1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/ratelimit.h> 25 #include <linux/printk.h> 26 #include <linux/slab.h> 27 #include <linux/list.h> 28 #include <linux/types.h> 29 #include <linux/bitops.h> 30 #include <linux/sched.h> 31 #include "kfd_priv.h" 32 #include "kfd_device_queue_manager.h" 33 #include "kfd_mqd_manager.h" 34 #include "cik_regs.h" 35 #include "kfd_kernel_queue.h" 36 #include "amdgpu_amdkfd.h" 37 38 /* Size of the per-pipe EOP queue */ 39 #define CIK_HPD_EOP_BYTES_LOG2 11 40 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2) 41 42 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, 43 unsigned int pasid, unsigned int vmid); 44 45 static int execute_queues_cpsch(struct device_queue_manager *dqm, 46 enum kfd_unmap_queues_filter filter, 47 uint32_t filter_param); 48 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 49 enum kfd_unmap_queues_filter filter, 50 uint32_t filter_param); 51 52 static int map_queues_cpsch(struct device_queue_manager *dqm); 53 54 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 55 struct queue *q); 56 57 static inline void deallocate_hqd(struct device_queue_manager *dqm, 58 struct queue *q); 59 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q); 60 static int allocate_sdma_queue(struct device_queue_manager *dqm, 61 struct queue *q); 62 static void kfd_process_hw_exception(struct work_struct *work); 63 64 static inline 65 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type) 66 { 67 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI) 68 return KFD_MQD_TYPE_SDMA; 69 return KFD_MQD_TYPE_CP; 70 } 71 72 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe) 73 { 74 int i; 75 int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec 76 + pipe * dqm->dev->shared_resources.num_queue_per_pipe; 77 78 /* queue is available for KFD usage if bit is 1 */ 79 for (i = 0; i < dqm->dev->shared_resources.num_queue_per_pipe; ++i) 80 if (test_bit(pipe_offset + i, 81 dqm->dev->shared_resources.queue_bitmap)) 82 return true; 83 return false; 84 } 85 86 unsigned int get_queues_num(struct device_queue_manager *dqm) 87 { 88 return bitmap_weight(dqm->dev->shared_resources.queue_bitmap, 89 KGD_MAX_QUEUES); 90 } 91 92 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm) 93 { 94 return dqm->dev->shared_resources.num_queue_per_pipe; 95 } 96 97 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm) 98 { 99 return dqm->dev->shared_resources.num_pipe_per_mec; 100 } 101 102 static unsigned int get_num_sdma_engines(struct device_queue_manager *dqm) 103 { 104 return dqm->dev->device_info->num_sdma_engines; 105 } 106 107 static unsigned int get_num_xgmi_sdma_engines(struct device_queue_manager *dqm) 108 { 109 return dqm->dev->device_info->num_xgmi_sdma_engines; 110 } 111 112 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm) 113 { 114 return dqm->dev->device_info->num_sdma_engines 115 * dqm->dev->device_info->num_sdma_queues_per_engine; 116 } 117 118 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm) 119 { 120 return dqm->dev->device_info->num_xgmi_sdma_engines 121 * dqm->dev->device_info->num_sdma_queues_per_engine; 122 } 123 124 void program_sh_mem_settings(struct device_queue_manager *dqm, 125 struct qcm_process_device *qpd) 126 { 127 return dqm->dev->kfd2kgd->program_sh_mem_settings( 128 dqm->dev->kgd, qpd->vmid, 129 qpd->sh_mem_config, 130 qpd->sh_mem_ape1_base, 131 qpd->sh_mem_ape1_limit, 132 qpd->sh_mem_bases); 133 } 134 135 static int allocate_doorbell(struct qcm_process_device *qpd, struct queue *q) 136 { 137 struct kfd_dev *dev = qpd->dqm->dev; 138 139 if (!KFD_IS_SOC15(dev->device_info->asic_family)) { 140 /* On pre-SOC15 chips we need to use the queue ID to 141 * preserve the user mode ABI. 142 */ 143 q->doorbell_id = q->properties.queue_id; 144 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 145 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 146 /* For SDMA queues on SOC15 with 8-byte doorbell, use static 147 * doorbell assignments based on the engine and queue id. 148 * The doobell index distance between RLC (2*i) and (2*i+1) 149 * for a SDMA engine is 512. 150 */ 151 uint32_t *idx_offset = 152 dev->shared_resources.sdma_doorbell_idx; 153 154 q->doorbell_id = idx_offset[q->properties.sdma_engine_id] 155 + (q->properties.sdma_queue_id & 1) 156 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET 157 + (q->properties.sdma_queue_id >> 1); 158 } else { 159 /* For CP queues on SOC15 reserve a free doorbell ID */ 160 unsigned int found; 161 162 found = find_first_zero_bit(qpd->doorbell_bitmap, 163 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 164 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) { 165 pr_debug("No doorbells available"); 166 return -EBUSY; 167 } 168 set_bit(found, qpd->doorbell_bitmap); 169 q->doorbell_id = found; 170 } 171 172 q->properties.doorbell_off = 173 kfd_get_doorbell_dw_offset_in_bar(dev, q->process, 174 q->doorbell_id); 175 176 return 0; 177 } 178 179 static void deallocate_doorbell(struct qcm_process_device *qpd, 180 struct queue *q) 181 { 182 unsigned int old; 183 struct kfd_dev *dev = qpd->dqm->dev; 184 185 if (!KFD_IS_SOC15(dev->device_info->asic_family) || 186 q->properties.type == KFD_QUEUE_TYPE_SDMA || 187 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 188 return; 189 190 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap); 191 WARN_ON(!old); 192 } 193 194 static int allocate_vmid(struct device_queue_manager *dqm, 195 struct qcm_process_device *qpd, 196 struct queue *q) 197 { 198 int allocated_vmid = -1, i; 199 200 for (i = dqm->dev->vm_info.first_vmid_kfd; 201 i <= dqm->dev->vm_info.last_vmid_kfd; i++) { 202 if (!dqm->vmid_pasid[i]) { 203 allocated_vmid = i; 204 break; 205 } 206 } 207 208 if (allocated_vmid < 0) { 209 pr_err("no more vmid to allocate\n"); 210 return -ENOSPC; 211 } 212 213 pr_debug("vmid allocated: %d\n", allocated_vmid); 214 215 dqm->vmid_pasid[allocated_vmid] = q->process->pasid; 216 217 set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid); 218 219 qpd->vmid = allocated_vmid; 220 q->properties.vmid = allocated_vmid; 221 222 program_sh_mem_settings(dqm, qpd); 223 224 /* qpd->page_table_base is set earlier when register_process() 225 * is called, i.e. when the first queue is created. 