1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/ratelimit.h>
25 #include <linux/printk.h>
26 #include <linux/slab.h>
27 #include <linux/list.h>
28 #include <linux/types.h>
29 #include <linux/bitops.h>
30 #include <linux/sched.h>
31 #include "kfd_priv.h"
32 #include "kfd_device_queue_manager.h"
33 #include "kfd_mqd_manager.h"
34 #include "cik_regs.h"
35 #include "kfd_kernel_queue.h"
36 
37 /* Size of the per-pipe EOP queue */
38 #define CIK_HPD_EOP_BYTES_LOG2 11
39 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
40 
41 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
42 					unsigned int pasid, unsigned int vmid);
43 
44 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
45 					struct queue *q,
46 					struct qcm_process_device *qpd);
47 
48 static int execute_queues_cpsch(struct device_queue_manager *dqm,
49 				enum kfd_unmap_queues_filter filter,
50 				uint32_t filter_param);
51 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
52 				enum kfd_unmap_queues_filter filter,
53 				uint32_t filter_param);
54 
55 static int map_queues_cpsch(struct device_queue_manager *dqm);
56 
57 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
58 					struct queue *q,
59 					struct qcm_process_device *qpd);
60 
61 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
62 				unsigned int sdma_queue_id);
63 
64 static void kfd_process_hw_exception(struct work_struct *work);
65 
66 static inline
67 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
68 {
69 	if (type == KFD_QUEUE_TYPE_SDMA)
70 		return KFD_MQD_TYPE_SDMA;
71 	return KFD_MQD_TYPE_CP;
72 }
73 
74 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
75 {
76 	int i;
77 	int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec
78 		+ pipe * dqm->dev->shared_resources.num_queue_per_pipe;
79 
80 	/* queue is available for KFD usage if bit is 1 */
81 	for (i = 0; i <  dqm->dev->shared_resources.num_queue_per_pipe; ++i)
82 		if (test_bit(pipe_offset + i,
83 			      dqm->dev->shared_resources.queue_bitmap))
84 			return true;
85 	return false;
86 }
87 
88 unsigned int get_queues_num(struct device_queue_manager *dqm)
89 {
90 	return bitmap_weight(dqm->dev->shared_resources.queue_bitmap,
91 				KGD_MAX_QUEUES);
92 }
93 
94 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
95 {
96 	return dqm->dev->shared_resources.num_queue_per_pipe;
97 }
98 
99 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
100 {
101 	return dqm->dev->shared_resources.num_pipe_per_mec;
102 }
103 
104 static unsigned int get_num_sdma_engines(struct device_queue_manager *dqm)
105 {
106 	return dqm->dev->device_info->num_sdma_engines;
107 }
108 
109 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
110 {
111 	return dqm->dev->device_info->num_sdma_engines
112 			* dqm->dev->device_info->num_sdma_queues_per_engine;
113 }
114 
115 void program_sh_mem_settings(struct device_queue_manager *dqm,
116 					struct qcm_process_device *qpd)
117 {
118 	return dqm->dev->kfd2kgd->program_sh_mem_settings(
119 						dqm->dev->kgd, qpd->vmid,
120 						qpd->sh_mem_config,
121 						qpd->sh_mem_ape1_base,
122 						qpd->sh_mem_ape1_limit,
123 						qpd->sh_mem_bases);
124 }
125 
126 static int allocate_doorbell(struct qcm_process_device *qpd, struct queue *q)
127 {
128 	struct kfd_dev *dev = qpd->dqm->dev;
129 
130 	if (!KFD_IS_SOC15(dev->device_info->asic_family)) {
131 		/* On pre-SOC15 chips we need to use the queue ID to
132 		 * preserve the user mode ABI.
133 		 */
134 		q->doorbell_id = q->properties.queue_id;
135 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
136 		/* For SDMA queues on SOC15, use static doorbell
137 		 * assignments based on the engine and queue.
138 		 */
139 		q->doorbell_id = dev->shared_resources.sdma_doorbell
140 			[q->properties.sdma_engine_id]
141 			[q->properties.sdma_queue_id];
142 	} else {
143 		/* For CP queues on SOC15 reserve a free doorbell ID */
144 		unsigned int found;
145 
146 		found = find_first_zero_bit(qpd->doorbell_bitmap,
147 					    KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
148 		if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
149 			pr_debug("No doorbells available");
150 			return -EBUSY;
151 		}
152 		set_bit(found, qpd->doorbell_bitmap);
153 		q->doorbell_id = found;
154 	}
155 
156 	q->properties.doorbell_off =
157 		kfd_doorbell_id_to_offset(dev, q->process,
158 					  q->doorbell_id);
159 
160 	return 0;
161 }
162 
163 static void deallocate_doorbell(struct qcm_process_device *qpd,
164 				struct queue *q)
165 {
166 	unsigned int old;
167 	struct kfd_dev *dev = qpd->dqm->dev;
168 
169 	if (!KFD_IS_SOC15(dev->device_info->asic_family) ||
170 	    q->properties.type == KFD_QUEUE_TYPE_SDMA)
171 		return;
172 
173 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
174 	WARN_ON(!old);
175 }
176 
177 static int allocate_vmid(struct device_queue_manager *dqm,
178 			struct qcm_process_device *qpd,
179 			struct queue *q)
180 {
181 	int bit, allocated_vmid;
182 
183 	if (dqm->vmid_bitmap == 0)
184 		return -ENOMEM;
185 
186 	bit = ffs(dqm->vmid_bitmap) - 1;
187 	dqm->vmid_bitmap &= ~(1 << bit);
188 
189 	allocated_vmid = bit + dqm->dev->vm_info.first_vmid_kfd;
190 	pr_debug("vmid allocation %d\n", allocated_vmid);
191 	qpd->vmid = allocated_vmid;
192 	q->properties.vmid = allocated_vmid;
193 
194 	set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
195 	program_sh_mem_settings(dqm, qpd);
196 
197 	/* qpd->page_table_base is set earlier when register_process()
198 	 * is called, i.e. when the first queue is created.
