1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/ratelimit.h>
25 #include <linux/printk.h>
26 #include <linux/slab.h>
27 #include <linux/list.h>
28 #include <linux/types.h>
29 #include <linux/bitops.h>
30 #include <linux/sched.h>
31 #include "kfd_priv.h"
32 #include "kfd_device_queue_manager.h"
33 #include "kfd_mqd_manager.h"
34 #include "cik_regs.h"
35 #include "kfd_kernel_queue.h"
36 #include "amdgpu_amdkfd.h"
37 
38 /* Size of the per-pipe EOP queue */
39 #define CIK_HPD_EOP_BYTES_LOG2 11
40 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
41 
42 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
43 				  u32 pasid, unsigned int vmid);
44 
45 static int execute_queues_cpsch(struct device_queue_manager *dqm,
46 				enum kfd_unmap_queues_filter filter,
47 				uint32_t filter_param);
48 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
49 				enum kfd_unmap_queues_filter filter,
50 				uint32_t filter_param);
51 
52 static int map_queues_cpsch(struct device_queue_manager *dqm);
53 
54 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
55 				struct queue *q);
56 
57 static inline void deallocate_hqd(struct device_queue_manager *dqm,
58 				struct queue *q);
59 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
60 static int allocate_sdma_queue(struct device_queue_manager *dqm,
61 				struct queue *q);
62 static void kfd_process_hw_exception(struct work_struct *work);
63 
64 static inline
65 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
66 {
67 	if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
68 		return KFD_MQD_TYPE_SDMA;
69 	return KFD_MQD_TYPE_CP;
70 }
71 
72 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
73 {
74 	int i;
75 	int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec
76 		+ pipe * dqm->dev->shared_resources.num_queue_per_pipe;
77 
78 	/* queue is available for KFD usage if bit is 1 */
79 	for (i = 0; i <  dqm->dev->shared_resources.num_queue_per_pipe; ++i)
80 		if (test_bit(pipe_offset + i,
81 			      dqm->dev->shared_resources.cp_queue_bitmap))
82 			return true;
83 	return false;
84 }
85 
86 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
87 {
88 	return bitmap_weight(dqm->dev->shared_resources.cp_queue_bitmap,
89 				KGD_MAX_QUEUES);
90 }
91 
92 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
93 {
94 	return dqm->dev->shared_resources.num_queue_per_pipe;
95 }
96 
97 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
98 {
99 	return dqm->dev->shared_resources.num_pipe_per_mec;
100 }
101 
102 static unsigned int get_num_sdma_engines(struct device_queue_manager *dqm)
103 {
104 	return dqm->dev->device_info->num_sdma_engines;
105 }
106 
107 static unsigned int get_num_xgmi_sdma_engines(struct device_queue_manager *dqm)
108 {
109 	return dqm->dev->device_info->num_xgmi_sdma_engines;
110 }
111 
112 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
113 {
114 	return get_num_sdma_engines(dqm) + get_num_xgmi_sdma_engines(dqm);
115 }
116 
117 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
118 {
119 	return dqm->dev->device_info->num_sdma_engines
120 			* dqm->dev->device_info->num_sdma_queues_per_engine;
121 }
122 
123 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
124 {
125 	return dqm->dev->device_info->num_xgmi_sdma_engines
126 			* dqm->dev->device_info->num_sdma_queues_per_engine;
127 }
128 
129 void program_sh_mem_settings(struct device_queue_manager *dqm,
130 					struct qcm_process_device *qpd)
131 {
132 	return dqm->dev->kfd2kgd->program_sh_mem_settings(
133 						dqm->dev->kgd, qpd->vmid,
134 						qpd->sh_mem_config,
135 						qpd->sh_mem_ape1_base,
136 						qpd->sh_mem_ape1_limit,
137 						qpd->sh_mem_bases);
138 }
139 
140 static void increment_queue_count(struct device_queue_manager *dqm,
141 			enum kfd_queue_type type)
142 {
143 	dqm->active_queue_count++;
144 	if (type == KFD_QUEUE_TYPE_COMPUTE || type == KFD_QUEUE_TYPE_DIQ)
145 		dqm->active_cp_queue_count++;
146 }
147 
148 static void decrement_queue_count(struct device_queue_manager *dqm,
149 			enum kfd_queue_type type)
150 {
151 	dqm->active_queue_count--;
152 	if (type == KFD_QUEUE_TYPE_COMPUTE || type == KFD_QUEUE_TYPE_DIQ)
153 		dqm->active_cp_queue_count--;
154 }
155 
156 int read_sdma_queue_counter(uint64_t q_rptr, uint64_t *val)
157 {
158 	int ret;
159 	uint64_t tmp = 0;
160 
161 	if (!val)
162 		return -EINVAL;
163 	/*
164 	 * SDMA activity counter is stored at queue's RPTR + 0x8 location.
165 	 */
166 	if (!access_ok((const void __user *)(q_rptr +
167 					sizeof(uint64_t)), sizeof(uint64_t))) {
168 		pr_err("Can't access sdma queue activity counter\n");
169 		return -EFAULT;
170 	}
171 
172 	ret = get_user(tmp, (uint64_t *)(q_rptr + sizeof(uint64_t)));
173 	if (!ret) {
174 		*val = tmp;
175 	}
176 
177 	return ret;
178 }
179 
180 static int allocate_doorbell(struct qcm_process_device *qpd, struct queue *q)
181 {
182 	struct kfd_dev *dev = qpd->dqm->dev;
183 
184 	if (!KFD_IS_SOC15(dev->device_info->asic_family)) {
185 		/* On pre-SOC15 chips we need to use the queue ID to
186 		 * preserve the user mode ABI.
187 		 */
188 		q->doorbell_id = q->properties.queue_id;
189 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
190 			q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
191 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
192 		 * doorbell assignments based on the engine and queue id.
193 		 * The doobell index distance between RLC (2*i) and (2*i+1)
194 		 * for a SDMA engine is 512.