226 */ 227 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->kgd, 228 qpd->vmid, 229 qpd->page_table_base); 230 /* invalidate the VM context after pasid and vmid mapping is set up */ 231 kfd_flush_tlb(qpd_to_pdd(qpd)); 232 233 if (dqm->dev->kfd2kgd->set_scratch_backing_va) 234 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->kgd, 235 qpd->sh_hidden_private_base, qpd->vmid); 236 237 return 0; 238 } 239 240 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev, 241 struct qcm_process_device *qpd) 242 { 243 const struct packet_manager_funcs *pmf = qpd->dqm->packets.pmf; 244 int ret; 245 246 if (!qpd->ib_kaddr) 247 return -ENOMEM; 248 249 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr); 250 if (ret) 251 return ret; 252 253 return amdgpu_amdkfd_submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid, 254 qpd->ib_base, (uint32_t *)qpd->ib_kaddr, 255 pmf->release_mem_size / sizeof(uint32_t)); 256 } 257 258 static void deallocate_vmid(struct device_queue_manager *dqm, 259 struct qcm_process_device *qpd, 260 struct queue *q) 261 { 262 /* On GFX v7, CP doesn't flush TC at dequeue */ 263 if (q->device->device_info->asic_family == CHIP_HAWAII) 264 if (flush_texture_cache_nocpsch(q->device, qpd)) 265 pr_err("Failed to flush TC\n"); 266 267 kfd_flush_tlb(qpd_to_pdd(qpd)); 268 269 /* Release the vmid mapping */ 270 set_pasid_vmid_mapping(dqm, 0, qpd->vmid); 271 dqm->vmid_pasid[qpd->vmid] = 0; 272 273 qpd->vmid = 0; 274 q->properties.vmid = 0; 275 } 276 277 static int create_queue_nocpsch(struct device_queue_manager *dqm, 278 struct queue *q, 279 struct qcm_process_device *qpd) 280 { 281 struct mqd_manager *mqd_mgr; 282 int retval; 283 284 print_queue(q); 285 286 dqm_lock(dqm); 287 288 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 289 pr_warn("Can't create new usermode queue because %d queues were already created\n", 290 dqm->total_queue_count); 291 retval = -EPERM; 292 goto out_unlock; 293 } 294 295 if (list_empty(&qpd->queues_list)) { 296 retval = allocate_vmid(dqm, qpd, q); 297 if (retval) 298 goto out_unlock; 299 } 300 q->properties.vmid = qpd->vmid; 301 /* 302 * Eviction state logic: mark all queues as evicted, even ones 303 * not currently active. Restoring inactive queues later only 304 * updates the is_evicted flag but is a no-op otherwise. 305 */ 306 q->properties.is_evicted = !!qpd->evicted; 307 308 q->properties.tba_addr = qpd->tba_addr; 309 q->properties.tma_addr = qpd->tma_addr; 310 311 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 312 q->properties.type)]; 313 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) { 314 retval = allocate_hqd(dqm, q); 315 if (retval) 316 goto deallocate_vmid; 317 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n", 318 q->pipe, q->queue); 319 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 320 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 321 retval = allocate_sdma_queue(dqm, q); 322 if (retval) 323 goto deallocate_vmid; 324 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 325 } 326 327 retval = allocate_doorbell(qpd, q); 328 if (retval) 329 goto out_deallocate_hqd; 330 331 /* Temporarily release dqm lock to avoid a circular lock dependency */ 332 dqm_unlock(dqm); 333 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 334 dqm_lock(dqm); 335 336 if (!q->mqd_mem_obj) { 337 retval = -ENOMEM; 338 goto out_deallocate_doorbell; 339 } 340 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 341 &q->gart_mqd_addr, &q->properties); 342 if (q->properties.is_active) { 343 if (!dqm->sched_running) { 344 WARN_ONCE(1, "Load non-HWS mqd while stopped\n"); 345 goto add_queue_to_list; 346 } 347 348 if (WARN(q->process->mm != current->mm, 349 "should only run in user thread")) 350 retval = -EFAULT; 351 else 352 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 353 q->queue, &q->properties, current->mm); 354 if (retval) 355 goto out_free_mqd; 356 } 357 358 add_queue_to_list: 359 list_add(&q->list, &qpd->queues_list); 360 qpd->queue_count++; 361 if (q->properties.is_active) 362 dqm->queue_count++; 363 364 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 365 dqm->sdma_queue_count++; 366 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 367 dqm->xgmi_sdma_queue_count++; 368 369 /* 370 * Unconditionally increment this counter, regardless of the queue's 371 * type or whether the queue is active. 372 */ 373 dqm->total_queue_count++; 374 pr_debug("Total of %d queues are accountable so far\n", 375 dqm->total_queue_count); 376 goto out_unlock; 377 378 out_free_mqd: 379 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 380 out_deallocate_doorbell: 381 deallocate_doorbell(qpd, q); 382 out_deallocate_hqd: 383 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 384 deallocate_hqd(dqm, q); 385 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 386 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 387 deallocate_sdma_queue(dqm, q); 388 deallocate_vmid: 389 if (list_empty(&qpd->queues_list)) 390 deallocate_vmid(dqm, qpd, q); 391 out_unlock: 392 dqm_unlock(dqm); 393 return retval; 394 } 395 396 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q) 397 { 398 bool set; 399 int pipe, bit, i; 400 401 set = false; 402 403 for (pipe = dqm->next_pipe_to_allocate, i = 0; 404 i < get_pipes_per_mec(dqm); 405 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) { 406 407 if (!is_pipe_enabled(dqm, 0, pipe)) 408 continue; 409 410 if (dqm->allocated_queues[pipe] != 0) { 411 bit = ffs(dqm->allocated_queues[pipe]) - 1; 412 dqm->allocated_queues[pipe] &= ~(1 << bit); 413 q->pipe = pipe; 414 q->queue = bit; 415 set = true; 416 break; 417 } 418 } 419 420 if (!set) 421 return -EBUSY; 422 423 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue); 424 /* horizontal hqd allocation */ 425 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm); 426 427 return 0; 428 } 429 430 static inline void deallocate_hqd(struct device_queue_manager *dqm, 431 struct queue *q) 432 { 433 dqm->allocated_queues[q->pipe] |= (1 << q->queue); 434 } 435 436 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked 437 * to avoid asynchronized access 438 */ 439 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm, 440 struct qcm_process_device *qpd, 441 struct queue *q) 442 { 443 int retval; 444 struct mqd_manager *mqd_mgr; 445 446 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 447 q->properties.type)]; 448 449 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) { 450 deallocate_hqd(dqm, q); 451 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 452 dqm->sdma_queue_count--; 453 deallocate_sdma_queue(dqm, q); 454 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 455 dqm->xgmi_sdma_queue_count--; 456 deallocate_sdma_queue(dqm, q); 457 } else { 458 pr_debug("q->properties.type %d is invalid\n", 459 q->properties.type); 460 return -EINVAL; 461 } 462 dqm->total_queue_count--; 463 464 deallocate_doorbell(qpd, q); 465 466 if (!dqm->sched_running) { 467 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n"); 468 return 0; 469 } 470 471 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 472 KFD_PREEMPT_TYPE_WAVEFRONT_RESET, 473 KFD_UNMAP_LATENCY_MS, 474 q->pipe, q->queue); 475 if (retval == -ETIME) 476 qpd->reset_wavefronts = true; 477 478 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 479 480 list_del(&q->list); 481 if (list_empty(&qpd->queues_list)) { 482 if (qpd->reset_wavefronts) { 483 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n", 484 dqm->dev); 485 /* dbgdev_wave_reset_wavefronts has to be called before 486 * deallocate_vmid(), i.e. when vmid is still in use. 487 */ 488 dbgdev_wave_reset_wavefronts(dqm->dev, 489 qpd->pqm->process); 490 qpd->reset_wavefronts = false; 491 } 492 493 deallocate_vmid(dqm, qpd, q); 494 } 495 qpd->queue_count--; 496 if (q->properties.is_active) 497 dqm->queue_count--; 498 499 return retval; 500 } 501 502 static int destroy_queue_nocpsch(struct device_queue_manager *dqm, 503 struct qcm_process_device *qpd, 504 struct queue *q) 505 { 506 int retval; 507 508 dqm_lock(dqm); 509 retval = destroy_queue_nocpsch_locked(dqm, qpd, q); 