199 	 */
200 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->kgd,
201 			qpd->vmid,
202 			qpd->page_table_base);
203 	/* invalidate the VM context after pasid and vmid mapping is set up */
204 	kfd_flush_tlb(qpd_to_pdd(qpd));
205 
206 	return 0;
207 }
208 
209 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev,
210 				struct qcm_process_device *qpd)
211 {
212 	const struct packet_manager_funcs *pmf = qpd->dqm->packets.pmf;
213 	int ret;
214 
215 	if (!qpd->ib_kaddr)
216 		return -ENOMEM;
217 
218 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
219 	if (ret)
220 		return ret;
221 
222 	return kdev->kfd2kgd->submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid,
223 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
224 				pmf->release_mem_size / sizeof(uint32_t));
225 }
226 
227 static void deallocate_vmid(struct device_queue_manager *dqm,
228 				struct qcm_process_device *qpd,
229 				struct queue *q)
230 {
231 	int bit = qpd->vmid - dqm->dev->vm_info.first_vmid_kfd;
232 
233 	/* On GFX v7, CP doesn't flush TC at dequeue */
234 	if (q->device->device_info->asic_family == CHIP_HAWAII)
235 		if (flush_texture_cache_nocpsch(q->device, qpd))
236 			pr_err("Failed to flush TC\n");
237 
238 	kfd_flush_tlb(qpd_to_pdd(qpd));
239 
240 	/* Release the vmid mapping */
241 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
242 
243 	dqm->vmid_bitmap |= (1 << bit);
244 	qpd->vmid = 0;
245 	q->properties.vmid = 0;
246 }
247 
248 static int create_queue_nocpsch(struct device_queue_manager *dqm,
249 				struct queue *q,
250 				struct qcm_process_device *qpd)
251 {
252 	int retval;
253 
254 	print_queue(q);
255 
256 	dqm_lock(dqm);
257 
258 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
259 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
260 				dqm->total_queue_count);
261 		retval = -EPERM;
262 		goto out_unlock;
263 	}
264 
265 	if (list_empty(&qpd->queues_list)) {
266 		retval = allocate_vmid(dqm, qpd, q);
267 		if (retval)
268 			goto out_unlock;
269 	}
270 	q->properties.vmid = qpd->vmid;
271 	/*
272 	 * Eviction state logic: we only mark active queues as evicted
273 	 * to avoid the overhead of restoring inactive queues later
274 	 */
275 	if (qpd->evicted)
276 		q->properties.is_evicted = (q->properties.queue_size > 0 &&
277 					    q->properties.queue_percent > 0 &&
278 					    q->properties.queue_address != 0);
279 
280 	q->properties.tba_addr = qpd->tba_addr;
281 	q->properties.tma_addr = qpd->tma_addr;
282 
283 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
284 		retval = create_compute_queue_nocpsch(dqm, q, qpd);
285 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
286 		retval = create_sdma_queue_nocpsch(dqm, q, qpd);
287 	else
288 		retval = -EINVAL;
289 
290 	if (retval) {
291 		if (list_empty(&qpd->queues_list))
292 			deallocate_vmid(dqm, qpd, q);
293 		goto out_unlock;
294 	}
295 
296 	list_add(&q->list, &qpd->queues_list);
297 	qpd->queue_count++;
298 	if (q->properties.is_active)
299 		dqm->queue_count++;
300 
301 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
302 		dqm->sdma_queue_count++;
303 
304 	/*
305 	 * Unconditionally increment this counter, regardless of the queue's
306 	 * type or whether the queue is active.
307 	 */
308 	dqm->total_queue_count++;
309 	pr_debug("Total of %d queues are accountable so far\n",
310 			dqm->total_queue_count);
311 
312 out_unlock:
313 	dqm_unlock(dqm);
314 	return retval;
315 }
316 
317 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
318 {
319 	bool set;
320 	int pipe, bit, i;
321 
322 	set = false;
323 
324 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
325 			i < get_pipes_per_mec(dqm);
326 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
327 
328 		if (!is_pipe_enabled(dqm, 0, pipe))
329 			continue;
330 
331 		if (dqm->allocated_queues[pipe] != 0) {
332 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
333 			dqm->allocated_queues[pipe] &= ~(1 << bit);
334 			q->pipe = pipe;
335 			q->queue = bit;
336 			set = true;
337 			break;
338 		}
339 	}
340 
341 	if (!set)
342 		return -EBUSY;
343 
344 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
345 	/* horizontal hqd allocation */
346 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
347 
348 	return 0;
349 }
350 
351 static inline void deallocate_hqd(struct device_queue_manager *dqm,
352 				struct queue *q)
353 {
354 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
355 }
356 
357 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
358 					struct queue *q,
359 					struct qcm_process_device *qpd)
360 {
361 	struct mqd_manager *mqd_mgr;
362 	int retval;
363 
364 	mqd_mgr = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
365 	if (!mqd_mgr)
366 		return -ENOMEM;
367 
368 	retval = allocate_hqd(dqm, q);
369 	if (retval)
370 		return retval;
371 
372 	retval = allocate_doorbell(qpd, q);
373 	if (retval)
374 		goto out_deallocate_hqd;
375 
376 	retval = mqd_mgr->init_mqd(mqd_mgr, &q->mqd, &q->mqd_mem_obj,
377 				&q->gart_mqd_addr, &q->properties);
378 	if (retval)
379 		goto out_deallocate_doorbell;
380 
381 	pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
382 			q->pipe, q->queue);
383 
384 	dqm->dev->kfd2kgd->set_scratch_backing_va(
385 			dqm->dev->kgd, qpd->sh_hidden_private_base, qpd->vmid);
386 
387 	if (!q->properties.is_active)
388 		return 0;
389 
390 	if (WARN(q->process->mm != current->mm,
391 		 "should only run in user thread"))
392 		retval = -EFAULT;
393 	else
394 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, q->queue,
395 					   &q->properties, current->mm);
396 	if (retval)
397 		goto out_uninit_mqd;
398 
399 	return 0;
400 
401 out_uninit_mqd:
402 	mqd_mgr->uninit_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
403 out_deallocate_doorbell:
404 	deallocate_doorbell(qpd, q);
405 out_deallocate_hqd:
406 	deallocate_hqd(dqm, q);
407 
408 	return retval;
409 }
410 
411 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
412  * to avoid asynchronized access
413  */
414 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
415 				struct qcm_process_device *qpd,
416 				struct queue *q)
417 {
418 	int retval;
419 	struct mqd_manager *mqd_mgr;
420 
421 	mqd_mgr = dqm->ops.get_mqd_manager(dqm,
422 		get_mqd_type_from_queue_type(q->properties.type));
423 	if (!mqd_mgr)
424 		return -ENOMEM;
425 
426 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
427 		deallocate_hqd(dqm, q);
428 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
429 		dqm->sdma_queue_count--;
430 		deallocate_sdma_queue(dqm, q->sdma_id);
431 	} else {
432 		pr_debug("q->properties.type %d is invalid\n",
433 				q->properties.type);
434 		return -EINVAL;
435 	}
436 	dqm->total_queue_count--;
437 
438 	deallocate_doorbell(qpd, q);
439 
440 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
441 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
442 				KFD_UNMAP_LATENCY_MS,
443 				q->pipe, q->queue);
444 	if (retval == -ETIME)
445 		qpd->reset_wavefronts = true;
446 
447 	mqd_mgr->uninit_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
448 
449 	list_del(&q->list);
450 	if (list_empty(&qpd->queues_list)) {
451 		if (qpd->reset_wavefronts) {
452 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
453 					dqm->dev);
454 			/* dbgdev_wave_reset_wavefronts has to be called before
455 			 * deallocate_vmid(), i.e. when vmid is still in use.