195 		 */
196 		uint32_t *idx_offset =
197 				dev->shared_resources.sdma_doorbell_idx;
198 
199 		q->doorbell_id = idx_offset[q->properties.sdma_engine_id]
200 			+ (q->properties.sdma_queue_id & 1)
201 			* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
202 			+ (q->properties.sdma_queue_id >> 1);
203 	} else {
204 		/* For CP queues on SOC15 reserve a free doorbell ID */
205 		unsigned int found;
206 
207 		found = find_first_zero_bit(qpd->doorbell_bitmap,
208 					    KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
209 		if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
210 			pr_debug("No doorbells available");
211 			return -EBUSY;
212 		}
213 		set_bit(found, qpd->doorbell_bitmap);
214 		q->doorbell_id = found;
215 	}
216 
217 	q->properties.doorbell_off =
218 		kfd_get_doorbell_dw_offset_in_bar(dev, q->process,
219 					  q->doorbell_id);
220 
221 	return 0;
222 }
223 
224 static void deallocate_doorbell(struct qcm_process_device *qpd,
225 				struct queue *q)
226 {
227 	unsigned int old;
228 	struct kfd_dev *dev = qpd->dqm->dev;
229 
230 	if (!KFD_IS_SOC15(dev->device_info->asic_family) ||
231 	    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
232 	    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
233 		return;
234 
235 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
236 	WARN_ON(!old);
237 }
238 
239 static int allocate_vmid(struct device_queue_manager *dqm,
240 			struct qcm_process_device *qpd,
241 			struct queue *q)
242 {
243 	int allocated_vmid = -1, i;
244 
245 	for (i = dqm->dev->vm_info.first_vmid_kfd;
246 			i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
247 		if (!dqm->vmid_pasid[i]) {
248 			allocated_vmid = i;
249 			break;
250 		}
251 	}
252 
253 	if (allocated_vmid < 0) {
254 		pr_err("no more vmid to allocate\n");
255 		return -ENOSPC;
256 	}
257 
258 	pr_debug("vmid allocated: %d\n", allocated_vmid);
259 
260 	dqm->vmid_pasid[allocated_vmid] = q->process->pasid;
261 
262 	set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid);
263 
264 	qpd->vmid = allocated_vmid;
265 	q->properties.vmid = allocated_vmid;
266 
267 	program_sh_mem_settings(dqm, qpd);
268 
269 	/* qpd->page_table_base is set earlier when register_process()
270 	 * is called, i.e. when the first queue is created.
271 	 */
272 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->kgd,
273 			qpd->vmid,
274 			qpd->page_table_base);
275 	/* invalidate the VM context after pasid and vmid mapping is set up */
276 	kfd_flush_tlb(qpd_to_pdd(qpd));
277 
278 	if (dqm->dev->kfd2kgd->set_scratch_backing_va)
279 		dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->kgd,
280 				qpd->sh_hidden_private_base, qpd->vmid);
281 
282 	return 0;
283 }
284 
285 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev,
286 				struct qcm_process_device *qpd)
287 {
288 	const struct packet_manager_funcs *pmf = qpd->dqm->packets.pmf;
289 	int ret;
290 
291 	if (!qpd->ib_kaddr)
292 		return -ENOMEM;
293 
294 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
295 	if (ret)
296 		return ret;
297 
298 	return amdgpu_amdkfd_submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid,
299 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
300 				pmf->release_mem_size / sizeof(uint32_t));
301 }
302 
303 static void deallocate_vmid(struct device_queue_manager *dqm,
304 				struct qcm_process_device *qpd,
305 				struct queue *q)
306 {
307 	/* On GFX v7, CP doesn't flush TC at dequeue */
308 	if (q->device->device_info->asic_family == CHIP_HAWAII)
309 		if (flush_texture_cache_nocpsch(q->device, qpd))
310 			pr_err("Failed to flush TC\n");
311 
312 	kfd_flush_tlb(qpd_to_pdd(qpd));
313 
314 	/* Release the vmid mapping */
315 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
316 	dqm->vmid_pasid[qpd->vmid] = 0;
317 
318 	qpd->vmid = 0;
319 	q->properties.vmid = 0;
320 }
321 
322 static int create_queue_nocpsch(struct device_queue_manager *dqm,
323 				struct queue *q,
324 				struct qcm_process_device *qpd)
325 {
326 	struct mqd_manager *mqd_mgr;
327 	int retval;
328 
329 	dqm_lock(dqm);
330 
331 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
332 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
333 				dqm->total_queue_count);
334 		retval = -EPERM;
335 		goto out_unlock;
336 	}
337 
338 	if (list_empty(&qpd->queues_list)) {
339 		retval = allocate_vmid(dqm, qpd, q);
340 		if (retval)
341 			goto out_unlock;
342 	}
343 	q->properties.vmid = qpd->vmid;
344 	/*
345 	 * Eviction state logic: mark all queues as evicted, even ones
346 	 * not currently active. Restoring inactive queues later only
347 	 * updates the is_evicted flag but is a no-op otherwise.
348 	 */
349 	q->properties.is_evicted = !!qpd->evicted;
350 
351 	q->properties.tba_addr = qpd->tba_addr;
352 	q->properties.tma_addr = qpd->tma_addr;
353 
354 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
355 			q->properties.type)];
356 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
357 		retval = allocate_hqd(dqm, q);
358 		if (retval)
359 			goto deallocate_vmid;
360 		pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
361 			q->pipe, q->queue);
362 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
363 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
364 		retval = allocate_sdma_queue(dqm, q);
365 		if (retval)
366 			goto deallocate_vmid;
367 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
368 	}
369 
370 	retval = allocate_doorbell(qpd, q);
371 	if (retval)
372 		goto out_deallocate_hqd;
373 
374 	/* Temporarily release dqm lock to avoid a circular lock dependency */
375 	dqm_unlock(dqm);
376 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
377 	dqm_lock(dqm);
378 
379 	if (!q->mqd_mem_obj) {
380 		retval = -ENOMEM;
381 		goto out_deallocate_doorbell;
382 	}
383 	mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
384 				&q->gart_mqd_addr, &q->properties);
385 	if (q->properties.is_active) {
386 		if (!dqm->sched_running) {
387 			WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
388 			goto add_queue_to_list;
389 		}
390 
391 		if (WARN(q->process->mm != current->mm,
392 					"should only run in user thread"))
393 			retval = -EFAULT;
394 		else
395 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
396 					q->queue, &q->properties, current->mm);
397 		if (retval)
398 			goto out_free_mqd;
399 	}
400 
401 add_queue_to_list:
402 	list_add(&q->list, &qpd->queues_list);
403 	qpd->queue_count++;
404 	if (q->properties.is_active)
405 		increment_queue_count(dqm, q->properties.type);
406 
407 	/*
408 	 * Unconditionally increment this counter, regardless of the queue's
409 	 * type or whether the queue is active.