510 dqm_unlock(dqm); 511 512 return retval; 513 } 514 515 static int update_queue(struct device_queue_manager *dqm, struct queue *q) 516 { 517 int retval = 0; 518 struct mqd_manager *mqd_mgr; 519 struct kfd_process_device *pdd; 520 bool prev_active = false; 521 522 dqm_lock(dqm); 523 pdd = kfd_get_process_device_data(q->device, q->process); 524 if (!pdd) { 525 retval = -ENODEV; 526 goto out_unlock; 527 } 528 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 529 q->properties.type)]; 530 531 /* Save previous activity state for counters */ 532 prev_active = q->properties.is_active; 533 534 /* Make sure the queue is unmapped before updating the MQD */ 535 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { 536 retval = unmap_queues_cpsch(dqm, 537 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 538 if (retval) { 539 pr_err("unmap queue failed\n"); 540 goto out_unlock; 541 } 542 } else if (prev_active && 543 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 544 q->properties.type == KFD_QUEUE_TYPE_SDMA || 545 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 546 547 if (!dqm->sched_running) { 548 WARN_ONCE(1, "Update non-HWS queue while stopped\n"); 549 goto out_unlock; 550 } 551 552 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 553 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN, 554 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 555 if (retval) { 556 pr_err("destroy mqd failed\n"); 557 goto out_unlock; 558 } 559 } 560 561 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties); 562 563 /* 564 * check active state vs. the previous state and modify 565 * counter accordingly. map_queues_cpsch uses the 566 * dqm->queue_count to determine whether a new runlist must be 567 * uploaded. 568 */ 569 if (q->properties.is_active && !prev_active) 570 dqm->queue_count++; 571 else if (!q->properties.is_active && prev_active) 572 dqm->queue_count--; 573 574 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) 575 retval = map_queues_cpsch(dqm); 576 else if (q->properties.is_active && 577 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 578 q->properties.type == KFD_QUEUE_TYPE_SDMA || 579 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 580 if (WARN(q->process->mm != current->mm, 581 "should only run in user thread")) 582 retval = -EFAULT; 583 else 584 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, 585 q->pipe, q->queue, 586 &q->properties, current->mm); 587 } 588 589 out_unlock: 590 dqm_unlock(dqm); 591 return retval; 592 } 593 594 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm, 595 struct qcm_process_device *qpd) 596 { 597 struct queue *q; 598 struct mqd_manager *mqd_mgr; 599 struct kfd_process_device *pdd; 600 int retval, ret = 0; 601 602 dqm_lock(dqm); 603 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 604 goto out; 605 606 pdd = qpd_to_pdd(qpd); 607 pr_info_ratelimited("Evicting PASID 0x%x queues\n", 608 pdd->process->pasid); 609 610 /* Mark all queues as evicted. Deactivate all active queues on 611 * the qpd. 612 */ 613 list_for_each_entry(q, &qpd->queues_list, list) { 614 q->properties.is_evicted = true; 615 if (!q->properties.is_active) 616 continue; 617 618 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 619 q->properties.type)]; 620 q->properties.is_active = false; 621 dqm->queue_count--; 622 623 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n")) 624 continue; 625 626 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 627 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN, 628 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 629 if (retval && !ret) 630 /* Return the first error, but keep going to 631 * maintain a consistent eviction state 632 */ 633 ret = retval; 634 } 635 636 out: 637 dqm_unlock(dqm); 638 return ret; 639 } 640 641 static int evict_process_queues_cpsch(struct device_queue_manager *dqm, 642 struct qcm_process_device *qpd) 643 { 644 struct queue *q; 645 struct kfd_process_device *pdd; 646 int retval = 0; 647 648 dqm_lock(dqm); 649 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 650 goto out; 651 652 pdd = qpd_to_pdd(qpd); 653 pr_info_ratelimited("Evicting PASID 0x%x queues\n", 654 pdd->process->pasid); 655 656 /* Mark all queues as evicted. Deactivate all active queues on 657 * the qpd. 658 */ 659 list_for_each_entry(q, &qpd->queues_list, list) { 660 q->properties.is_evicted = true; 661 if (!q->properties.is_active) 662 continue; 663 664 q->properties.is_active = false; 665 dqm->queue_count--; 666 } 667 retval = execute_queues_cpsch(dqm, 668 qpd->is_debug ? 669 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES : 670 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 671 672 out: 673 dqm_unlock(dqm); 674 return retval; 675 } 676 677 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm, 678 struct qcm_process_device *qpd) 679 { 680 struct mm_struct *mm = NULL; 681 struct queue *q; 682 struct mqd_manager *mqd_mgr; 683 struct kfd_process_device *pdd; 684 uint64_t pd_base; 685 int retval, ret = 0; 686 687 pdd = qpd_to_pdd(qpd); 688 /* Retrieve PD base */ 689 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm); 690 691 dqm_lock(dqm); 692 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 693 goto out; 694 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 695 qpd->evicted--; 696 goto out; 697 } 698 699 pr_info_ratelimited("Restoring PASID 0x%x queues\n", 700 pdd->process->pasid); 701 702 /* Update PD Base in QPD */ 703 qpd->page_table_base = pd_base; 704 pr_debug("Updated PD address to 0x%llx\n", pd_base); 705 706 if (!list_empty(&qpd->queues_list)) { 707 dqm->dev->kfd2kgd->set_vm_context_page_table_base( 708 dqm->dev->kgd, 709 qpd->vmid, 710 qpd->page_table_base); 711 kfd_flush_tlb(pdd); 712 } 713 714 /* Take a safe reference to the mm_struct, which may otherwise 715 * disappear even while the kfd_process is still referenced. 716 */ 717 mm = get_task_mm(pdd->process->lead_thread); 718 if (!mm) { 719 ret = -EFAULT; 720 goto out; 721 } 722 723 /* Remove the eviction flags. Activate queues that are not 724 * inactive for other reasons. 