456 			 */
457 			dbgdev_wave_reset_wavefronts(dqm->dev,
458 					qpd->pqm->process);
459 			qpd->reset_wavefronts = false;
460 		}
461 
462 		deallocate_vmid(dqm, qpd, q);
463 	}
464 	qpd->queue_count--;
465 	if (q->properties.is_active)
466 		dqm->queue_count--;
467 
468 	return retval;
469 }
470 
471 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
472 				struct qcm_process_device *qpd,
473 				struct queue *q)
474 {
475 	int retval;
476 
477 	dqm_lock(dqm);
478 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
479 	dqm_unlock(dqm);
480 
481 	return retval;
482 }
483 
484 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
485 {
486 	int retval;
487 	struct mqd_manager *mqd_mgr;
488 	struct kfd_process_device *pdd;
489 	bool prev_active = false;
490 
491 	dqm_lock(dqm);
492 	pdd = kfd_get_process_device_data(q->device, q->process);
493 	if (!pdd) {
494 		retval = -ENODEV;
495 		goto out_unlock;
496 	}
497 	mqd_mgr = dqm->ops.get_mqd_manager(dqm,
498 			get_mqd_type_from_queue_type(q->properties.type));
499 	if (!mqd_mgr) {
500 		retval = -ENOMEM;
501 		goto out_unlock;
502 	}
503 	/*
504 	 * Eviction state logic: we only mark active queues as evicted
505 	 * to avoid the overhead of restoring inactive queues later
506 	 */
507 	if (pdd->qpd.evicted)
508 		q->properties.is_evicted = (q->properties.queue_size > 0 &&
509 					    q->properties.queue_percent > 0 &&
510 					    q->properties.queue_address != 0);
511 
512 	/* Save previous activity state for counters */
513 	prev_active = q->properties.is_active;
514 
515 	/* Make sure the queue is unmapped before updating the MQD */
516 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
517 		retval = unmap_queues_cpsch(dqm,
518 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
519 		if (retval) {
520 			pr_err("unmap queue failed\n");
521 			goto out_unlock;
522 		}
523 	} else if (prev_active &&
524 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
525 		    q->properties.type == KFD_QUEUE_TYPE_SDMA)) {
526 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
527 				KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
528 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
529 		if (retval) {
530 			pr_err("destroy mqd failed\n");
531 			goto out_unlock;
532 		}
533 	}
534 
535 	retval = mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties);
536 
537 	/*
538 	 * check active state vs. the previous state and modify
539 	 * counter accordingly. map_queues_cpsch uses the
540 	 * dqm->queue_count to determine whether a new runlist must be
541 	 * uploaded.
542 	 */
543 	if (q->properties.is_active && !prev_active)
544 		dqm->queue_count++;
545 	else if (!q->properties.is_active && prev_active)
546 		dqm->queue_count--;
547 
548 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS)
549 		retval = map_queues_cpsch(dqm);
550 	else if (q->properties.is_active &&
551 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
552 		  q->properties.type == KFD_QUEUE_TYPE_SDMA)) {
553 		if (WARN(q->process->mm != current->mm,
554 			 "should only run in user thread"))
555 			retval = -EFAULT;
556 		else
557 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
558 						   q->pipe, q->queue,
559 						   &q->properties, current->mm);
560 	}
561 
562 out_unlock:
563 	dqm_unlock(dqm);
564 	return retval;
565 }
566 
567 static struct mqd_manager *get_mqd_manager(
568 		struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
569 {
570 	struct mqd_manager *mqd_mgr;
571 
572 	if (WARN_ON(type >= KFD_MQD_TYPE_MAX))
573 		return NULL;
574 
575 	pr_debug("mqd type %d\n", type);
576 
577 	mqd_mgr = dqm->mqd_mgrs[type];
578 	if (!mqd_mgr) {
579 		mqd_mgr = mqd_manager_init(type, dqm->dev);
580 		if (!mqd_mgr)
581 			pr_err("mqd manager is NULL");
582 		dqm->mqd_mgrs[type] = mqd_mgr;
583 	}
584 
585 	return mqd_mgr;
586 }
587 
588 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
589 					struct qcm_process_device *qpd)
590 {
591 	struct queue *q;
592 	struct mqd_manager *mqd_mgr;
593 	struct kfd_process_device *pdd;
594 	int retval = 0;
595 
596 	dqm_lock(dqm);
597 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
598 		goto out;
599 
600 	pdd = qpd_to_pdd(qpd);
601 	pr_info_ratelimited("Evicting PASID %u queues\n",
602 			    pdd->process->pasid);
603 
604 	/* unactivate all active queues on the qpd */
605 	list_for_each_entry(q, &qpd->queues_list, list) {
606 		if (!q->properties.is_active)
607 			continue;
608 		mqd_mgr = dqm->ops.get_mqd_manager(dqm,
609 			get_mqd_type_from_queue_type(q->properties.type));
610 		if (!mqd_mgr) { /* should not be here */
611 			pr_err("Cannot evict queue, mqd mgr is NULL\n");
612 			retval = -ENOMEM;
613 			goto out;
614 		}
615 		q->properties.is_evicted = true;
616 		q->properties.is_active = false;
617 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
618 				KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
619 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
620 		if (retval)
621 			goto out;
622 		dqm->queue_count--;
623 	}
624 
625 out:
626 	dqm_unlock(dqm);
627 	return retval;
628 }
629 
630 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
631 				      struct qcm_process_device *qpd)
632 {
633 	struct queue *q;
634 	struct kfd_process_device *pdd;
635 	int retval = 0;
636 
637 	dqm_lock(dqm);
638 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
639 		goto out;
640 
641 	pdd = qpd_to_pdd(qpd);
642 	pr_info_ratelimited("Evicting PASID %u queues\n",
643 			    pdd->process->pasid);
644 
645 	/* unactivate all active queues on the qpd */
646 	list_for_each_entry(q, &qpd->queues_list, list) {
647 		if (!q->properties.is_active)
648 			continue;
649 		q->properties.is_evicted = true;
650 		q->properties.is_active = false;
651 		dqm->queue_count--;
652 	}
653 	retval = execute_queues_cpsch(dqm,
654 				qpd->is_debug ?
655 				KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
656 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
657 
658 out:
659 	dqm_unlock(dqm);
660 	return retval;
661 }
662 
663 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
664 					  struct qcm_process_device *qpd)
665 {
666 	struct mm_struct *mm = NULL;
667 	struct queue *q;
668 	struct mqd_manager *mqd_mgr;
669 	struct kfd_process_device *pdd;
670 	uint64_t pd_base;
671 	int retval = 0;
672 
673 	pdd = qpd_to_pdd(qpd);
674 	/* Retrieve PD base */
675 	pd_base = dqm->dev->kfd2kgd->get_process_page_dir(pdd->vm);
676 
677 	dqm_lock(dqm);
678 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
679 		goto out;
680 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
681 		qpd->evicted--;
682 		goto out;
683 	}
684 
685 	pr_info_ratelimited("Restoring PASID %u queues\n",
686 			    pdd->process->pasid);
687 
688 	/* Update PD Base in QPD */
689 	qpd->page_table_base = pd_base;
690 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
691 
692 	if (!list_empty(&qpd->queues_list)) {
693 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
694 				dqm->dev->kgd,
695 				qpd->vmid,
696 				qpd->page_table_base);
697 		kfd_flush_tlb(pdd);
698 	}
699 
700 	/* Take a safe reference to the mm_struct, which may otherwise
701 	 * disappear even while the kfd_process is still referenced.