410 	 */
411 	dqm->total_queue_count++;
412 	pr_debug("Total of %d queues are accountable so far\n",
413 			dqm->total_queue_count);
414 	goto out_unlock;
415 
416 out_free_mqd:
417 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
418 out_deallocate_doorbell:
419 	deallocate_doorbell(qpd, q);
420 out_deallocate_hqd:
421 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
422 		deallocate_hqd(dqm, q);
423 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
424 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
425 		deallocate_sdma_queue(dqm, q);
426 deallocate_vmid:
427 	if (list_empty(&qpd->queues_list))
428 		deallocate_vmid(dqm, qpd, q);
429 out_unlock:
430 	dqm_unlock(dqm);
431 	return retval;
432 }
433 
434 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
435 {
436 	bool set;
437 	int pipe, bit, i;
438 
439 	set = false;
440 
441 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
442 			i < get_pipes_per_mec(dqm);
443 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
444 
445 		if (!is_pipe_enabled(dqm, 0, pipe))
446 			continue;
447 
448 		if (dqm->allocated_queues[pipe] != 0) {
449 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
450 			dqm->allocated_queues[pipe] &= ~(1 << bit);
451 			q->pipe = pipe;
452 			q->queue = bit;
453 			set = true;
454 			break;
455 		}
456 	}
457 
458 	if (!set)
459 		return -EBUSY;
460 
461 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
462 	/* horizontal hqd allocation */
463 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
464 
465 	return 0;
466 }
467 
468 static inline void deallocate_hqd(struct device_queue_manager *dqm,
469 				struct queue *q)
470 {
471 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
472 }
473 
474 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
475  * to avoid asynchronized access
476  */
477 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
478 				struct qcm_process_device *qpd,
479 				struct queue *q)
480 {
481 	int retval;
482 	struct mqd_manager *mqd_mgr;
483 
484 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
485 			q->properties.type)];
486 
487 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
488 		deallocate_hqd(dqm, q);
489 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
490 		deallocate_sdma_queue(dqm, q);
491 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
492 		deallocate_sdma_queue(dqm, q);
493 	else {
494 		pr_debug("q->properties.type %d is invalid\n",
495 				q->properties.type);
496 		return -EINVAL;
497 	}
498 	dqm->total_queue_count--;
499 
500 	deallocate_doorbell(qpd, q);
501 
502 	if (!dqm->sched_running) {
503 		WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
504 		return 0;
505 	}
506 
507 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
508 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
509 				KFD_UNMAP_LATENCY_MS,
510 				q->pipe, q->queue);
511 	if (retval == -ETIME)
512 		qpd->reset_wavefronts = true;
513 
514 
515 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
516 
517 	list_del(&q->list);
518 	if (list_empty(&qpd->queues_list)) {
519 		if (qpd->reset_wavefronts) {
520 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
521 					dqm->dev);
522 			/* dbgdev_wave_reset_wavefronts has to be called before
523 			 * deallocate_vmid(), i.e. when vmid is still in use.
524 			 */
525 			dbgdev_wave_reset_wavefronts(dqm->dev,
526 					qpd->pqm->process);
527 			qpd->reset_wavefronts = false;
528 		}
529 
530 		deallocate_vmid(dqm, qpd, q);
531 	}
532 	qpd->queue_count--;
533 	if (q->properties.is_active) {
534 		decrement_queue_count(dqm, q->properties.type);
535 		if (q->properties.is_gws) {
536 			dqm->gws_queue_count--;
537 			qpd->mapped_gws_queue = false;
538 		}
539 	}
540 
541 	return retval;
542 }
543 
544 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
545 				struct qcm_process_device *qpd,
546 				struct queue *q)
547 {
548 	int retval;
549 	uint64_t sdma_val = 0;
550 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
551 
552 	/* Get the SDMA queue stats */
553 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
554 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
555 		retval = read_sdma_queue_counter((uint64_t)q->properties.read_ptr,
556 							&sdma_val);
557 		if (retval)
558 			pr_err("Failed to read SDMA queue counter for queue: %d\n",
559 				q->properties.queue_id);
560 	}
561 
562 	dqm_lock(dqm);
563 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
564 	if (!retval)
565 		pdd->sdma_past_activity_counter += sdma_val;
566 	dqm_unlock(dqm);
567 
568 	return retval;
569 }
570 
571 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
572 {
573 	int retval = 0;
574 	struct mqd_manager *mqd_mgr;
575 	struct kfd_process_device *pdd;
576 	bool prev_active = false;
577 
578 	dqm_lock(dqm);
579 	pdd = kfd_get_process_device_data(q->device, q->process);
580 	if (!pdd) {
581 		retval = -ENODEV;
582 		goto out_unlock;
583 	}
584 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
585 			q->properties.type)];
586 
587 	/* Save previous activity state for counters */
588 	prev_active = q->properties.is_active;
589 
590 	/* Make sure the queue is unmapped before updating the MQD */
591 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
592 		retval = unmap_queues_cpsch(dqm,
593 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
594 		if (retval) {
595 			pr_err("unmap queue failed\n");
596 			goto out_unlock;
597 		}
598 	} else if (prev_active &&
599 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
600 		    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
601 		    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
602 
603 		if (!dqm->sched_running) {
604 			WARN_ONCE(1, "Update non-HWS queue while stopped\n");
605 			goto out_unlock;
606 		}
607 
608 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
609 				KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
610 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
611 		if (retval) {
612 			pr_err("destroy mqd failed\n");
613 			goto out_unlock;
614 		}
615 	}
616 
617 	mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties);
618 
619 	/*
620 	 * check active state vs. the previous state and modify
621 	 * counter accordingly. map_queues_cpsch uses the
622 	 * dqm->active_queue_count to determine whether a new runlist must be
623 	 * uploaded.