725 */ 726 list_for_each_entry(q, &qpd->queues_list, list) { 727 q->properties.is_evicted = false; 728 if (!QUEUE_IS_ACTIVE(q->properties)) 729 continue; 730 731 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 732 q->properties.type)]; 733 q->properties.is_active = true; 734 dqm->queue_count++; 735 736 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n")) 737 continue; 738 739 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 740 q->queue, &q->properties, mm); 741 if (retval && !ret) 742 /* Return the first error, but keep going to 743 * maintain a consistent eviction state 744 */ 745 ret = retval; 746 } 747 qpd->evicted = 0; 748 out: 749 if (mm) 750 mmput(mm); 751 dqm_unlock(dqm); 752 return ret; 753 } 754 755 static int restore_process_queues_cpsch(struct device_queue_manager *dqm, 756 struct qcm_process_device *qpd) 757 { 758 struct queue *q; 759 struct kfd_process_device *pdd; 760 uint64_t pd_base; 761 int retval = 0; 762 763 pdd = qpd_to_pdd(qpd); 764 /* Retrieve PD base */ 765 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm); 766 767 dqm_lock(dqm); 768 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 769 goto out; 770 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 771 qpd->evicted--; 772 goto out; 773 } 774 775 pr_info_ratelimited("Restoring PASID 0x%x queues\n", 776 pdd->process->pasid); 777 778 /* Update PD Base in QPD */ 779 qpd->page_table_base = pd_base; 780 pr_debug("Updated PD address to 0x%llx\n", pd_base); 781 782 /* activate all active queues on the qpd */ 783 list_for_each_entry(q, &qpd->queues_list, list) { 784 q->properties.is_evicted = false; 785 if (!QUEUE_IS_ACTIVE(q->properties)) 786 continue; 787 788 q->properties.is_active = true; 789 dqm->queue_count++; 790 } 791 retval = execute_queues_cpsch(dqm, 792 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 793 qpd->evicted = 0; 794 out: 795 dqm_unlock(dqm); 796 return retval; 797 } 798 799 static int register_process(struct device_queue_manager *dqm, 800 struct qcm_process_device *qpd) 801 { 802 struct device_process_node *n; 803 struct kfd_process_device *pdd; 804 uint64_t pd_base; 805 int retval; 806 807 n = kzalloc(sizeof(*n), GFP_KERNEL); 808 if (!n) 809 return -ENOMEM; 810 811 n->qpd = qpd; 812 813 pdd = qpd_to_pdd(qpd); 814 /* Retrieve PD base */ 815 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm); 816 817 dqm_lock(dqm); 818 list_add(&n->list, &dqm->queues); 819 820 /* Update PD Base in QPD */ 821 qpd->page_table_base = pd_base; 822 pr_debug("Updated PD address to 0x%llx\n", pd_base); 823 824 retval = dqm->asic_ops.update_qpd(dqm, qpd); 825 826 dqm->processes_count++; 827 828 dqm_unlock(dqm); 829 830 /* Outside the DQM lock because under the DQM lock we can't do 831 * reclaim or take other locks that others hold while reclaiming. 832 */ 833 kfd_inc_compute_active(dqm->dev); 834 835 return retval; 836 } 837 838 static int unregister_process(struct device_queue_manager *dqm, 839 struct qcm_process_device *qpd) 840 { 841 int retval; 842 struct device_process_node *cur, *next; 843 844 pr_debug("qpd->queues_list is %s\n", 845 list_empty(&qpd->queues_list) ? "empty" : "not empty"); 846 847 retval = 0; 848 dqm_lock(dqm); 849 850 list_for_each_entry_safe(cur, next, &dqm->queues, list) { 851 if (qpd == cur->qpd) { 852 list_del(&cur->list); 853 kfree(cur); 854 dqm->processes_count--; 855 goto out; 856 } 857 } 858 /* qpd not found in dqm list */ 859 retval = 1; 860 out: 861 dqm_unlock(dqm); 862 863 /* Outside the DQM lock because under the DQM lock we can't do 864 * reclaim or take other locks that others hold while reclaiming. 865 */ 866 if (!retval) 867 kfd_dec_compute_active(dqm->dev); 868 869 return retval; 870 } 871 872 static int 873 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid, 874 unsigned int vmid) 875 { 876 return dqm->dev->kfd2kgd->set_pasid_vmid_mapping( 877 dqm->dev->kgd, pasid, vmid); 878 } 879 880 static void init_interrupts(struct device_queue_manager *dqm) 881 { 882 unsigned int i; 883 884 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) 885 if (is_pipe_enabled(dqm, 0, i)) 886 dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i); 887 } 888 889 static int initialize_nocpsch(struct device_queue_manager *dqm) 890 { 891 int pipe, queue; 892 893 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 894 895 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm), 896 sizeof(unsigned int), GFP_KERNEL); 897 if (!dqm->allocated_queues) 898 return -ENOMEM; 899 900 mutex_init(&dqm->lock_hidden); 901 INIT_LIST_HEAD(&dqm->queues); 902 dqm->queue_count = dqm->next_pipe_to_allocate = 0; 903 dqm->sdma_queue_count = 0; 904 dqm->xgmi_sdma_queue_count = 0; 905 906 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 907 int pipe_offset = pipe * get_queues_per_pipe(dqm); 908 909 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) 910 if (test_bit(pipe_offset + queue, 911 dqm->dev->shared_resources.queue_bitmap)) 912 dqm->allocated_queues[pipe] |= 1 << queue; 913 } 914 915 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid)); 916 917 dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm)); 918 dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm)); 919 920 return 0; 921 } 922 923 static void uninitialize(struct device_queue_manager *dqm) 924 { 925 int i; 926 927 WARN_ON(dqm->queue_count > 0 || dqm->processes_count > 0); 928 929 kfree(dqm->allocated_queues); 930 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++) 931 kfree(dqm->mqd_mgrs[i]); 932 mutex_destroy(&dqm->lock_hidden); 933 } 934 935 static int start_nocpsch(struct device_queue_manager *dqm) 936 { 937 pr_info("SW scheduler is used"); 938 init_interrupts(dqm); 939 940 if (dqm->dev->device_info->asic_family == CHIP_HAWAII) 941 return pm_init(&dqm->packets, dqm); 942 dqm->sched_running = true; 943 944 return 0; 945 } 946 947 static int stop_nocpsch(struct device_queue_manager *dqm) 948 { 949 if (dqm->dev->device_info->asic_family == CHIP_HAWAII) 950 pm_uninit(&dqm->packets, false); 951 dqm->sched_running = false; 952 953 return 0; 954 } 955 956 static void pre_reset(struct device_queue_manager *dqm) 957 { 958 dqm_lock(dqm); 959 dqm->is_resetting = true; 960 dqm_unlock(dqm); 961 } 962 963 static int allocate_sdma_queue(struct device_queue_manager *dqm, 964 struct queue *q) 965 { 966 int bit; 967 968 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 969 if (dqm->sdma_bitmap == 0) 970 return -ENOMEM; 971 bit = __ffs64(dqm->sdma_bitmap); 972 dqm->sdma_bitmap &= ~(1ULL << bit); 973 q->sdma_id = bit; 974 q->properties.sdma_engine_id = q->sdma_id % 975 get_num_sdma_engines(dqm); 976 q->properties.sdma_queue_id = q->sdma_id / 977 get_num_sdma_engines(dqm); 978 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 979 if (dqm->xgmi_sdma_bitmap == 0) 980 return -ENOMEM; 981 bit = __ffs64(dqm->xgmi_sdma_bitmap); 982 dqm->xgmi_sdma_bitmap &= ~(1ULL << bit); 983 q->sdma_id = bit; 984 /* sdma_engine_id is sdma id including 985 * both PCIe-optimized SDMAs and XGMI- 986 * optimized SDMAs. The calculation below 987 * assumes the first N engines are always 988 * PCIe-optimized ones 989 */ 990 q->properties.sdma_engine_id = get_num_sdma_engines(dqm) + 991 q->sdma_id % get_num_xgmi_sdma_engines(dqm); 992 q->properties.sdma_queue_id = q->sdma_id / 993 get_num_xgmi_sdma_engines(dqm); 994 } 995 996 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id); 997 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id); 998 999 return 0; 1000 } 1001 1002 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 1003 struct queue *q) 1004 { 1005 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1006 if (q->sdma_id >= get_num_sdma_queues(dqm)) 1007 return; 1008 dqm->sdma_bitmap |= (1ULL << q->sdma_id); 1009 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1010 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm)) 1011 return; 1012 dqm->xgmi_sdma_bitmap |= (1ULL << q->sdma_id); 1013 } 1014 } 1015 1016 /* 1017 * Device Queue Manager implementation for cp scheduler 1018 */ 1019 1020 static int set_sched_resources(struct device_queue_manager *dqm) 1021 { 1022 int i, mec; 1023 struct scheduling_resources res; 1024 1025 res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap; 1026 1027 res.queue_mask = 0; 1028 for (i = 0; i < KGD_MAX_QUEUES; ++i) { 1029 mec = (i / dqm->dev->shared_resources.num_queue_per_pipe) 1030 / dqm->dev->shared_resources.num_pipe_per_mec; 1031 1032 if (!test_bit(i, dqm->dev->shared_resources.queue_bitmap)) 1033 continue; 1034 1035 /* only acquire queues from the first MEC */ 1036 if (mec > 0) 1037 continue; 1038 1039 /* This situation may be hit in the future if a new HW 1040 * generation exposes more than 64 queues. If so, the 1041 * definition of res.queue_mask needs updating 1042 */ 1043 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) { 1044 pr_err("Invalid queue enabled by amdgpu: %d\n", i); 1045 break; 1046 } 1047 1048 res.queue_mask |= (1ull << i); 1049 } 1050 res.gws_mask = ~0ull; 1051 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0; 1052 1053 pr_debug("Scheduling resources:\n" 1054 "vmid mask: 0x%8X\n" 1055 "queue mask: 0x%8llX\n", 1056 res.vmid_mask, res.queue_mask); 1057 1058 return pm_send_set_resources(&dqm->packets, &res); 1059 } 1060 1061 static int initialize_cpsch(struct device_queue_manager *dqm) 1062 { 1063 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 1064 1065 mutex_init(&dqm->lock_hidden); 1066 INIT_LIST_HEAD(&dqm->queues); 1067 dqm->queue_count = dqm->processes_count = 0; 1068 dqm->sdma_queue_count = 0; 1069 dqm->xgmi_sdma_queue_count = 0; 1070 dqm->active_runlist = false; 1071 dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm)); 1072 dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm)); 1073 1074 INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception); 1075 1076 return 0; 1077 } 1078 1079 static int start_cpsch(struct device_queue_manager *dqm) 1080 { 1081 int retval; 1082 1083 retval = 0; 1084 1085 retval = pm_init(&dqm->packets, dqm); 1086 if (retval) 1087 goto fail_packet_manager_init; 1088 1089 retval = set_sched_resources(dqm); 1090 if (retval) 1091 goto fail_set_sched_resources; 1092 1093 pr_debug("Allocating fence memory\n"); 1094 1095 /* allocate fence memory on the gart */ 1096 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr), 1097 &dqm->fence_mem); 1098 1099 if (retval) 1100 goto fail_allocate_vidmem; 1101 1102 dqm->fence_addr = dqm->fence_mem->cpu_ptr; 1103 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr; 1104 1105 init_interrupts(dqm); 1106 1107 dqm_lock(dqm); 1108 /* clear hang status when driver try to start the hw scheduler */ 1109 dqm->is_hws_hang = false; 1110 dqm->is_resetting = false; 1111 dqm->sched_running = true; 1112 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1113 dqm_unlock(dqm); 1114 1115 return 0; 1116 fail_allocate_vidmem: 1117 fail_set_sched_resources: 1118 pm_uninit(&dqm->packets, false); 1119 fail_packet_manager_init: 1120 return retval; 1121 } 1122 1123 static int stop_cpsch(struct device_queue_manager *dqm) 1124 { 1125 bool hanging; 1126 1127 dqm_lock(dqm); 1128 if (!dqm->is_hws_hang) 1129 unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0); 1130 hanging = dqm->is_hws_hang || dqm->is_resetting; 1131 dqm->sched_running = false; 1132 dqm_unlock(dqm); 1133 1134 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); 1135 pm_uninit(&dqm->packets, hanging); 1136 1137 return 0; 1138 } 1139 1140 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm, 1141 struct kernel_queue *kq, 1142 struct qcm_process_device *qpd) 1143 { 1144 dqm_lock(dqm); 1145 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1146 pr_warn("Can't create new kernel queue because %d queues were already created\n", 1147 dqm->total_queue_count); 1148 dqm_unlock(dqm); 1149 return -EPERM; 1150 } 1151 1152 /* 1153 * Unconditionally increment this counter, regardless of the queue's 1154 * type or whether the queue is active. 1155 */ 1156 dqm->total_queue_count++; 1157 pr_debug("Total of %d queues are accountable so far\n", 1158 dqm->total_queue_count); 1159 1160 list_add(&kq->list, &qpd->priv_queue_list); 1161 dqm->queue_count++; 1162 qpd->is_debug = true; 1163 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1164 dqm_unlock(dqm); 1165 1166 return 0; 1167 } 1168 1169 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm, 1170 struct kernel_queue *kq, 1171 struct qcm_process_device *qpd) 1172 { 1173 dqm_lock(dqm); 1174 list_del(&kq->list); 1175 dqm->queue_count--; 1176 qpd->is_debug = false; 1177 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0); 1178 /* 1179 * Unconditionally decrement this counter, regardless of the queue's 1180 * type. 1181 */ 1182 dqm->total_queue_count--; 1183 pr_debug("Total of %d queues are accountable so far\n", 1184 dqm->total_queue_count); 1185 dqm_unlock(dqm); 1186 } 1187 1188 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q, 1189 struct qcm_process_device *qpd) 1190 { 1191 int retval; 1192 struct mqd_manager *mqd_mgr; 1193 1194 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1195 pr_warn("Can't create new usermode queue because %d queues were already created\n", 1196 dqm->total_queue_count); 1197 retval = -EPERM; 1198 goto out; 1199 } 1200 1201 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1202 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1203 dqm_lock(dqm); 1204 retval = allocate_sdma_queue(dqm, q); 1205 dqm_unlock(dqm); 1206 if (retval) 1207 goto out; 1208 } 1209 1210 retval = allocate_doorbell(qpd, q); 1211 if (retval) 1212 goto out_deallocate_sdma_queue; 1213 1214 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1215 q->properties.type)]; 1216 1217 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1218 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 1219 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 1220 q->properties.tba_addr = qpd->tba_addr; 1221 q->properties.tma_addr = qpd->tma_addr; 1222 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 1223 if (!q->mqd_mem_obj) { 1224 retval = -ENOMEM; 1225 goto out_deallocate_doorbell; 1226 } 1227 1228 dqm_lock(dqm); 1229 /* 1230 * Eviction state logic: mark all queues as evicted, even ones 1231 * not currently active. Restoring inactive queues later only 1232 * updates the is_evicted flag but is a no-op otherwise. 1233 */ 1234 q->properties.is_evicted = !!qpd->evicted; 1235 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 1236 &q->gart_mqd_addr, &q->properties); 1237 1238 list_add(&q->list, &qpd->queues_list); 1239 qpd->queue_count++; 1240 1241 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 1242 dqm->sdma_queue_count++; 1243 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 1244 dqm->xgmi_sdma_queue_count++; 1245 1246 if (q->properties.is_active) { 1247 dqm->queue_count++; 1248 retval = execute_queues_cpsch(dqm, 1249 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1250 } 1251 1252 /* 1253 * Unconditionally increment this counter, regardless of the queue's 1254 * type or whether the queue is active. 