
750 		goto fail_allocate_vidmem;
751 
752 	dqm->fence_addr = dqm->fence_mem->cpu_ptr;
753 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
754 
755 	init_interrupts(dqm);
756 
757 	list_for_each_entry(node, &dqm->queues, list)
758 		if (node->qpd->pqm->process && dqm->dev)
759 			kfd_bind_process_to_device(dqm->dev,
760 						node->qpd->pqm->process);
761 
762 	execute_queues_cpsch(dqm, true);
763 
764 	return 0;
765 fail_allocate_vidmem:
766 fail_set_sched_resources:
767 	pm_uninit(&dqm->packets);
768 fail_packet_manager_init:
769 	return retval;
770 }
771 
772 static int stop_cpsch(struct device_queue_manager *dqm)
773 {
774 	struct device_process_node *node;
775 	struct kfd_process_device *pdd;
776 
777 	BUG_ON(!dqm);
778 
779 	destroy_queues_cpsch(dqm, true, true);
780 
781 	list_for_each_entry(node, &dqm->queues, list) {
782 		pdd = qpd_to_pdd(node->qpd);
783 		pdd->bound = false;
784 	}
785 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
786 	pm_uninit(&dqm->packets);
787 
788 	return 0;
789 }
790 
791 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
792 					struct kernel_queue *kq,
793 					struct qcm_process_device *qpd)
794 {
795 	BUG_ON(!dqm || !kq || !qpd);
796 
797 	pr_debug("kfd: In func %s\n", __func__);
798 
799 	mutex_lock(&dqm->lock);
800 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
801 		pr_warn("amdkfd: Can't create new kernel queue because %d queues were already created\n",
802 				dqm->total_queue_count);
803 		mutex_unlock(&dqm->lock);
804 		return -EPERM;
805 	}
806 
807 	/*
808 	 * Unconditionally increment this counter, regardless of the queue's
809 	 * type or whether the queue is active.
810 	 */
811 	dqm->total_queue_count++;
812 	pr_debug("Total of %d queues are accountable so far\n",
813 			dqm->total_queue_count);
814 
815 	list_add(&kq->list, &qpd->priv_queue_list);
816 	dqm->queue_count++;
817 	qpd->is_debug = true;
818 	execute_queues_cpsch(dqm, false);
819 	mutex_unlock(&dqm->lock);
820 
821 	return 0;
822 }
823 
824 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
825 					struct kernel_queue *kq,
826 					struct qcm_process_device *qpd)
827 {
828 	BUG_ON(!dqm || !kq);
829 
830 	pr_debug("kfd: In %s\n", __func__);
831 
832 	mutex_lock(&dqm->lock);
833 	/* here we actually preempt the DIQ */
834 	destroy_queues_cpsch(dqm, true, false);
835 	list_del(&kq->list);
836 	dqm->queue_count--;
837 	qpd->is_debug = false;
838 	execute_queues_cpsch(dqm, false);
839 	/*
840 	 * Unconditionally decrement this counter, regardless of the queue's
841 	 * type.
842 	 */
843 	dqm->total_queue_count--;
844 	pr_debug("Total of %d queues are accountable so far\n",
845 			dqm->total_queue_count);
846 	mutex_unlock(&dqm->lock);
847 }
848 
849 static void select_sdma_engine_id(struct queue *q)
850 {
851 	static int sdma_id;
852 
853 	q->sdma_id = sdma_id;
854 	sdma_id = (sdma_id + 1) % 2;
855 }
856 
857 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
858 			struct qcm_process_device *qpd, int *allocate_vmid)
859 {
860 	int retval;
861 	struct mqd_manager *mqd;
862 
863 	BUG_ON(!dqm || !q || !qpd);
864 
865 	retval = 0;
866 
867 	if (allocate_vmid)
868 		*allocate_vmid = 0;
869 
870 	mutex_lock(&dqm->lock);
871 
872 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
873 		pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
874 				dqm->total_queue_count);
875 		retval = -EPERM;
876 		goto out;
877 	}
878 
879 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
880 		select_sdma_engine_id(q);
881 
882 	mqd = dqm->ops.get_mqd_manager(dqm,
883 			get_mqd_type_from_queue_type(q->properties.type));
884 
885 	if (mqd == NULL) {
886 		mutex_unlock(&dqm->lock);
887 		return -ENOMEM;
888 	}
889 
890 	dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd);
891 	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
892 				&q->gart_mqd_addr, &q->properties);
893 	if (retval != 0)
894 		goto out;
895 
896 	list_add(&q->list, &qpd->queues_list);
897 	if (q->properties.is_active) {
898 		dqm->queue_count++;
899 		retval = execute_queues_cpsch(dqm, false);
900 	}
901 
902 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
903 			dqm->sdma_queue_count++;
904 	/*
905 	 * Unconditionally increment this counter, regardless of the queue's
906 	 * type or whether the queue is active.