624 	 */
625 	if (q->properties.is_active && !prev_active)
626 		increment_queue_count(dqm, q->properties.type);
627 	else if (!q->properties.is_active && prev_active)
628 		decrement_queue_count(dqm, q->properties.type);
629 
630 	if (q->gws && !q->properties.is_gws) {
631 		if (q->properties.is_active) {
632 			dqm->gws_queue_count++;
633 			pdd->qpd.mapped_gws_queue = true;
634 		}
635 		q->properties.is_gws = true;
636 	} else if (!q->gws && q->properties.is_gws) {
637 		if (q->properties.is_active) {
638 			dqm->gws_queue_count--;
639 			pdd->qpd.mapped_gws_queue = false;
640 		}
641 		q->properties.is_gws = false;
642 	}
643 
644 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS)
645 		retval = map_queues_cpsch(dqm);
646 	else if (q->properties.is_active &&
647 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
648 		  q->properties.type == KFD_QUEUE_TYPE_SDMA ||
649 		  q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
650 		if (WARN(q->process->mm != current->mm,
651 			 "should only run in user thread"))
652 			retval = -EFAULT;
653 		else
654 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
655 						   q->pipe, q->queue,
656 						   &q->properties, current->mm);
657 	}
658 
659 out_unlock:
660 	dqm_unlock(dqm);
661 	return retval;
662 }
663 
664 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
665 					struct qcm_process_device *qpd)
666 {
667 	struct queue *q;
668 	struct mqd_manager *mqd_mgr;
669 	struct kfd_process_device *pdd;
670 	int retval, ret = 0;
671 
672 	dqm_lock(dqm);
673 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
674 		goto out;
675 
676 	pdd = qpd_to_pdd(qpd);
677 	pr_info_ratelimited("Evicting PASID 0x%x queues\n",
678 			    pdd->process->pasid);
679 
680 	/* Mark all queues as evicted. Deactivate all active queues on
681 	 * the qpd.
682 	 */
683 	list_for_each_entry(q, &qpd->queues_list, list) {
684 		q->properties.is_evicted = true;
685 		if (!q->properties.is_active)
686 			continue;
687 
688 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
689 				q->properties.type)];
690 		q->properties.is_active = false;
691 		decrement_queue_count(dqm, q->properties.type);
692 		if (q->properties.is_gws) {
693 			dqm->gws_queue_count--;
694 			qpd->mapped_gws_queue = false;
695 		}
696 
697 		if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
698 			continue;
699 
700 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
701 				KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
702 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
703 		if (retval && !ret)
704 			/* Return the first error, but keep going to
705 			 * maintain a consistent eviction state
706 			 */
707 			ret = retval;
708 	}
709 
710 out:
711 	dqm_unlock(dqm);
712 	return ret;
713 }
714 
715 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
716 				      struct qcm_process_device *qpd)
717 {
718 	struct queue *q;
719 	struct kfd_process_device *pdd;
720 	int retval = 0;
721 
722 	dqm_lock(dqm);
723 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
724 		goto out;
725 
726 	pdd = qpd_to_pdd(qpd);
727 	pr_info_ratelimited("Evicting PASID 0x%x queues\n",
728 			    pdd->process->pasid);
729 
730 	/* Mark all queues as evicted. Deactivate all active queues on
731 	 * the qpd.
732 	 */
733 	list_for_each_entry(q, &qpd->queues_list, list) {
734 		q->properties.is_evicted = true;
735 		if (!q->properties.is_active)
736 			continue;
737 
738 		q->properties.is_active = false;
739 		decrement_queue_count(dqm, q->properties.type);
740 	}
741 	retval = execute_queues_cpsch(dqm,
742 				qpd->is_debug ?
743 				KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
744 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
745 
746 out:
747 	dqm_unlock(dqm);
748 	return retval;
749 }
750 
751 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
752 					  struct qcm_process_device *qpd)
753 {
754 	struct mm_struct *mm = NULL;
755 	struct queue *q;
756 	struct mqd_manager *mqd_mgr;
757 	struct kfd_process_device *pdd;
758 	uint64_t pd_base;
759 	int retval, ret = 0;
760 
761 	pdd = qpd_to_pdd(qpd);
762 	/* Retrieve PD base */
763 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
764 
765 	dqm_lock(dqm);
766 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
767 		goto out;
768 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
769 		qpd->evicted--;
770 		goto out;
771 	}
772 
773 	pr_info_ratelimited("Restoring PASID 0x%x queues\n",
774 			    pdd->process->pasid);
775 
776 	/* Update PD Base in QPD */
777 	qpd->page_table_base = pd_base;
778 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
779 
780 	if (!list_empty(&qpd->queues_list)) {
781 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
782 				dqm->dev->kgd,
783 				qpd->vmid,
784 				qpd->page_table_base);
785 		kfd_flush_tlb(pdd);
786 	}
787 
788 	/* Take a safe reference to the mm_struct, which may otherwise
789 	 * disappear even while the kfd_process is still referenced.
790 	 */
791 	mm = get_task_mm(pdd->process->lead_thread);
792 	if (!mm) {
793 		ret = -EFAULT;
794 		goto out;
795 	}
796 
797 	/* Remove the eviction flags. Activate queues that are not
798 	 * inactive for other reasons.