702 	 */
703 	mm = get_task_mm(pdd->process->lead_thread);
704 	if (!mm) {
705 		retval = -EFAULT;
706 		goto out;
707 	}
708 
709 	/* activate all active queues on the qpd */
710 	list_for_each_entry(q, &qpd->queues_list, list) {
711 		if (!q->properties.is_evicted)
712 			continue;
713 		mqd_mgr = dqm->ops.get_mqd_manager(dqm,
714 			get_mqd_type_from_queue_type(q->properties.type));
715 		if (!mqd_mgr) { /* should not be here */
716 			pr_err("Cannot restore queue, mqd mgr is NULL\n");
717 			retval = -ENOMEM;
718 			goto out;
719 		}
720 		q->properties.is_evicted = false;
721 		q->properties.is_active = true;
722 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
723 				       q->queue, &q->properties, mm);
724 		if (retval)
725 			goto out;
726 		dqm->queue_count++;
727 	}
728 	qpd->evicted = 0;
729 out:
730 	if (mm)
731 		mmput(mm);
732 	dqm_unlock(dqm);
733 	return retval;
734 }
735 
736 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
737 					struct qcm_process_device *qpd)
738 {
739 	struct queue *q;
740 	struct kfd_process_device *pdd;
741 	uint64_t pd_base;
742 	int retval = 0;
743 
744 	pdd = qpd_to_pdd(qpd);
745 	/* Retrieve PD base */
746 	pd_base = dqm->dev->kfd2kgd->get_process_page_dir(pdd->vm);
747 
748 	dqm_lock(dqm);
749 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
750 		goto out;
751 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
752 		qpd->evicted--;
753 		goto out;
754 	}
755 
756 	pr_info_ratelimited("Restoring PASID %u queues\n",
757 			    pdd->process->pasid);
758 
759 	/* Update PD Base in QPD */
760 	qpd->page_table_base = pd_base;
761 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
762 
763 	/* activate all active queues on the qpd */
764 	list_for_each_entry(q, &qpd->queues_list, list) {
765 		if (!q->properties.is_evicted)
766 			continue;
767 		q->properties.is_evicted = false;
768 		q->properties.is_active = true;
769 		dqm->queue_count++;
770 	}
771 	retval = execute_queues_cpsch(dqm,
772 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
773 	if (!retval)
774 		qpd->evicted = 0;
775 out:
776 	dqm_unlock(dqm);
777 	return retval;
778 }
779 
780 static int register_process(struct device_queue_manager *dqm,
781 					struct qcm_process_device *qpd)
782 {
783 	struct device_process_node *n;
784 	struct kfd_process_device *pdd;
785 	uint64_t pd_base;
786 	int retval;
787 
788 	n = kzalloc(sizeof(*n), GFP_KERNEL);
789 	if (!n)
790 		return -ENOMEM;
791 
792 	n->qpd = qpd;
793 
794 	pdd = qpd_to_pdd(qpd);
795 	/* Retrieve PD base */
796 	pd_base = dqm->dev->kfd2kgd->get_process_page_dir(pdd->vm);
797 
798 	dqm_lock(dqm);
799 	list_add(&n->list, &dqm->queues);
800 
801 	/* Update PD Base in QPD */
802 	qpd->page_table_base = pd_base;
803 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
804 
805 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
806 
807 	if (dqm->processes_count++ == 0)
808 		dqm->dev->kfd2kgd->set_compute_idle(dqm->dev->kgd, false);
809 
810 	dqm_unlock(dqm);
811 
812 	return retval;
813 }
814 
815 static int unregister_process(struct device_queue_manager *dqm,
816 					struct qcm_process_device *qpd)
817 {
818 	int retval;
819 	struct device_process_node *cur, *next;
820 
821 	pr_debug("qpd->queues_list is %s\n",
822 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
823 
824 	retval = 0;
825 	dqm_lock(dqm);
826 
827 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
828 		if (qpd == cur->qpd) {
829 			list_del(&cur->list);
830 			kfree(cur);
831 			if (--dqm->processes_count == 0)
832 				dqm->dev->kfd2kgd->set_compute_idle(
833 					dqm->dev->kgd, true);
834 			goto out;
835 		}
836 	}
837 	/* qpd not found in dqm list */
838 	retval = 1;
839 out:
840 	dqm_unlock(dqm);
841 	return retval;
842 }
843 
844 static int
845 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
846 			unsigned int vmid)
847 {
848 	uint32_t pasid_mapping;
849 
850 	pasid_mapping = (pasid == 0) ? 0 :
851 		(uint32_t)pasid |
852 		ATC_VMID_PASID_MAPPING_VALID;
853 
854 	return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
855 						dqm->dev->kgd, pasid_mapping,
856 						vmid);
857 }
858 
859 static void init_interrupts(struct device_queue_manager *dqm)
860 {
861 	unsigned int i;
862 
863 	for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
864 		if (is_pipe_enabled(dqm, 0, i))
865 			dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i);
866 }
867 
868 static int initialize_nocpsch(struct device_queue_manager *dqm)
869 {
870 	int pipe, queue;
871 
872 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
873 
874 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
875 					sizeof(unsigned int), GFP_KERNEL);
876 	if (!dqm->allocated_queues)
877 		return -ENOMEM;
878 
879 	mutex_init(&dqm->lock_hidden);
880 	INIT_LIST_HEAD(&dqm->queues);
881 	dqm->queue_count = dqm->next_pipe_to_allocate = 0;
882 	dqm->sdma_queue_count = 0;
883 
884 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
885 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
886 
887 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
888 			if (test_bit(pipe_offset + queue,
889 				     dqm->dev->shared_resources.queue_bitmap))
890 				dqm->allocated_queues[pipe] |= 1 << queue;
891 	}
892 
893 	dqm->vmid_bitmap = (1 << dqm->dev->vm_info.vmid_num_kfd) - 1;
894 	dqm->sdma_bitmap = (1 << get_num_sdma_queues(dqm)) - 1;
895 
896 	return 0;
897 }
898 
899 static void uninitialize(struct device_queue_manager *dqm)
900 {
901 	int i;
902 
903 	WARN_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
904 
905 	kfree(dqm->allocated_queues);
906 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
907 		kfree(dqm->mqd_mgrs[i]);
908 	mutex_destroy(&dqm->lock_hidden);
909 	kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
910 }
911 
912 static int start_nocpsch(struct device_queue_manager *dqm)
913 {
914 	init_interrupts(dqm);
915 	return pm_init(&dqm->packets, dqm);
916 }
917 
918 static int stop_nocpsch(struct device_queue_manager *dqm)
919 {
920 	pm_uninit(&dqm->packets);
921 	return 0;
922 }
923 
924 static int allocate_sdma_queue(struct device_queue_manager *dqm,
925 				unsigned int *sdma_queue_id)
926 {
927 	int bit;
928 
929 	if (dqm->sdma_bitmap == 0)
930 		return -ENOMEM;
931 
932 	bit = ffs(dqm->sdma_bitmap) - 1;
933 	dqm->sdma_bitmap &= ~(1 << bit);
934 	*sdma_queue_id = bit;
935 
936 	return 0;
937 }
938 
939 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
940 				unsigned int sdma_queue_id)
941 {
942 	if (sdma_queue_id >= get_num_sdma_queues(dqm))
943 		return;
944 	dqm->sdma_bitmap |= (1 << sdma_queue_id);
945 }
946 
947 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
948 					struct queue *q,
949 					struct qcm_process_device *qpd)
950 {
951 	struct mqd_manager *mqd_mgr;
952 	int retval;
953 
954 	mqd_mgr = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
955 	if (!mqd_mgr)
956 		return -ENOMEM;
957 
958 	retval = allocate_sdma_queue(dqm, &q->sdma_id);
959 	if (retval)
960 		return retval;
961 
962 	q->properties.sdma_queue_id = q->sdma_id / get_num_sdma_engines(dqm);
963 	q->properties.sdma_engine_id = q->sdma_id % get_num_sdma_engines(dqm);
964 
965 	retval = allocate_doorbell(qpd, q);
966 	if (retval)
967 		goto out_deallocate_sdma_queue;
968 
969 	pr_debug("SDMA id is:    %d\n", q->sdma_id);
970 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
971 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
972 
973 	dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