907 	 */
908 	dqm->total_queue_count++;
909 
910 	pr_debug("Total of %d queues are accountable so far\n",
911 			dqm->total_queue_count);
912 
913 out:
914 	mutex_unlock(&dqm->lock);
915 	return retval;
916 }
917 
918 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
919 				unsigned int fence_value,
920 				unsigned long timeout)
921 {
922 	BUG_ON(!fence_addr);
923 	timeout += jiffies;
924 
925 	while (*fence_addr != fence_value) {
926 		if (time_after(jiffies, timeout)) {
927 			pr_err("kfd: qcm fence wait loop timeout expired\n");
928 			return -ETIME;
929 		}
930 		schedule();
931 	}
932 
933 	return 0;
934 }
935 
936 static int destroy_sdma_queues(struct device_queue_manager *dqm,
937 				unsigned int sdma_engine)
938 {
939 	return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
940 			KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES, 0, false,
941 			sdma_engine);
942 }
943 
944 static int destroy_queues_cpsch(struct device_queue_manager *dqm,
945 				bool preempt_static_queues, bool lock)
946 {
947 	int retval;
948 	enum kfd_preempt_type_filter preempt_type;
949 	struct kfd_process_device *pdd;
950 
951 	BUG_ON(!dqm);
952 
953 	retval = 0;
954 
955 	if (lock)
956 		mutex_lock(&dqm->lock);
957 	if (!dqm->active_runlist)
958 		goto out;
959 
960 	pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n",
961 		dqm->sdma_queue_count);
962 
963 	if (dqm->sdma_queue_count > 0) {
964 		destroy_sdma_queues(dqm, 0);
965 		destroy_sdma_queues(dqm, 1);
966 	}
967 
968 	preempt_type = preempt_static_queues ?
969 			KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES :
970 			KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES;
971 
972 	retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
973 			preempt_type, 0, false, 0);
974 	if (retval != 0)
975 		goto out;
976 
977 	*dqm->fence_addr = KFD_FENCE_INIT;
978 	pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
979 				KFD_FENCE_COMPLETED);
980 	/* should be timed out */
981 	retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
982 				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
983 	if (retval != 0) {
984 		pdd = kfd_get_process_device_data(dqm->dev,
985 				kfd_get_process(current));
986 		pdd->reset_wavefronts = true;
987 		goto out;
988 	}
989 	pm_release_ib(&dqm->packets);
990 	dqm->active_runlist = false;
991 
992 out:
993 	if (lock)
994 		mutex_unlock(&dqm->lock);
995 	return retval;
996 }
997 
998 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
999 {
1000 	int retval;
1001 
1002 	BUG_ON(!dqm);
1003 
1004 	if (lock)
1005 		mutex_lock(&dqm->lock);
1006 
1007 	retval = destroy_queues_cpsch(dqm, false, false);
1008 	if (retval != 0) {
1009 		pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
1010 		goto out;
1011 	}
1012 
1013 	if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
1014 		retval = 0;
1015 		goto out;
1016 	}
1017 
1018 	if (dqm->active_runlist) {
1019 		retval = 0;
1020 		goto out;
1021 	}
1022 
1023 	retval = pm_send_runlist(&dqm->packets, &dqm->queues);
1024 	if (retval != 0) {
1025 		pr_err("kfd: failed to execute runlist");
1026 		goto out;
1027 	}
1028 	dqm->active_runlist = true;
1029 
1030 out:
1031 	if (lock)
1032 		mutex_unlock(&dqm->lock);
1033 	return retval;
1034 }
1035 
1036 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1037 				struct qcm_process_device *qpd,
1038 				struct queue *q)
1039 {
1040 	int retval;
1041 	struct mqd_manager *mqd;
1042 	bool preempt_all_queues;
1043 
1044 	BUG_ON(!dqm || !qpd || !q);
1045 
1046 	preempt_all_queues = false;
1047 
1048 	retval = 0;
1049 
1050 	/* remove queue from list to prevent rescheduling after preemption */
1051 	mutex_lock(&dqm->lock);
1052 
1053 	if (qpd->is_debug) {
1054 		/*
1055 		 * error, currently we do not allow to destroy a queue
1056 		 * of a currently debugged process
1057 		 */
1058 		retval = -EBUSY;
1059 		goto failed_try_destroy_debugged_queue;
1060 
1061 	}
1062 
1063 	mqd = dqm->ops.get_mqd_manager(dqm,
1064 			get_mqd_type_from_queue_type(q->properties.type));
1065 	if (!mqd) {
1066 		retval = -ENOMEM;
1067 		goto failed;
1068 	}
1069 
1070 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1071 		dqm->sdma_queue_count--;
1072 
1073 	list_del(&q->list);
1074 	if (q->properties.is_active)
1075 		dqm->queue_count--;
1076 
1077 	execute_queues_cpsch(dqm, false);
1078 
1079 	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
1080 
1081 	/*
1082 	 * Unconditionally decrement this counter, regardless of the queue's
1083 	 * type
1084 	 */
1085 	dqm->total_queue_count--;
1086 	pr_debug("Total of %d queues are accountable so far\n",
1087 			dqm->total_queue_count);
1088 
1089 	mutex_unlock(&dqm->lock);
1090 
1091 	return 0;
1092 
1093 failed:
1094 failed_try_destroy_debugged_queue:
1095 
1096 	mutex_unlock(&dqm->lock);
1097 	return retval;
1098 }
1099 
1100 /*
1101  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1102  * stay in user mode.