1255 */ 1256 dqm->total_queue_count++; 1257 1258 pr_debug("Total of %d queues are accountable so far\n", 1259 dqm->total_queue_count); 1260 1261 dqm_unlock(dqm); 1262 return retval; 1263 1264 out_deallocate_doorbell: 1265 deallocate_doorbell(qpd, q); 1266 out_deallocate_sdma_queue: 1267 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1268 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1269 dqm_lock(dqm); 1270 deallocate_sdma_queue(dqm, q); 1271 dqm_unlock(dqm); 1272 } 1273 out: 1274 return retval; 1275 } 1276 1277 int amdkfd_fence_wait_timeout(unsigned int *fence_addr, 1278 unsigned int fence_value, 1279 unsigned int timeout_ms) 1280 { 1281 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies; 1282 1283 while (*fence_addr != fence_value) { 1284 if (time_after(jiffies, end_jiffies)) { 1285 pr_err("qcm fence wait loop timeout expired\n"); 1286 /* In HWS case, this is used to halt the driver thread 1287 * in order not to mess up CP states before doing 1288 * scandumps for FW debugging. 1289 */ 1290 while (halt_if_hws_hang) 1291 schedule(); 1292 1293 return -ETIME; 1294 } 1295 schedule(); 1296 } 1297 1298 return 0; 1299 } 1300 1301 static int unmap_sdma_queues(struct device_queue_manager *dqm) 1302 { 1303 int i, retval = 0; 1304 1305 for (i = 0; i < dqm->dev->device_info->num_sdma_engines + 1306 dqm->dev->device_info->num_xgmi_sdma_engines; i++) { 1307 retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA, 1308 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, false, i); 1309 if (retval) 1310 return retval; 1311 } 1312 return retval; 1313 } 1314 1315 /* dqm->lock mutex has to be locked before calling this function */ 1316 static int map_queues_cpsch(struct device_queue_manager *dqm) 1317 { 1318 int retval; 1319 1320 if (!dqm->sched_running) 1321 return 0; 1322 if (dqm->queue_count <= 0 || dqm->processes_count <= 0) 1323 return 0; 1324 if (dqm->active_runlist) 1325 return 0; 1326 1327 retval = pm_send_runlist(&dqm->packets, &dqm->queues); 1328 pr_debug("%s sent runlist\n", __func__); 1329 if (retval) { 1330 pr_err("failed to execute runlist\n"); 1331 return retval; 1332 } 1333 dqm->active_runlist = true; 1334 1335 return retval; 1336 } 1337 1338 /* dqm->lock mutex has to be locked before calling this function */ 1339 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 1340 enum kfd_unmap_queues_filter filter, 1341 uint32_t filter_param) 1342 { 1343 int retval = 0; 1344 1345 if (!dqm->sched_running) 1346 return 0; 1347 if (dqm->is_hws_hang) 1348 return -EIO; 1349 if (!dqm->active_runlist) 1350 return retval; 1351 1352 pr_debug("Before destroying queues, sdma queue count is : %u, xgmi sdma queue count is : %u\n", 1353 dqm->sdma_queue_count, dqm->xgmi_sdma_queue_count); 1354 1355 if (dqm->sdma_queue_count > 0 || dqm->xgmi_sdma_queue_count) 1356 unmap_sdma_queues(dqm); 1357 1358 retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE, 1359 filter, filter_param, false, 0); 1360 if (retval) 1361 return retval; 1362 1363 *dqm->fence_addr = KFD_FENCE_INIT; 1364 pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr, 1365 KFD_FENCE_COMPLETED); 1366 /* should be timed out */ 1367 retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED, 1368 queue_preemption_timeout_ms); 1369 if (retval) { 1370 pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n"); 1371 dqm->is_hws_hang = true; 1372 /* It's possible we're detecting a HWS hang in the 1373 * middle of a GPU reset. No need to schedule another 1374 * reset in this case. 1375 */ 1376 if (!dqm->is_resetting) 1377 schedule_work(&dqm->hw_exception_work); 1378 return retval; 1379 } 1380 1381 pm_release_ib(&dqm->packets); 1382 dqm->active_runlist = false; 1383 1384 return retval; 1385 } 1386 1387 /* dqm->lock mutex has to be locked before calling this function */ 1388 static int execute_queues_cpsch(struct device_queue_manager *dqm, 1389 enum kfd_unmap_queues_filter filter, 1390 uint32_t filter_param) 1391 { 1392 int retval; 1393 1394 if (dqm->is_hws_hang) 1395 return -EIO; 1396 retval = unmap_queues_cpsch(dqm, filter, filter_param); 1397 if (retval) 1398 return retval; 1399 1400 return map_queues_cpsch(dqm); 1401 } 1402 1403 static int destroy_queue_cpsch(struct device_queue_manager *dqm, 1404 struct qcm_process_device *qpd, 1405 struct queue *q) 1406 { 1407 int retval; 1408 struct mqd_manager *mqd_mgr; 1409 1410 retval = 0; 1411 1412 /* remove queue from list to prevent rescheduling after preemption */ 1413 dqm_lock(dqm); 1414 1415 if (qpd->is_debug) { 1416 /* 1417 * error, currently we do not allow to destroy a queue 1418 * of a currently debugged process 1419 */ 1420 retval = -EBUSY; 1421 goto failed_try_destroy_debugged_queue; 1422 1423 } 1424 1425 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1426 q->properties.type)]; 1427 1428 deallocate_doorbell(qpd, q); 1429 1430 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1431 dqm->sdma_queue_count--; 1432 deallocate_sdma_queue(dqm, q); 1433 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1434 dqm->xgmi_sdma_queue_count--; 1435 deallocate_sdma_queue(dqm, q); 1436 } 1437 1438 list_del(&q->list); 1439 qpd->queue_count--; 1440 if (q->properties.is_active) { 1441 dqm->queue_count--; 1442 retval = execute_queues_cpsch(dqm, 1443 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1444 if (retval == -ETIME) 1445 qpd->reset_wavefronts = true; 1446 } 1447 1448 /* 1449 * Unconditionally decrement this counter, regardless of the queue's 1450 * type 1451 */ 1452 dqm->total_queue_count--; 1453 pr_debug("Total of %d queues are accountable so far\n", 1454 dqm->total_queue_count); 1455 1456 dqm_unlock(dqm); 1457 1458 /* Do free_mqd after dqm_unlock(dqm) to avoid circular locking */ 1459 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 1460 1461 return retval; 1462 1463 failed_try_destroy_debugged_queue: 1464 1465 dqm_unlock(dqm); 1466 return retval; 1467 } 1468 1469 /* 1470 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to 1471 * stay in user mode. 1472 */ 1473 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL 1474 /* APE1 limit is inclusive and 64K aligned. */ 1475 #define APE1_LIMIT_ALIGNMENT 0xFFFF 1476 1477 static bool set_cache_memory_policy(struct device_queue_manager *dqm, 1478 struct qcm_process_device *qpd, 1479 enum cache_policy default_policy, 1480 enum cache_policy alternate_policy, 1481 void __user *alternate_aperture_base, 1482 uint64_t alternate_aperture_size) 1483 { 1484 bool retval = true; 1485 1486 if (!dqm->asic_ops.set_cache_memory_policy) 1487 return retval; 1488 1489 dqm_lock(dqm); 1490 1491 if (alternate_aperture_size == 0) { 1492 /* base > limit disables APE1 */ 1493 qpd->sh_mem_ape1_base = 1; 1494 qpd->sh_mem_ape1_limit = 0; 1495 } else { 1496 /* 1497 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]}, 1498 * SH_MEM_APE1_BASE[31:0], 0x0000 } 1499 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]}, 1500 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF } 1501 * Verify that the base and size parameters can be 1502 * represented in this format and convert them. 1503 * Additionally restrict APE1 to user-mode addresses. 