974 	retval = mqd_mgr->init_mqd(mqd_mgr, &q->mqd, &q->mqd_mem_obj,
975 				&q->gart_mqd_addr, &q->properties);
976 	if (retval)
977 		goto out_deallocate_doorbell;
978 
979 	retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, 0, 0, &q->properties,
980 				NULL);
981 	if (retval)
982 		goto out_uninit_mqd;
983 
984 	return 0;
985 
986 out_uninit_mqd:
987 	mqd_mgr->uninit_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
988 out_deallocate_doorbell:
989 	deallocate_doorbell(qpd, q);
990 out_deallocate_sdma_queue:
991 	deallocate_sdma_queue(dqm, q->sdma_id);
992 
993 	return retval;
994 }
995 
996 /*
997  * Device Queue Manager implementation for cp scheduler
998  */
999 
1000 static int set_sched_resources(struct device_queue_manager *dqm)
1001 {
1002 	int i, mec;
1003 	struct scheduling_resources res;
1004 
1005 	res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap;
1006 
1007 	res.queue_mask = 0;
1008 	for (i = 0; i < KGD_MAX_QUEUES; ++i) {
1009 		mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
1010 			/ dqm->dev->shared_resources.num_pipe_per_mec;
1011 
1012 		if (!test_bit(i, dqm->dev->shared_resources.queue_bitmap))
1013 			continue;
1014 
1015 		/* only acquire queues from the first MEC */
1016 		if (mec > 0)
1017 			continue;
1018 
1019 		/* This situation may be hit in the future if a new HW
1020 		 * generation exposes more than 64 queues. If so, the
1021 		 * definition of res.queue_mask needs updating
1022 		 */
1023 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1024 			pr_err("Invalid queue enabled by amdgpu: %d\n", i);
1025 			break;
1026 		}
1027 
1028 		res.queue_mask |= (1ull << i);
1029 	}
1030 	res.gws_mask = res.oac_mask = res.gds_heap_base =
1031 						res.gds_heap_size = 0;
1032 
1033 	pr_debug("Scheduling resources:\n"
1034 			"vmid mask: 0x%8X\n"
1035 			"queue mask: 0x%8llX\n",
1036 			res.vmid_mask, res.queue_mask);
1037 
1038 	return pm_send_set_resources(&dqm->packets, &res);
1039 }
1040 
1041 static int initialize_cpsch(struct device_queue_manager *dqm)
1042 {
1043 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1044 
1045 	mutex_init(&dqm->lock_hidden);
1046 	INIT_LIST_HEAD(&dqm->queues);
1047 	dqm->queue_count = dqm->processes_count = 0;
1048 	dqm->sdma_queue_count = 0;
1049 	dqm->active_runlist = false;
1050 	dqm->sdma_bitmap = (1 << get_num_sdma_queues(dqm)) - 1;
1051 
1052 	INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1053 
1054 	return 0;
1055 }
1056 
1057 static int start_cpsch(struct device_queue_manager *dqm)
1058 {
1059 	int retval;
1060 
1061 	retval = 0;
1062 
1063 	retval = pm_init(&dqm->packets, dqm);
1064 	if (retval)
1065 		goto fail_packet_manager_init;
1066 
1067 	retval = set_sched_resources(dqm);
1068 	if (retval)
1069 		goto fail_set_sched_resources;
1070 
1071 	pr_debug("Allocating fence memory\n");
1072 
1073 	/* allocate fence memory on the gart */
1074 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1075 					&dqm->fence_mem);
1076 
1077 	if (retval)
1078 		goto fail_allocate_vidmem;
1079 
1080 	dqm->fence_addr = dqm->fence_mem->cpu_ptr;
1081 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1082 
1083 	init_interrupts(dqm);
1084 
1085 	dqm_lock(dqm);
1086 	/* clear hang status when driver try to start the hw scheduler */
1087 	dqm->is_hws_hang = false;
1088 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1089 	dqm_unlock(dqm);
1090 
1091 	return 0;
1092 fail_allocate_vidmem:
1093 fail_set_sched_resources:
1094 	pm_uninit(&dqm->packets);
1095 fail_packet_manager_init:
1096 	return retval;
1097 }
1098 
1099 static int stop_cpsch(struct device_queue_manager *dqm)
1100 {
1101 	dqm_lock(dqm);
1102 	unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1103 	dqm_unlock(dqm);
1104 
1105 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1106 	pm_uninit(&dqm->packets);
1107 
1108 	return 0;
1109 }
1110 
1111 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1112 					struct kernel_queue *kq,
1113 					struct qcm_process_device *qpd)
1114 {
1115 	dqm_lock(dqm);
1116 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1117 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1118 				dqm->total_queue_count);
1119 		dqm_unlock(dqm);
1120 		return -EPERM;
1121 	}
1122 
1123 	/*
1124 	 * Unconditionally increment this counter, regardless of the queue's
1125 	 * type or whether the queue is active.
1126 	 */
1127 	dqm->total_queue_count++;
1128 	pr_debug("Total of %d queues are accountable so far\n",
1129 			dqm->total_queue_count);
1130 
1131 	list_add(&kq->list, &qpd->priv_queue_list);
1132 	dqm->queue_count++;
1133 	qpd->is_debug = true;
1134 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1135 	dqm_unlock(dqm);
1136 
1137 	return 0;
1138 }
1139 
1140 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1141 					struct kernel_queue *kq,
1142 					struct qcm_process_device *qpd)
1143 {
1144 	dqm_lock(dqm);
1145 	list_del(&kq->list);
1146 	dqm->queue_count--;
1147 	qpd->is_debug = false;
1148 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1149 	/*
1150 	 * Unconditionally decrement this counter, regardless of the queue's
1151 	 * type.
1152 	 */
1153 	dqm->total_queue_count--;
1154 	pr_debug("Total of %d queues are accountable so far\n",
1155 			dqm->total_queue_count);
1156 	dqm_unlock(dqm);
1157 }
1158 
1159 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1160 			struct qcm_process_device *qpd)
1161 {
1162 	int retval;
1163 	struct mqd_manager *mqd_mgr;
1164 
1165 	retval = 0;
1166 
1167 	dqm_lock(dqm);
1168 
1169 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1170 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1171 				dqm->total_queue_count);
1172 		retval = -EPERM;
1173 		goto out_unlock;
1174 	}
1175 
1176 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1177 		retval = allocate_sdma_queue(dqm, &q->sdma_id);
1178 		if (retval)
1179 			goto out_unlock;
1180 		q->properties.sdma_queue_id =
1181 			q->sdma_id / get_num_sdma_engines(dqm);
1182 		q->properties.sdma_engine_id =
1183 			q->sdma_id % get_num_sdma_engines(dqm);
1184 	}
1185 
1186 	retval = allocate_doorbell(qpd, q);
1187 	if (retval)
1188 		goto out_deallocate_sdma_queue;
1189 
1190 	mqd_mgr = dqm->ops.get_mqd_manager(dqm,
1191 			get_mqd_type_from_queue_type(q->properties.type));
1192 
1193 	if (!mqd_mgr) {
1194 		retval = -ENOMEM;
1195 		goto out_deallocate_doorbell;
1196 	}
1197 	/*
1198 	 * Eviction state logic: we only mark active queues as evicted
1199 	 * to avoid the overhead of restoring inactive queues later
1200 	 */
1201 	if (qpd->evicted)
1202 		q->properties.is_evicted = (q->properties.queue_size > 0 &&
1203 					    q->properties.queue_percent > 0 &&
1204 					    q->properties.queue_address != 0);
1205 
1206 	dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1207 
1208 	q->properties.tba_addr = qpd->tba_addr;
1209 	q->properties.tma_addr = qpd->tma_addr;
1210 	retval = mqd_mgr->init_mqd(mqd_mgr, &q->mqd, &q->mqd_mem_obj,
1211 				&q->gart_mqd_addr, &q->properties);
1212 	if (retval)
1213 		goto out_deallocate_doorbell;
1214 
1215 	list_add(&q->list, &qpd->queues_list);
1216 	qpd->queue_count++;
1217 	if (q->properties.is_active) {
1218 		dqm->queue_count++;
1219 		retval = execute_queues_cpsch(dqm,
1220 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1221 	}
1222 
1223 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1224 		dqm->sdma_queue_count++;
1225 	/*
1226 	 * Unconditionally increment this counter, regardless of the queue's
1227 	 * type or whether the queue is active.