799 	 */
800 	list_for_each_entry(q, &qpd->queues_list, list) {
801 		q->properties.is_evicted = false;
802 		if (!QUEUE_IS_ACTIVE(q->properties))
803 			continue;
804 
805 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
806 				q->properties.type)];
807 		q->properties.is_active = true;
808 		increment_queue_count(dqm, q->properties.type);
809 		if (q->properties.is_gws) {
810 			dqm->gws_queue_count++;
811 			qpd->mapped_gws_queue = true;
812 		}
813 
814 		if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
815 			continue;
816 
817 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
818 				       q->queue, &q->properties, mm);
819 		if (retval && !ret)
820 			/* Return the first error, but keep going to
821 			 * maintain a consistent eviction state
822 			 */
823 			ret = retval;
824 	}
825 	qpd->evicted = 0;
826 out:
827 	if (mm)
828 		mmput(mm);
829 	dqm_unlock(dqm);
830 	return ret;
831 }
832 
833 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
834 					struct qcm_process_device *qpd)
835 {
836 	struct queue *q;
837 	struct kfd_process_device *pdd;
838 	uint64_t pd_base;
839 	int retval = 0;
840 
841 	pdd = qpd_to_pdd(qpd);
842 	/* Retrieve PD base */
843 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
844 
845 	dqm_lock(dqm);
846 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
847 		goto out;
848 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
849 		qpd->evicted--;
850 		goto out;
851 	}
852 
853 	pr_info_ratelimited("Restoring PASID 0x%x queues\n",
854 			    pdd->process->pasid);
855 
856 	/* Update PD Base in QPD */
857 	qpd->page_table_base = pd_base;
858 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
859 
860 	/* activate all active queues on the qpd */
861 	list_for_each_entry(q, &qpd->queues_list, list) {
862 		q->properties.is_evicted = false;
863 		if (!QUEUE_IS_ACTIVE(q->properties))
864 			continue;
865 
866 		q->properties.is_active = true;
867 		increment_queue_count(dqm, q->properties.type);
868 	}
869 	retval = execute_queues_cpsch(dqm,
870 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
871 	qpd->evicted = 0;
872 out:
873 	dqm_unlock(dqm);
874 	return retval;
875 }
876 
877 static int register_process(struct device_queue_manager *dqm,
878 					struct qcm_process_device *qpd)
879 {
880 	struct device_process_node *n;
881 	struct kfd_process_device *pdd;
882 	uint64_t pd_base;
883 	int retval;
884 
885 	n = kzalloc(sizeof(*n), GFP_KERNEL);
886 	if (!n)
887 		return -ENOMEM;
888 
889 	n->qpd = qpd;
890 
891 	pdd = qpd_to_pdd(qpd);
892 	/* Retrieve PD base */
893 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
894 
895 	dqm_lock(dqm);
896 	list_add(&n->list, &dqm->queues);
897 
898 	/* Update PD Base in QPD */
899 	qpd->page_table_base = pd_base;
900 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
901 
902 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
903 
904 	dqm->processes_count++;
905 
906 	dqm_unlock(dqm);
907 
908 	/* Outside the DQM lock because under the DQM lock we can't do
909 	 * reclaim or take other locks that others hold while reclaiming.
910 	 */
911 	kfd_inc_compute_active(dqm->dev);
912 
913 	return retval;
914 }
915 
916 static int unregister_process(struct device_queue_manager *dqm,
917 					struct qcm_process_device *qpd)
918 {
919 	int retval;
920 	struct device_process_node *cur, *next;
921 
922 	pr_debug("qpd->queues_list is %s\n",
923 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
924 
925 	retval = 0;
926 	dqm_lock(dqm);
927 
928 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
929 		if (qpd == cur->qpd) {
930 			list_del(&cur->list);
931 			kfree(cur);
932 			dqm->processes_count--;
933 			goto out;
934 		}
935 	}
936 	/* qpd not found in dqm list */
937 	retval = 1;
938 out:
939 	dqm_unlock(dqm);
940 
941 	/* Outside the DQM lock because under the DQM lock we can't do
942 	 * reclaim or take other locks that others hold while reclaiming.
943 	 */
944 	if (!retval)
945 		kfd_dec_compute_active(dqm->dev);
946 
947 	return retval;
948 }
949 
950 static int
951 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
952 			unsigned int vmid)
953 {
954 	return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
955 						dqm->dev->kgd, pasid, vmid);
956 }
957 
958 static void init_interrupts(struct device_queue_manager *dqm)
959 {
960 	unsigned int i;
961 
962 	for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
963 		if (is_pipe_enabled(dqm, 0, i))
964 			dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i);
965 }
966 
967 static int initialize_nocpsch(struct device_queue_manager *dqm)
968 {
969 	int pipe, queue;
970 
971 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
972 
973 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
974 					sizeof(unsigned int), GFP_KERNEL);
975 	if (!dqm->allocated_queues)
976 		return -ENOMEM;
977 
978 	mutex_init(&dqm->lock_hidden);
979 	INIT_LIST_HEAD(&dqm->queues);
980 	dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
981 	dqm->active_cp_queue_count = 0;
982 	dqm->gws_queue_count = 0;
983 
984 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
985 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
986 
987 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
988 			if (test_bit(pipe_offset + queue,
989 				     dqm->dev->shared_resources.cp_queue_bitmap))
990 				dqm->allocated_queues[pipe] |= 1 << queue;
991 	}
992 
993 	memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
994 
995 	dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm));
996 	dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm));
997 
998 	return 0;
999 }
1000 
1001 static void uninitialize(struct device_queue_manager *dqm)
1002 {
1003 	int i;
1004 
1005 	WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1006 
1007 	kfree(dqm->allocated_queues);
1008 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1009 		kfree(dqm->mqd_mgrs[i]);
1010 	mutex_destroy(&dqm->lock_hidden);
1011 }
1012 
1013 static int start_nocpsch(struct device_queue_manager *dqm)
1014 {
1015 	pr_info("SW scheduler is used");
1016 	init_interrupts(dqm);
1017 
1018 	if (dqm->dev->device_info->asic_family == CHIP_HAWAII)
1019 		return pm_init(&dqm->packets, dqm);
1020 	dqm->sched_running = true;
1021 
1022 	return 0;
1023 }
1024 
1025 static int stop_nocpsch(struct device_queue_manager *dqm)
1026 {
1027 	if (dqm->dev->device_info->asic_family == CHIP_HAWAII)
1028 		pm_uninit(&dqm->packets, false);