1504 */ 1505 1506 uint64_t base = (uintptr_t)alternate_aperture_base; 1507 uint64_t limit = base + alternate_aperture_size - 1; 1508 1509 if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 || 1510 (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) { 1511 retval = false; 1512 goto out; 1513 } 1514 1515 qpd->sh_mem_ape1_base = base >> 16; 1516 qpd->sh_mem_ape1_limit = limit >> 16; 1517 } 1518 1519 retval = dqm->asic_ops.set_cache_memory_policy( 1520 dqm, 1521 qpd, 1522 default_policy, 1523 alternate_policy, 1524 alternate_aperture_base, 1525 alternate_aperture_size); 1526 1527 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0)) 1528 program_sh_mem_settings(dqm, qpd); 1529 1530 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n", 1531 qpd->sh_mem_config, qpd->sh_mem_ape1_base, 1532 qpd->sh_mem_ape1_limit); 1533 1534 out: 1535 dqm_unlock(dqm); 1536 return retval; 1537 } 1538 1539 static int set_trap_handler(struct device_queue_manager *dqm, 1540 struct qcm_process_device *qpd, 1541 uint64_t tba_addr, 1542 uint64_t tma_addr) 1543 { 1544 uint64_t *tma; 1545 1546 if (dqm->dev->cwsr_enabled) { 1547 /* Jump from CWSR trap handler to user trap */ 1548 tma = (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1549 tma[0] = tba_addr; 1550 tma[1] = tma_addr; 1551 } else { 1552 qpd->tba_addr = tba_addr; 1553 qpd->tma_addr = tma_addr; 1554 } 1555 1556 return 0; 1557 } 1558 1559 static int process_termination_nocpsch(struct device_queue_manager *dqm, 1560 struct qcm_process_device *qpd) 1561 { 1562 struct queue *q, *next; 1563 struct device_process_node *cur, *next_dpn; 1564 int retval = 0; 1565 bool found = false; 1566 1567 dqm_lock(dqm); 1568 1569 /* Clear all user mode queues */ 1570 list_for_each_entry_safe(q, next, &qpd->queues_list, list) { 1571 int ret; 1572 1573 ret = destroy_queue_nocpsch_locked(dqm, qpd, q); 1574 if (ret) 1575 retval = ret; 1576 } 1577 1578 /* Unregister process */ 1579 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 1580 if (qpd == cur->qpd) { 1581 list_del(&cur->list); 1582 kfree(cur); 1583 dqm->processes_count--; 1584 found = true; 1585 break; 1586 } 1587 } 1588 1589 dqm_unlock(dqm); 1590 1591 /* Outside the DQM lock because under the DQM lock we can't do 1592 * reclaim or take other locks that others hold while reclaiming. 1593 */ 1594 if (found) 1595 kfd_dec_compute_active(dqm->dev); 1596 1597 return retval; 1598 } 1599 1600 static int get_wave_state(struct device_queue_manager *dqm, 1601 struct queue *q, 1602 void __user *ctl_stack, 1603 u32 *ctl_stack_used_size, 1604 u32 *save_area_used_size) 1605 { 1606 struct mqd_manager *mqd_mgr; 1607 int r; 1608 1609 dqm_lock(dqm); 1610 1611 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE || 1612 q->properties.is_active || !q->device->cwsr_enabled) { 1613 r = -EINVAL; 1614 goto dqm_unlock; 1615 } 1616 1617 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP]; 1618 1619 if (!mqd_mgr->get_wave_state) { 1620 r = -EINVAL; 1621 goto dqm_unlock; 1622 } 1623 1624 r = mqd_mgr->get_wave_state(mqd_mgr, q->mqd, ctl_stack, 1625 ctl_stack_used_size, save_area_used_size); 1626 1627 dqm_unlock: 1628 dqm_unlock(dqm); 1629 return r; 1630 } 1631 1632 static int process_termination_cpsch(struct device_queue_manager *dqm, 1633 struct qcm_process_device *qpd) 1634 { 1635 int retval; 1636 struct queue *q, *next; 1637 struct kernel_queue *kq, *kq_next; 1638 struct mqd_manager *mqd_mgr; 1639 struct device_process_node *cur, *next_dpn; 1640 enum kfd_unmap_queues_filter filter = 1641 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES; 1642 bool found = false; 1643 1644 retval = 0; 1645 1646 dqm_lock(dqm); 1647 1648 /* Clean all kernel queues */ 1649 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) { 1650 list_del(&kq->list); 1651 dqm->queue_count--; 1652 qpd->is_debug = false; 1653 dqm->total_queue_count--; 1654 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES; 1655 } 1656 1657 /* Clear all user mode queues */ 1658 list_for_each_entry(q, &qpd->queues_list, list) { 1659 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1660 dqm->sdma_queue_count--; 1661 deallocate_sdma_queue(dqm, q); 1662 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1663 dqm->xgmi_sdma_queue_count--; 1664 deallocate_sdma_queue(dqm, q); 1665 } 1666 1667 if (q->properties.is_active) 1668 dqm->queue_count--; 1669 1670 dqm->total_queue_count--; 1671 } 1672 1673 /* Unregister process */ 1674 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 1675 if (qpd == cur->qpd) { 1676 list_del(&cur->list); 1677 kfree(cur); 1678 dqm->processes_count--; 1679 found = true; 1680 break; 1681 } 1682 } 1683 1684 retval = execute_queues_cpsch(dqm, filter, 0); 1685 if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) { 1686 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev); 1687 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process); 1688 qpd->reset_wavefronts = false; 1689 } 1690 1691 dqm_unlock(dqm); 1692 1693 /* Outside the DQM lock because under the DQM lock we can't do 1694 * reclaim or take other locks that others hold while reclaiming. 1695 */ 1696 if (found) 1697 kfd_dec_compute_active(dqm->dev); 1698 1699 /* Lastly, free mqd resources. 1700 * Do free_mqd() after dqm_unlock to avoid circular locking. 1701 */ 1702 list_for_each_entry_safe(q, next, &qpd->queues_list, list) { 1703 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1704 q->properties.type)]; 1705 list_del(&q->list); 1706 qpd->queue_count--; 1707 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 1708 } 1709 1710 return retval; 1711 } 1712 1713 static int init_mqd_managers(struct device_queue_manager *dqm) 1714 { 1715 int i, j; 1716 struct mqd_manager *mqd_mgr; 1717 1718 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) { 1719 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev); 1720 if (!mqd_mgr) { 1721 pr_err("mqd manager [%d] initialization failed\n", i); 1722 goto out_free; 1723 } 1724 dqm->mqd_mgrs[i] = mqd_mgr; 1725 } 1726 1727 return 0; 1728 1729 out_free: 1730 for (j = 0; j < i; j++) { 1731 kfree(dqm->mqd_mgrs[j]); 1732 dqm->mqd_mgrs[j] = NULL; 1733 } 1734 1735 return -ENOMEM; 1736 } 1737 1738 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/ 1739 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm) 1740 { 1741 int retval; 1742 struct kfd_dev *dev = dqm->dev; 1743 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd; 1744 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size * 1745 (dev->device_info->num_sdma_engines + 1746 dev->device_info->num_xgmi_sdma_engines) * 1747 dev->device_info->num_sdma_queues_per_engine + 1748 dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size; 1749 1750 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->kgd, size, 1751 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr), 1752 (void *)&(mem_obj->cpu_ptr), true); 1753 1754 return retval; 1755 } 1756 1757 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev) 1758 { 1759 struct device_queue_manager *dqm; 1760 1761 pr_debug("Loading device queue manager\n"); 1762 1763 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL); 1764 if (!dqm) 1765 return NULL; 1766 1767 switch (dev->device_info->asic_family) { 1768 /* HWS is not available on Hawaii. */ 1769 case CHIP_HAWAII: 1770 /* HWS depends on CWSR for timely dequeue. CWSR is not 1771 * available on Tonga. 1772 * 1773 * FIXME: This argument also applies to Kaveri. 