1228 	 */
1229 	dqm->total_queue_count++;
1230 
1231 	pr_debug("Total of %d queues are accountable so far\n",
1232 			dqm->total_queue_count);
1233 
1234 	dqm_unlock(dqm);
1235 	return retval;
1236 
1237 out_deallocate_doorbell:
1238 	deallocate_doorbell(qpd, q);
1239 out_deallocate_sdma_queue:
1240 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1241 		deallocate_sdma_queue(dqm, q->sdma_id);
1242 out_unlock:
1243 	dqm_unlock(dqm);
1244 
1245 	return retval;
1246 }
1247 
1248 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
1249 				unsigned int fence_value,
1250 				unsigned int timeout_ms)
1251 {
1252 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1253 
1254 	while (*fence_addr != fence_value) {
1255 		if (time_after(jiffies, end_jiffies)) {
1256 			pr_err("qcm fence wait loop timeout expired\n");
1257 			/* In HWS case, this is used to halt the driver thread
1258 			 * in order not to mess up CP states before doing
1259 			 * scandumps for FW debugging.
1260 			 */
1261 			while (halt_if_hws_hang)
1262 				schedule();
1263 
1264 			return -ETIME;
1265 		}
1266 		schedule();
1267 	}
1268 
1269 	return 0;
1270 }
1271 
1272 static int unmap_sdma_queues(struct device_queue_manager *dqm,
1273 				unsigned int sdma_engine)
1274 {
1275 	return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
1276 			KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, false,
1277 			sdma_engine);
1278 }
1279 
1280 /* dqm->lock mutex has to be locked before calling this function */
1281 static int map_queues_cpsch(struct device_queue_manager *dqm)
1282 {
1283 	int retval;
1284 
1285 	if (dqm->queue_count <= 0 || dqm->processes_count <= 0)
1286 		return 0;
1287 
1288 	if (dqm->active_runlist)
1289 		return 0;
1290 
1291 	retval = pm_send_runlist(&dqm->packets, &dqm->queues);
1292 	if (retval) {
1293 		pr_err("failed to execute runlist\n");
1294 		return retval;
1295 	}
1296 	dqm->active_runlist = true;
1297 
1298 	return retval;
1299 }
1300 
1301 /* dqm->lock mutex has to be locked before calling this function */
1302 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1303 				enum kfd_unmap_queues_filter filter,
1304 				uint32_t filter_param)
1305 {
1306 	int retval = 0;
1307 
1308 	if (dqm->is_hws_hang)
1309 		return -EIO;
1310 	if (!dqm->active_runlist)
1311 		return retval;
1312 
1313 	pr_debug("Before destroying queues, sdma queue count is : %u\n",
1314 		dqm->sdma_queue_count);
1315 
1316 	if (dqm->sdma_queue_count > 0) {
1317 		unmap_sdma_queues(dqm, 0);
1318 		unmap_sdma_queues(dqm, 1);
1319 	}
1320 
1321 	retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
1322 			filter, filter_param, false, 0);
1323 	if (retval)
1324 		return retval;
1325 
1326 	*dqm->fence_addr = KFD_FENCE_INIT;
1327 	pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
1328 				KFD_FENCE_COMPLETED);
1329 	/* should be timed out */
1330 	retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
1331 				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
1332 	if (retval)
1333 		return retval;
1334 
1335 	pm_release_ib(&dqm->packets);
1336 	dqm->active_runlist = false;
1337 
1338 	return retval;
1339 }
1340 
1341 /* dqm->lock mutex has to be locked before calling this function */
1342 static int execute_queues_cpsch(struct device_queue_manager *dqm,
1343 				enum kfd_unmap_queues_filter filter,
1344 				uint32_t filter_param)
1345 {
1346 	int retval;
1347 
1348 	if (dqm->is_hws_hang)
1349 		return -EIO;
1350 	retval = unmap_queues_cpsch(dqm, filter, filter_param);
1351 	if (retval) {
1352 		pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1353 		dqm->is_hws_hang = true;
1354 		schedule_work(&dqm->hw_exception_work);
1355 		return retval;
1356 	}
1357 
1358 	return map_queues_cpsch(dqm);
1359 }
1360 
1361 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1362 				struct qcm_process_device *qpd,
1363 				struct queue *q)
1364 {
1365 	int retval;
1366 	struct mqd_manager *mqd_mgr;
1367 
1368 	retval = 0;
1369 
1370 	/* remove queue from list to prevent rescheduling after preemption */
1371 	dqm_lock(dqm);
1372 
1373 	if (qpd->is_debug) {
1374 		/*
1375 		 * error, currently we do not allow to destroy a queue
1376 		 * of a currently debugged process
1377 		 */
1378 		retval = -EBUSY;
1379 		goto failed_try_destroy_debugged_queue;
1380 
1381 	}
1382 
1383 	mqd_mgr = dqm->ops.get_mqd_manager(dqm,
1384 			get_mqd_type_from_queue_type(q->properties.type));
1385 	if (!mqd_mgr) {
1386 		retval = -ENOMEM;
1387 		goto failed;
1388 	}
1389 
1390 	deallocate_doorbell(qpd, q);
1391 
1392 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1393 		dqm->sdma_queue_count--;
1394 		deallocate_sdma_queue(dqm, q->sdma_id);
1395 	}
1396 
1397 	list_del(&q->list);
1398 	qpd->queue_count--;
1399 	if (q->properties.is_active) {
1400 		dqm->queue_count--;
1401 		retval = execute_queues_cpsch(dqm,
1402 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1403 		if (retval == -ETIME)
1404 			qpd->reset_wavefronts = true;
1405 	}
1406 
1407 	mqd_mgr->uninit_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1408 
1409 	/*
1410 	 * Unconditionally decrement this counter, regardless of the queue's
1411 	 * type
1412 	 */
1413 	dqm->total_queue_count--;
1414 	pr_debug("Total of %d queues are accountable so far\n",
1415 			dqm->total_queue_count);
1416 
1417 	dqm_unlock(dqm);
1418 
1419 	return retval;
1420 
1421 failed:
1422 failed_try_destroy_debugged_queue:
1423 
1424 	dqm_unlock(dqm);
1425 	return retval;
1426 }
1427 
1428 /*
1429  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1430  * stay in user mode.