1029 	dqm->sched_running = false;
1030 
1031 	return 0;
1032 }
1033 
1034 static void pre_reset(struct device_queue_manager *dqm)
1035 {
1036 	dqm_lock(dqm);
1037 	dqm->is_resetting = true;
1038 	dqm_unlock(dqm);
1039 }
1040 
1041 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1042 				struct queue *q)
1043 {
1044 	int bit;
1045 
1046 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1047 		if (dqm->sdma_bitmap == 0) {
1048 			pr_err("No more SDMA queue to allocate\n");
1049 			return -ENOMEM;
1050 		}
1051 
1052 		bit = __ffs64(dqm->sdma_bitmap);
1053 		dqm->sdma_bitmap &= ~(1ULL << bit);
1054 		q->sdma_id = bit;
1055 		q->properties.sdma_engine_id = q->sdma_id %
1056 				get_num_sdma_engines(dqm);
1057 		q->properties.sdma_queue_id = q->sdma_id /
1058 				get_num_sdma_engines(dqm);
1059 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1060 		if (dqm->xgmi_sdma_bitmap == 0) {
1061 			pr_err("No more XGMI SDMA queue to allocate\n");
1062 			return -ENOMEM;
1063 		}
1064 		bit = __ffs64(dqm->xgmi_sdma_bitmap);
1065 		dqm->xgmi_sdma_bitmap &= ~(1ULL << bit);
1066 		q->sdma_id = bit;
1067 		/* sdma_engine_id is sdma id including
1068 		 * both PCIe-optimized SDMAs and XGMI-
1069 		 * optimized SDMAs. The calculation below
1070 		 * assumes the first N engines are always
1071 		 * PCIe-optimized ones
1072 		 */
1073 		q->properties.sdma_engine_id = get_num_sdma_engines(dqm) +
1074 				q->sdma_id % get_num_xgmi_sdma_engines(dqm);
1075 		q->properties.sdma_queue_id = q->sdma_id /
1076 				get_num_xgmi_sdma_engines(dqm);
1077 	}
1078 
1079 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1080 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1081 
1082 	return 0;
1083 }
1084 
1085 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1086 				struct queue *q)
1087 {
1088 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1089 		if (q->sdma_id >= get_num_sdma_queues(dqm))
1090 			return;
1091 		dqm->sdma_bitmap |= (1ULL << q->sdma_id);
1092 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1093 		if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1094 			return;
1095 		dqm->xgmi_sdma_bitmap |= (1ULL << q->sdma_id);
1096 	}
1097 }
1098 
1099 /*
1100  * Device Queue Manager implementation for cp scheduler
1101  */
1102 
1103 static int set_sched_resources(struct device_queue_manager *dqm)
1104 {
1105 	int i, mec;
1106 	struct scheduling_resources res;
1107 
1108 	res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap;
1109 
1110 	res.queue_mask = 0;
1111 	for (i = 0; i < KGD_MAX_QUEUES; ++i) {
1112 		mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
1113 			/ dqm->dev->shared_resources.num_pipe_per_mec;
1114 
1115 		if (!test_bit(i, dqm->dev->shared_resources.cp_queue_bitmap))
1116 			continue;
1117 
1118 		/* only acquire queues from the first MEC */
1119 		if (mec > 0)
1120 			continue;
1121 
1122 		/* This situation may be hit in the future if a new HW
1123 		 * generation exposes more than 64 queues. If so, the
1124 		 * definition of res.queue_mask needs updating
1125 		 */
1126 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1127 			pr_err("Invalid queue enabled by amdgpu: %d\n", i);
1128 			break;
1129 		}
1130 
1131 		res.queue_mask |= 1ull
1132 			<< amdgpu_queue_mask_bit_to_set_resource_bit(
1133 				(struct amdgpu_device *)dqm->dev->kgd, i);
1134 	}
1135 	res.gws_mask = ~0ull;
1136 	res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1137 
1138 	pr_debug("Scheduling resources:\n"
1139 			"vmid mask: 0x%8X\n"
1140 			"queue mask: 0x%8llX\n",
1141 			res.vmid_mask, res.queue_mask);
1142 
1143 	return pm_send_set_resources(&dqm->packets, &res);
1144 }
1145 
1146 static int initialize_cpsch(struct device_queue_manager *dqm)
1147 {
1148 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1149 
1150 	mutex_init(&dqm->lock_hidden);
1151 	INIT_LIST_HEAD(&dqm->queues);
1152 	dqm->active_queue_count = dqm->processes_count = 0;
1153 	dqm->active_cp_queue_count = 0;
1154 	dqm->gws_queue_count = 0;
1155 	dqm->active_runlist = false;
1156 	dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm));
1157 	dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm));
1158 
1159 	INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1160 
1161 	return 0;
1162 }
1163 
1164 static int start_cpsch(struct device_queue_manager *dqm)
1165 {
1166 	int retval;
1167 
1168 	retval = 0;
1169 
1170 	retval = pm_init(&dqm->packets, dqm);
1171 	if (retval)
1172 		goto fail_packet_manager_init;
1173 
1174 	retval = set_sched_resources(dqm);
1175 	if (retval)
1176 		goto fail_set_sched_resources;
1177 
1178 	pr_debug("Allocating fence memory\n");
1179 
1180 	/* allocate fence memory on the gart */
1181 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1182 					&dqm->fence_mem);
1183 
1184 	if (retval)
1185 		goto fail_allocate_vidmem;
1186 
1187 	dqm->fence_addr = dqm->fence_mem->cpu_ptr;
1188 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1189 
1190 	init_interrupts(dqm);
1191 
1192 	dqm_lock(dqm);
1193 	/* clear hang status when driver try to start the hw scheduler */
1194 	dqm->is_hws_hang = false;
1195 	dqm->is_resetting = false;
1196 	dqm->sched_running = true;
1197 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1198 	dqm_unlock(dqm);
1199 
1200 	return 0;
1201 fail_allocate_vidmem:
1202 fail_set_sched_resources:
1203 	pm_uninit(&dqm->packets, false);
1204 fail_packet_manager_init:
1205 	return retval;
1206 }
1207 
1208 static int stop_cpsch(struct device_queue_manager *dqm)
1209 {
1210 	bool hanging;
1211 
1212 	dqm_lock(dqm);
1213 	if (!dqm->is_hws_hang)
1214 		unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1215 	hanging = dqm->is_hws_hang || dqm->is_resetting;
1216 	dqm->sched_running = false;
1217 	dqm_unlock(dqm);
1218 
1219 	pm_release_ib(&dqm->packets);
1220 
1221 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1222 	pm_uninit(&dqm->packets, hanging);
1223 
1224 	return 0;
1225 }
1226 
1227 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1228 					struct kernel_queue *kq,
1229 					struct qcm_process_device *qpd)
1230 {
1231 	dqm_lock(dqm);
1232 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1233 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1234 				dqm->total_queue_count);
1235 		dqm_unlock(dqm);
1236 		return -EPERM;
1237 	}
1238 
1239 	/*
1240 	 * Unconditionally increment this counter, regardless of the queue's
1241 	 * type or whether the queue is active.