1774 */ 1775 case CHIP_TONGA: 1776 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS; 1777 break; 1778 default: 1779 dqm->sched_policy = sched_policy; 1780 break; 1781 } 1782 1783 dqm->dev = dev; 1784 switch (dqm->sched_policy) { 1785 case KFD_SCHED_POLICY_HWS: 1786 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: 1787 /* initialize dqm for cp scheduling */ 1788 dqm->ops.create_queue = create_queue_cpsch; 1789 dqm->ops.initialize = initialize_cpsch; 1790 dqm->ops.start = start_cpsch; 1791 dqm->ops.stop = stop_cpsch; 1792 dqm->ops.pre_reset = pre_reset; 1793 dqm->ops.destroy_queue = destroy_queue_cpsch; 1794 dqm->ops.update_queue = update_queue; 1795 dqm->ops.register_process = register_process; 1796 dqm->ops.unregister_process = unregister_process; 1797 dqm->ops.uninitialize = uninitialize; 1798 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch; 1799 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch; 1800 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 1801 dqm->ops.set_trap_handler = set_trap_handler; 1802 dqm->ops.process_termination = process_termination_cpsch; 1803 dqm->ops.evict_process_queues = evict_process_queues_cpsch; 1804 dqm->ops.restore_process_queues = restore_process_queues_cpsch; 1805 dqm->ops.get_wave_state = get_wave_state; 1806 break; 1807 case KFD_SCHED_POLICY_NO_HWS: 1808 /* initialize dqm for no cp scheduling */ 1809 dqm->ops.start = start_nocpsch; 1810 dqm->ops.stop = stop_nocpsch; 1811 dqm->ops.pre_reset = pre_reset; 1812 dqm->ops.create_queue = create_queue_nocpsch; 1813 dqm->ops.destroy_queue = destroy_queue_nocpsch; 1814 dqm->ops.update_queue = update_queue; 1815 dqm->ops.register_process = register_process; 1816 dqm->ops.unregister_process = unregister_process; 1817 dqm->ops.initialize = initialize_nocpsch; 1818 dqm->ops.uninitialize = uninitialize; 1819 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 1820 dqm->ops.set_trap_handler = set_trap_handler; 1821 dqm->ops.process_termination = process_termination_nocpsch; 1822 dqm->ops.evict_process_queues = evict_process_queues_nocpsch; 1823 dqm->ops.restore_process_queues = 1824 restore_process_queues_nocpsch; 1825 dqm->ops.get_wave_state = get_wave_state; 1826 break; 1827 default: 1828 pr_err("Invalid scheduling policy %d\n", dqm->sched_policy); 1829 goto out_free; 1830 } 1831 1832 switch (dev->device_info->asic_family) { 1833 case CHIP_CARRIZO: 1834 device_queue_manager_init_vi(&dqm->asic_ops); 1835 break; 1836 1837 case CHIP_KAVERI: 1838 device_queue_manager_init_cik(&dqm->asic_ops); 1839 break; 1840 1841 case CHIP_HAWAII: 1842 device_queue_manager_init_cik_hawaii(&dqm->asic_ops); 1843 break; 1844 1845 case CHIP_TONGA: 1846 case CHIP_FIJI: 1847 case CHIP_POLARIS10: 1848 case CHIP_POLARIS11: 1849 case CHIP_POLARIS12: 1850 case CHIP_VEGAM: 1851 device_queue_manager_init_vi_tonga(&dqm->asic_ops); 1852 break; 1853 1854 case CHIP_VEGA10: 1855 case CHIP_VEGA12: 1856 case CHIP_VEGA20: 1857 case CHIP_RAVEN: 1858 case CHIP_RENOIR: 1859 case CHIP_ARCTURUS: 1860 device_queue_manager_init_v9(&dqm->asic_ops); 1861 break; 1862 case CHIP_NAVI10: 1863 case CHIP_NAVI12: 1864 case CHIP_NAVI14: 1865 device_queue_manager_init_v10_navi10(&dqm->asic_ops); 1866 break; 1867 default: 1868 WARN(1, "Unexpected ASIC family %u", 1869 dev->device_info->asic_family); 1870 goto out_free; 1871 } 1872 1873 if (init_mqd_managers(dqm)) 1874 goto out_free; 1875 1876 if (allocate_hiq_sdma_mqd(dqm)) { 1877 pr_err("Failed to allocate hiq sdma mqd trunk buffer\n"); 1878 goto out_free; 1879 } 1880 1881 if (!dqm->ops.initialize(dqm)) 1882 return dqm; 1883 1884 out_free: 1885 kfree(dqm); 1886 return NULL; 1887 } 1888 1889 static void deallocate_hiq_sdma_mqd(struct kfd_dev *dev, 1890 struct kfd_mem_obj *mqd) 1891 { 1892 WARN(!mqd, "No hiq sdma mqd trunk to free"); 1893 1894 amdgpu_amdkfd_free_gtt_mem(dev->kgd, mqd->gtt_mem); 1895 } 1896 1897 void device_queue_manager_uninit(struct device_queue_manager *dqm) 1898 { 1899 dqm->ops.uninitialize(dqm); 1900 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd); 1901 kfree(dqm); 1902 } 1903 1904 int kfd_process_vm_fault(struct device_queue_manager *dqm, 1905 unsigned int pasid) 1906 { 1907 struct kfd_process_device *pdd; 1908 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1909 int ret = 0; 1910 1911 if (!p) 1912 return -EINVAL; 1913 pdd = kfd_get_process_device_data(dqm->dev, p); 1914 if (pdd) 1915 ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd); 1916 kfd_unref_process(p); 1917 1918 return ret; 1919 } 1920 1921 static void kfd_process_hw_exception(struct work_struct *work) 1922 { 1923 struct device_queue_manager *dqm = container_of(work, 1924 struct device_queue_manager, hw_exception_work); 1925 amdgpu_amdkfd_gpu_reset(dqm->dev->kgd); 1926 } 1927 1928 #if defined(CONFIG_DEBUG_FS) 1929 1930 static void seq_reg_dump(struct seq_file *m, 1931 uint32_t (*dump)[2], uint32_t n_regs) 1932 { 1933 uint32_t i, count; 1934 1935 for (i = 0, count = 0; i < n_regs; i++) { 1936 if (count == 0 || 1937 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) { 1938 seq_printf(m, "%s %08x: %08x", 1939 i ? "\n" : "", 1940 dump[i][0], dump[i][1]); 1941 count = 7; 1942 } else { 1943 seq_printf(m, " %08x", dump[i][1]); 1944 count--; 1945 } 1946 } 1947 1948 seq_puts(m, "\n"); 1949 } 1950 1951 int dqm_debugfs_hqds(struct seq_file *m, void *data) 1952 { 1953 struct device_queue_manager *dqm = data; 1954 uint32_t (*dump)[2], n_regs; 1955 int pipe, queue; 1956 int r = 0; 1957 1958 if (!dqm->sched_running) { 1959 seq_printf(m, " Device is stopped\n"); 1960 1961 return 0; 1962 } 1963 1964 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->kgd, 1965 KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE, 1966 &dump, &n_regs); 1967 if (!r) { 1968 seq_printf(m, " HIQ on MEC %d Pipe %d Queue %d\n", 1969 KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1, 1970 KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm), 1971 KFD_CIK_HIQ_QUEUE); 1972 seq_reg_dump(m, dump, n_regs); 1973 1974 kfree(dump); 1975 } 1976 1977 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 1978 int pipe_offset = pipe * get_queues_per_pipe(dqm); 1979 1980 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) { 1981 if (!test_bit(pipe_offset + queue, 1982 dqm->dev->shared_resources.queue_bitmap)) 1983 continue; 1984 1985 r = dqm->dev->kfd2kgd->hqd_dump( 1986 dqm->dev->kgd, pipe, queue, &dump, &n_regs); 1987 if (r) 1988 break; 1989 1990 seq_printf(m, " CP Pipe %d, Queue %d\n", 1991 pipe, queue); 1992 seq_reg_dump(m, dump, n_regs); 1993 1994 kfree(dump); 1995 } 1996 } 1997 1998 for (pipe = 0; pipe < get_num_sdma_engines(dqm) + 1999 get_num_xgmi_sdma_engines(dqm); pipe++) { 2000 for (queue = 0; 2001 queue < dqm->dev->device_info->num_sdma_queues_per_engine; 2002 queue++) { 2003 r = dqm->dev->kfd2kgd->hqd_sdma_dump( 2004 dqm->dev->kgd, pipe, queue, &dump, &n_regs); 2005 if (r) 2006 break; 2007 2008 seq_printf(m, " SDMA Engine %d, RLC %d\n", 2009 pipe, queue); 2010 seq_reg_dump(m, dump, n_regs); 2011 2012 kfree(dump); 2013 } 2014 } 2015 2016 return r; 2017 } 2018 2019 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm) 2020 { 2021 int r = 0; 2022 2023 dqm_lock(dqm); 2024 dqm->active_runlist = true; 2025 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0); 2026 dqm_unlock(dqm); 2027 2028 return r; 2029 } 2030 2031 #endif 2032