1431  */
1432 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1433 /* APE1 limit is inclusive and 64K aligned. */
1434 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1435 
1436 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1437 				   struct qcm_process_device *qpd,
1438 				   enum cache_policy default_policy,
1439 				   enum cache_policy alternate_policy,
1440 				   void __user *alternate_aperture_base,
1441 				   uint64_t alternate_aperture_size)
1442 {
1443 	bool retval = true;
1444 
1445 	if (!dqm->asic_ops.set_cache_memory_policy)
1446 		return retval;
1447 
1448 	dqm_lock(dqm);
1449 
1450 	if (alternate_aperture_size == 0) {
1451 		/* base > limit disables APE1 */
1452 		qpd->sh_mem_ape1_base = 1;
1453 		qpd->sh_mem_ape1_limit = 0;
1454 	} else {
1455 		/*
1456 		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1457 		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
1458 		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1459 		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1460 		 * Verify that the base and size parameters can be
1461 		 * represented in this format and convert them.
1462 		 * Additionally restrict APE1 to user-mode addresses.
1463 		 */
1464 
1465 		uint64_t base = (uintptr_t)alternate_aperture_base;
1466 		uint64_t limit = base + alternate_aperture_size - 1;
1467 
1468 		if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
1469 		   (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
1470 			retval = false;
1471 			goto out;
1472 		}
1473 
1474 		qpd->sh_mem_ape1_base = base >> 16;
1475 		qpd->sh_mem_ape1_limit = limit >> 16;
1476 	}
1477 
1478 	retval = dqm->asic_ops.set_cache_memory_policy(
1479 			dqm,
1480 			qpd,
1481 			default_policy,
1482 			alternate_policy,
1483 			alternate_aperture_base,
1484 			alternate_aperture_size);
1485 
1486 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1487 		program_sh_mem_settings(dqm, qpd);
1488 
1489 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1490 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1491 		qpd->sh_mem_ape1_limit);
1492 
1493 out:
1494 	dqm_unlock(dqm);
1495 	return retval;
1496 }
1497 
1498 static int set_trap_handler(struct device_queue_manager *dqm,
1499 				struct qcm_process_device *qpd,
1500 				uint64_t tba_addr,
1501 				uint64_t tma_addr)
1502 {
1503 	uint64_t *tma;
1504 
1505 	if (dqm->dev->cwsr_enabled) {
1506 		/* Jump from CWSR trap handler to user trap */
1507 		tma = (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1508 		tma[0] = tba_addr;
1509 		tma[1] = tma_addr;
1510 	} else {
1511 		qpd->tba_addr = tba_addr;
1512 		qpd->tma_addr = tma_addr;
1513 	}
1514 
1515 	return 0;
1516 }
1517 
1518 static int process_termination_nocpsch(struct device_queue_manager *dqm,
1519 		struct qcm_process_device *qpd)
1520 {
1521 	struct queue *q, *next;
1522 	struct device_process_node *cur, *next_dpn;
1523 	int retval = 0;
1524 
1525 	dqm_lock(dqm);
1526 
1527 	/* Clear all user mode queues */
1528 	list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1529 		int ret;
1530 
1531 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
1532 		if (ret)
1533 			retval = ret;
1534 	}
1535 
1536 	/* Unregister process */
1537 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1538 		if (qpd == cur->qpd) {
1539 			list_del(&cur->list);
1540 			kfree(cur);
1541 			dqm->processes_count--;
1542 			break;
1543 		}
1544 	}
1545 
1546 	dqm_unlock(dqm);
1547 	return retval;
1548 }
1549 
1550 static int get_wave_state(struct device_queue_manager *dqm,
1551 			  struct queue *q,
1552 			  void __user *ctl_stack,
1553 			  u32 *ctl_stack_used_size,
1554 			  u32 *save_area_used_size)
1555 {
1556 	struct mqd_manager *mqd;
1557 	int r;
1558 
1559 	dqm_lock(dqm);
1560 
1561 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
1562 	    q->properties.is_active || !q->device->cwsr_enabled) {
1563 		r = -EINVAL;
1564 		goto dqm_unlock;
1565 	}
1566 
1567 	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
1568 	if (!mqd) {
1569 		r = -ENOMEM;
1570 		goto dqm_unlock;
1571 	}
1572 
1573 	if (!mqd->get_wave_state) {
1574 		r = -EINVAL;
1575 		goto dqm_unlock;
1576 	}
1577 
1578 	r = mqd->get_wave_state(mqd, q->mqd, ctl_stack, ctl_stack_used_size,
1579 				save_area_used_size);
1580 
1581 dqm_unlock:
1582 	dqm_unlock(dqm);
1583 	return r;
1584 }
1585 
1586 static int process_termination_cpsch(struct device_queue_manager *dqm,
1587 		struct qcm_process_device *qpd)
1588 {
1589 	int retval;
1590 	struct queue *q, *next;
1591 	struct kernel_queue *kq, *kq_next;
1592 	struct mqd_manager *mqd_mgr;
1593 	struct device_process_node *cur, *next_dpn;
1594 	enum kfd_unmap_queues_filter filter =
1595 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
1596 
1597 	retval = 0;
1598 
1599 	dqm_lock(dqm);
1600 
1601 	/* Clean all kernel queues */
1602 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
1603 		list_del(&kq->list);
1604 		dqm->queue_count--;
1605 		qpd->is_debug = false;
1606 		dqm->total_queue_count--;
1607 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
1608 	}
1609 
1610 	/* Clear all user mode queues */
1611 	list_for_each_entry(q, &qpd->queues_list, list) {
1612 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1613 			dqm->sdma_queue_count--;
1614 			deallocate_sdma_queue(dqm, q->sdma_id);
1615 		}
1616 
1617 		if (q->properties.is_active)
1618 			dqm->queue_count--;
1619 
1620 		dqm->total_queue_count--;
1621 	}
1622 
1623 	/* Unregister process */
1624 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1625 		if (qpd == cur->qpd) {
1626 			list_del(&cur->list);
1627 			kfree(cur);
1628 			dqm->processes_count--;
1629 			break;
1630 		}
1631 	}
1632 
1633 	retval = execute_queues_cpsch(dqm, filter, 0);
1634 	if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
1635 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
1636 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
1637 		qpd->reset_wavefronts = false;
1638 	}
1639 
1640 	/* lastly, free mqd resources */
1641 	list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1642 		mqd_mgr = dqm->ops.get_mqd_manager(dqm,
1643 			get_mqd_type_from_queue_type(q->properties.type));
1644 		if (!mqd_mgr) {
1645 			retval = -ENOMEM;
1646 			goto out;
1647 		}
1648 		list_del(&q->list);
1649 		qpd->queue_count--;
1650 		mqd_mgr->uninit_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1651 	}
1652 
1653 out:
1654 	dqm_unlock(dqm);
1655 	return retval;
1656 }
1657 
1658 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1659 {
1660 	struct device_queue_manager *dqm;
1661 
1662 	pr_debug("Loading device queue manager\n");
1663 
1664 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
1665 	if (!dqm)
1666 		return NULL;
1667 
1668 	switch (dev->device_info->asic_family) {
1669 	/* HWS is not available on Hawaii. */
1670 	case CHIP_HAWAII:
1671 	/* HWS depends on CWSR for timely dequeue. CWSR is not
1672 	 * available on Tonga.
1673 	 *
1674 	 * FIXME: This argument also applies to Kaveri.