1242 	 */
1243 	dqm->total_queue_count++;
1244 	pr_debug("Total of %d queues are accountable so far\n",
1245 			dqm->total_queue_count);
1246 
1247 	list_add(&kq->list, &qpd->priv_queue_list);
1248 	increment_queue_count(dqm, kq->queue->properties.type);
1249 	qpd->is_debug = true;
1250 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1251 	dqm_unlock(dqm);
1252 
1253 	return 0;
1254 }
1255 
1256 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1257 					struct kernel_queue *kq,
1258 					struct qcm_process_device *qpd)
1259 {
1260 	dqm_lock(dqm);
1261 	list_del(&kq->list);
1262 	decrement_queue_count(dqm, kq->queue->properties.type);
1263 	qpd->is_debug = false;
1264 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1265 	/*
1266 	 * Unconditionally decrement this counter, regardless of the queue's
1267 	 * type.
1268 	 */
1269 	dqm->total_queue_count--;
1270 	pr_debug("Total of %d queues are accountable so far\n",
1271 			dqm->total_queue_count);
1272 	dqm_unlock(dqm);
1273 }
1274 
1275 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1276 			struct qcm_process_device *qpd)
1277 {
1278 	int retval;
1279 	struct mqd_manager *mqd_mgr;
1280 
1281 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1282 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1283 				dqm->total_queue_count);
1284 		retval = -EPERM;
1285 		goto out;
1286 	}
1287 
1288 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1289 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1290 		dqm_lock(dqm);
1291 		retval = allocate_sdma_queue(dqm, q);
1292 		dqm_unlock(dqm);
1293 		if (retval)
1294 			goto out;
1295 	}
1296 
1297 	retval = allocate_doorbell(qpd, q);
1298 	if (retval)
1299 		goto out_deallocate_sdma_queue;
1300 
1301 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1302 			q->properties.type)];
1303 
1304 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1305 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1306 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1307 	q->properties.tba_addr = qpd->tba_addr;
1308 	q->properties.tma_addr = qpd->tma_addr;
1309 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
1310 	if (!q->mqd_mem_obj) {
1311 		retval = -ENOMEM;
1312 		goto out_deallocate_doorbell;
1313 	}
1314 
1315 	dqm_lock(dqm);
1316 	/*
1317 	 * Eviction state logic: mark all queues as evicted, even ones
1318 	 * not currently active. Restoring inactive queues later only
1319 	 * updates the is_evicted flag but is a no-op otherwise.
1320 	 */
1321 	q->properties.is_evicted = !!qpd->evicted;
1322 	mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
1323 				&q->gart_mqd_addr, &q->properties);
1324 
1325 	list_add(&q->list, &qpd->queues_list);
1326 	qpd->queue_count++;
1327 
1328 	if (q->properties.is_active) {
1329 		increment_queue_count(dqm, q->properties.type);
1330 
1331 		execute_queues_cpsch(dqm,
1332 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1333 	}
1334 
1335 	/*
1336 	 * Unconditionally increment this counter, regardless of the queue's
1337 	 * type or whether the queue is active.
1338 	 */
1339 	dqm->total_queue_count++;
1340 
1341 	pr_debug("Total of %d queues are accountable so far\n",
1342 			dqm->total_queue_count);
1343 
1344 	dqm_unlock(dqm);
1345 	return retval;
1346 
1347 out_deallocate_doorbell:
1348 	deallocate_doorbell(qpd, q);
1349 out_deallocate_sdma_queue:
1350 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1351 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1352 		dqm_lock(dqm);
1353 		deallocate_sdma_queue(dqm, q);
1354 		dqm_unlock(dqm);
1355 	}
1356 out:
1357 	return retval;
1358 }
1359 
1360 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
1361 				unsigned int fence_value,
1362 				unsigned int timeout_ms)
1363 {
1364 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1365 
1366 	while (*fence_addr != fence_value) {
1367 		if (time_after(jiffies, end_jiffies)) {
1368 			pr_err("qcm fence wait loop timeout expired\n");
1369 			/* In HWS case, this is used to halt the driver thread
1370 			 * in order not to mess up CP states before doing
1371 			 * scandumps for FW debugging.
1372 			 */
1373 			while (halt_if_hws_hang)
1374 				schedule();
1375 
1376 			return -ETIME;
1377 		}
1378 		schedule();
1379 	}
1380 
1381 	return 0;
1382 }
1383 
1384 /* dqm->lock mutex has to be locked before calling this function */
1385 static int map_queues_cpsch(struct device_queue_manager *dqm)
1386 {
1387 	int retval;
1388 
1389 	if (!dqm->sched_running)
1390 		return 0;
1391 	if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
1392 		return 0;
1393 	if (dqm->active_runlist)
1394 		return 0;
1395 
1396 	retval = pm_send_runlist(&dqm->packets, &dqm->queues);
1397 	pr_debug("%s sent runlist\n", __func__);
1398 	if (retval) {
1399 		pr_err("failed to execute runlist\n");
1400 		return retval;
1401 	}
1402 	dqm->active_runlist = true;
1403 
1404 	return retval;
1405 }
1406 
1407 /* dqm->lock mutex has to be locked before calling this function */
1408 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1409 				enum kfd_unmap_queues_filter filter,
1410 				uint32_t filter_param)
1411 {
1412 	int retval = 0;
1413 
1414 	if (!dqm->sched_running)
1415 		return 0;
1416 	if (dqm->is_hws_hang)
1417 		return -EIO;
1418 	if (!dqm->active_runlist)
1419 		return retval;
1420 
1421 	retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
1422 			filter, filter_param, false, 0);
1423 	if (retval)
1424 		return retval;
1425 
1426 	*dqm->fence_addr = KFD_FENCE_INIT;
1427 	pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
1428 				KFD_FENCE_COMPLETED);
1429 	/* should be timed out */
1430 	retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
1431 				queue_preemption_timeout_ms);
1432 	if (retval) {
1433 		pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1434 		dqm->is_hws_hang = true;
1435 		/* It's possible we're detecting a HWS hang in the
1436 		 * middle of a GPU reset. No need to schedule another
1437 		 * reset in this case.