1103  */
1104 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1105 /* APE1 limit is inclusive and 64K aligned. */
1106 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1107 
1108 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1109 				   struct qcm_process_device *qpd,
1110 				   enum cache_policy default_policy,
1111 				   enum cache_policy alternate_policy,
1112 				   void __user *alternate_aperture_base,
1113 				   uint64_t alternate_aperture_size)
1114 {
1115 	bool retval;
1116 
1117 	pr_debug("kfd: In func %s\n", __func__);
1118 
1119 	mutex_lock(&dqm->lock);
1120 
1121 	if (alternate_aperture_size == 0) {
1122 		/* base > limit disables APE1 */
1123 		qpd->sh_mem_ape1_base = 1;
1124 		qpd->sh_mem_ape1_limit = 0;
1125 	} else {
1126 		/*
1127 		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1128 		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
1129 		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1130 		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1131 		 * Verify that the base and size parameters can be
1132 		 * represented in this format and convert them.
1133 		 * Additionally restrict APE1 to user-mode addresses.
1134 		 */
1135 
1136 		uint64_t base = (uintptr_t)alternate_aperture_base;
1137 		uint64_t limit = base + alternate_aperture_size - 1;
1138 
1139 		if (limit <= base)
1140 			goto out;
1141 
1142 		if ((base & APE1_FIXED_BITS_MASK) != 0)
1143 			goto out;
1144 
1145 		if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
1146 			goto out;
1147 
1148 		qpd->sh_mem_ape1_base = base >> 16;
1149 		qpd->sh_mem_ape1_limit = limit >> 16;
1150 	}
1151 
1152 	retval = dqm->ops_asic_specific.set_cache_memory_policy(
1153 			dqm,
1154 			qpd,
1155 			default_policy,
1156 			alternate_policy,
1157 			alternate_aperture_base,
1158 			alternate_aperture_size);
1159 
1160 	if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1161 		program_sh_mem_settings(dqm, qpd);
1162 
1163 	pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1164 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1165 		qpd->sh_mem_ape1_limit);
1166 
1167 	mutex_unlock(&dqm->lock);
1168 	return retval;
1169 
1170 out:
1171 	mutex_unlock(&dqm->lock);
1172 	return false;
1173 }
1174 
1175 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1176 {
1177 	struct device_queue_manager *dqm;
1178 
1179 	BUG_ON(!dev);
1180 
1181 	pr_debug("kfd: loading device queue manager\n");
1182 
1183 	dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
1184 	if (!dqm)
1185 		return NULL;
1186 
1187 	dqm->dev = dev;
1188 	switch (sched_policy) {
1189 	case KFD_SCHED_POLICY_HWS:
1190 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1191 		/* initialize dqm for cp scheduling */
1192 		dqm->ops.create_queue = create_queue_cpsch;
1193 		dqm->ops.initialize = initialize_cpsch;
1194 		dqm->ops.start = start_cpsch;
1195 		dqm->ops.stop = stop_cpsch;
1196 		dqm->ops.destroy_queue = destroy_queue_cpsch;
1197 		dqm->ops.update_queue = update_queue;
1198 		dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1199 		dqm->ops.register_process = register_process_nocpsch;
1200 		dqm->ops.unregister_process = unregister_process_nocpsch;
1201 		dqm->ops.uninitialize = uninitialize_nocpsch;
1202 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1203 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1204 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1205 		break;
1206 	case KFD_SCHED_POLICY_NO_HWS:
1207 		/* initialize dqm for no cp scheduling */
1208 		dqm->ops.start = start_nocpsch;
1209 		dqm->ops.stop = stop_nocpsch;
1210 		dqm->ops.create_queue = create_queue_nocpsch;
1211 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
1212 		dqm->ops.update_queue = update_queue;
1213 		dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1214 		dqm->ops.register_process = register_process_nocpsch;
1215 		dqm->ops.unregister_process = unregister_process_nocpsch;
1216 		dqm->ops.initialize = initialize_nocpsch;
1217 		dqm->ops.uninitialize = uninitialize_nocpsch;
1218 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1219 		break;
1220 	default:
1221 		BUG();
1222 		break;
1223 	}
1224 
1225 	switch (dev->device_info->asic_family) {
1226 	case CHIP_CARRIZO:
1227 		device_queue_manager_init_vi(&dqm->ops_asic_specific);
1228 		break;
1229 
1230 	case CHIP_KAVERI:
1231 		device_queue_manager_init_cik(&dqm->ops_asic_specific);
1232 		break;
1233 	}
1234 
1235 	if (dqm->ops.initialize(dqm) != 0) {
1236 		kfree(dqm);
1237 		return NULL;
1238 	}
1239 
1240 	return dqm;
1241 }
1242 
1243 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1244 {
1245 	BUG_ON(!dqm);
1246 
1247 	dqm->ops.uninitialize(dqm);
1248 	kfree(dqm);
1249 }
1250