1675 	 */
1676 	case CHIP_TONGA:
1677 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
1678 		break;
1679 	default:
1680 		dqm->sched_policy = sched_policy;
1681 		break;
1682 	}
1683 
1684 	dqm->dev = dev;
1685 	switch (dqm->sched_policy) {
1686 	case KFD_SCHED_POLICY_HWS:
1687 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1688 		/* initialize dqm for cp scheduling */
1689 		dqm->ops.create_queue = create_queue_cpsch;
1690 		dqm->ops.initialize = initialize_cpsch;
1691 		dqm->ops.start = start_cpsch;
1692 		dqm->ops.stop = stop_cpsch;
1693 		dqm->ops.destroy_queue = destroy_queue_cpsch;
1694 		dqm->ops.update_queue = update_queue;
1695 		dqm->ops.get_mqd_manager = get_mqd_manager;
1696 		dqm->ops.register_process = register_process;
1697 		dqm->ops.unregister_process = unregister_process;
1698 		dqm->ops.uninitialize = uninitialize;
1699 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1700 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1701 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1702 		dqm->ops.set_trap_handler = set_trap_handler;
1703 		dqm->ops.process_termination = process_termination_cpsch;
1704 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
1705 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
1706 		dqm->ops.get_wave_state = get_wave_state;
1707 		break;
1708 	case KFD_SCHED_POLICY_NO_HWS:
1709 		/* initialize dqm for no cp scheduling */
1710 		dqm->ops.start = start_nocpsch;
1711 		dqm->ops.stop = stop_nocpsch;
1712 		dqm->ops.create_queue = create_queue_nocpsch;
1713 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
1714 		dqm->ops.update_queue = update_queue;
1715 		dqm->ops.get_mqd_manager = get_mqd_manager;
1716 		dqm->ops.register_process = register_process;
1717 		dqm->ops.unregister_process = unregister_process;
1718 		dqm->ops.initialize = initialize_nocpsch;
1719 		dqm->ops.uninitialize = uninitialize;
1720 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1721 		dqm->ops.set_trap_handler = set_trap_handler;
1722 		dqm->ops.process_termination = process_termination_nocpsch;
1723 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
1724 		dqm->ops.restore_process_queues =
1725 			restore_process_queues_nocpsch;
1726 		dqm->ops.get_wave_state = get_wave_state;
1727 		break;
1728 	default:
1729 		pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
1730 		goto out_free;
1731 	}
1732 
1733 	switch (dev->device_info->asic_family) {
1734 	case CHIP_CARRIZO:
1735 		device_queue_manager_init_vi(&dqm->asic_ops);
1736 		break;
1737 
1738 	case CHIP_KAVERI:
1739 		device_queue_manager_init_cik(&dqm->asic_ops);
1740 		break;
1741 
1742 	case CHIP_HAWAII:
1743 		device_queue_manager_init_cik_hawaii(&dqm->asic_ops);
1744 		break;
1745 
1746 	case CHIP_TONGA:
1747 	case CHIP_FIJI:
1748 	case CHIP_POLARIS10:
1749 	case CHIP_POLARIS11:
1750 		device_queue_manager_init_vi_tonga(&dqm->asic_ops);
1751 		break;
1752 
1753 	case CHIP_VEGA10:
1754 	case CHIP_VEGA20:
1755 	case CHIP_RAVEN:
1756 		device_queue_manager_init_v9(&dqm->asic_ops);
1757 		break;
1758 	default:
1759 		WARN(1, "Unexpected ASIC family %u",
1760 		     dev->device_info->asic_family);
1761 		goto out_free;
1762 	}
1763 
1764 	if (!dqm->ops.initialize(dqm))
1765 		return dqm;
1766 
1767 out_free:
1768 	kfree(dqm);
1769 	return NULL;
1770 }
1771 
1772 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1773 {
1774 	dqm->ops.uninitialize(dqm);
1775 	kfree(dqm);
1776 }
1777 
1778 int kfd_process_vm_fault(struct device_queue_manager *dqm,
1779 			 unsigned int pasid)
1780 {
1781 	struct kfd_process_device *pdd;
1782 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1783 	int ret = 0;
1784 
1785 	if (!p)
1786 		return -EINVAL;
1787 	pdd = kfd_get_process_device_data(dqm->dev, p);
1788 	if (pdd)
1789 		ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
1790 	kfd_unref_process(p);
1791 
1792 	return ret;
1793 }
1794 
1795 static void kfd_process_hw_exception(struct work_struct *work)
1796 {
1797 	struct device_queue_manager *dqm = container_of(work,
1798 			struct device_queue_manager, hw_exception_work);
1799 	dqm->dev->kfd2kgd->gpu_recover(dqm->dev->kgd);
1800 }
1801 
1802 #if defined(CONFIG_DEBUG_FS)
1803 
1804 static void seq_reg_dump(struct seq_file *m,
1805 			 uint32_t (*dump)[2], uint32_t n_regs)
1806 {
1807 	uint32_t i, count;
1808 
1809 	for (i = 0, count = 0; i < n_regs; i++) {
1810 		if (count == 0 ||
1811 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
1812 			seq_printf(m, "%s    %08x: %08x",
1813 				   i ? "\n" : "",
1814 				   dump[i][0], dump[i][1]);
1815 			count = 7;
1816 		} else {
1817 			seq_printf(m, " %08x", dump[i][1]);
1818 			count--;
1819 		}
1820 	}
1821 
1822 	seq_puts(m, "\n");
1823 }
1824 
1825 int dqm_debugfs_hqds(struct seq_file *m, void *data)
1826 {
1827 	struct device_queue_manager *dqm = data;
1828 	uint32_t (*dump)[2], n_regs;
1829 	int pipe, queue;
1830 	int r = 0;
1831 
1832 	r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->kgd,
1833 		KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE, &dump, &n_regs);
1834 	if (!r) {
1835 		seq_printf(m, "  HIQ on MEC %d Pipe %d Queue %d\n",
1836 				KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1,
1837 				KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm),
1838 				KFD_CIK_HIQ_QUEUE);
1839 		seq_reg_dump(m, dump, n_regs);
1840 
1841 		kfree(dump);
1842 	}
1843 
1844 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1845 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1846 
1847 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
1848 			if (!test_bit(pipe_offset + queue,
1849 				      dqm->dev->shared_resources.queue_bitmap))
1850 				continue;
1851 
1852 			r = dqm->dev->kfd2kgd->hqd_dump(
1853 				dqm->dev->kgd, pipe, queue, &dump, &n_regs);
1854 			if (r)
1855 				break;
1856 
1857 			seq_printf(m, "  CP Pipe %d, Queue %d\n",
1858 				  pipe, queue);
1859 			seq_reg_dump(m, dump, n_regs);
1860 
1861 			kfree(dump);
1862 		}
1863 	}
1864 
1865 	for (pipe = 0; pipe < get_num_sdma_engines(dqm); pipe++) {
1866 		for (queue = 0;
1867 		     queue < dqm->dev->device_info->num_sdma_queues_per_engine;
1868 		     queue++) {
1869 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
1870 				dqm->dev->kgd, pipe, queue, &dump, &n_regs);
1871 			if (r)
1872 				break;
1873 
1874 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
1875 				  pipe, queue);
1876 			seq_reg_dump(m, dump, n_regs);
1877 
1878 			kfree(dump);
1879 		}
1880 	}
1881 
1882 	return r;
1883 }
1884 
1885 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm)
1886 {
1887 	int r = 0;
1888 
1889 	dqm_lock(dqm);
1890 	dqm->active_runlist = true;
1891 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1892 	dqm_unlock(dqm);
1893 
1894 	return r;
1895 }
1896 
1897 #endif
1898