1438 		 */
1439 		if (!dqm->is_resetting)
1440 			schedule_work(&dqm->hw_exception_work);
1441 		return retval;
1442 	}
1443 
1444 	pm_release_ib(&dqm->packets);
1445 	dqm->active_runlist = false;
1446 
1447 	return retval;
1448 }
1449 
1450 /* dqm->lock mutex has to be locked before calling this function */
1451 static int execute_queues_cpsch(struct device_queue_manager *dqm,
1452 				enum kfd_unmap_queues_filter filter,
1453 				uint32_t filter_param)
1454 {
1455 	int retval;
1456 
1457 	if (dqm->is_hws_hang)
1458 		return -EIO;
1459 	retval = unmap_queues_cpsch(dqm, filter, filter_param);
1460 	if (retval)
1461 		return retval;
1462 
1463 	return map_queues_cpsch(dqm);
1464 }
1465 
1466 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1467 				struct qcm_process_device *qpd,
1468 				struct queue *q)
1469 {
1470 	int retval;
1471 	struct mqd_manager *mqd_mgr;
1472 	uint64_t sdma_val = 0;
1473 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
1474 
1475 	/* Get the SDMA queue stats */
1476 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
1477 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1478 		retval = read_sdma_queue_counter((uint64_t)q->properties.read_ptr,
1479 							&sdma_val);
1480 		if (retval)
1481 			pr_err("Failed to read SDMA queue counter for queue: %d\n",
1482 				q->properties.queue_id);
1483 	}
1484 
1485 	retval = 0;
1486 
1487 	/* remove queue from list to prevent rescheduling after preemption */
1488 	dqm_lock(dqm);
1489 
1490 	if (qpd->is_debug) {
1491 		/*
1492 		 * error, currently we do not allow to destroy a queue
1493 		 * of a currently debugged process
1494 		 */
1495 		retval = -EBUSY;
1496 		goto failed_try_destroy_debugged_queue;
1497 
1498 	}
1499 
1500 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1501 			q->properties.type)];
1502 
1503 	deallocate_doorbell(qpd, q);
1504 
1505 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
1506 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1507 		deallocate_sdma_queue(dqm, q);
1508 		pdd->sdma_past_activity_counter += sdma_val;
1509 	}
1510 
1511 	list_del(&q->list);
1512 	qpd->queue_count--;
1513 	if (q->properties.is_active) {
1514 		decrement_queue_count(dqm, q->properties.type);
1515 		retval = execute_queues_cpsch(dqm,
1516 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1517 		if (retval == -ETIME)
1518 			qpd->reset_wavefronts = true;
1519 		if (q->properties.is_gws) {
1520 			dqm->gws_queue_count--;
1521 			qpd->mapped_gws_queue = false;
1522 		}
1523 	}
1524 
1525 	/*
1526 	 * Unconditionally decrement this counter, regardless of the queue's
1527 	 * type
1528 	 */
1529 	dqm->total_queue_count--;
1530 	pr_debug("Total of %d queues are accountable so far\n",
1531 			dqm->total_queue_count);
1532 
1533 	dqm_unlock(dqm);
1534 
1535 	/* Do free_mqd after dqm_unlock(dqm) to avoid circular locking */
1536 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1537 
1538 	return retval;
1539 
1540 failed_try_destroy_debugged_queue:
1541 
1542 	dqm_unlock(dqm);
1543 	return retval;
1544 }
1545 
1546 /*
1547  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1548  * stay in user mode.
1549  */
1550 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1551 /* APE1 limit is inclusive and 64K aligned. */
1552 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1553 
1554 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1555 				   struct qcm_process_device *qpd,
1556 				   enum cache_policy default_policy,
1557 				   enum cache_policy alternate_policy,
1558 				   void __user *alternate_aperture_base,
1559 				   uint64_t alternate_aperture_size)
1560 {
1561 	bool retval = true;
1562 
1563 	if (!dqm->asic_ops.set_cache_memory_policy)
1564 		return retval;
1565 
1566 	dqm_lock(dqm);
1567 
1568 	if (alternate_aperture_size == 0) {
1569 		/* base > limit disables APE1 */
1570 		qpd->sh_mem_ape1_base = 1;
1571 		qpd->sh_mem_ape1_limit = 0;
1572 	} else {
1573 		/*
1574 		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1575 		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
1576 		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1577 		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1578 		 * Verify that the base and size parameters can be
1579 		 * represented in this format and convert them.
1580 		 * Additionally restrict APE1 to user-mode addresses.
1581 		 */
1582 
1583 		uint64_t base = (uintptr_t)alternate_aperture_base;
1584 		uint64_t limit = base + alternate_aperture_size - 1;
1585 
1586 		if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
1587 		   (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
1588 			retval = false;
1589 			goto out;
1590 		}
1591 
1592 		qpd->sh_mem_ape1_base = base >> 16;
1593 		qpd->sh_mem_ape1_limit = limit >> 16;
1594 	}
1595 
1596 	retval = dqm->asic_ops.set_cache_memory_policy(
1597 			dqm,
1598 			qpd,
1599 			default_policy,
1600 			alternate_policy,
1601 			alternate_aperture_base,
1602 			alternate_aperture_size);
1603 
1604 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1605 		program_sh_mem_settings(dqm, qpd);
1606 
1607 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1608 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1609 		qpd->sh_mem_ape1_limit);
1610 
1611 out:
1612 	dqm_unlock(dqm);
1613 	return retval;
1614 }
1615 
1616 static int set_trap_handler(struct device_queue_manager *dqm,
1617 				struct qcm_process_device *qpd,
1618 				uint64_t tba_addr,
1619 				uint64_t tma_addr)
1620 {
1621 	uint64_t *tma;
1622 
1623 	if (dqm->dev->cwsr_enabled) {
1624 		/* Jump from CWSR trap handler to user trap */
1625 		tma = (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1626 		tma[0] = tba_addr;
1627 		tma[1] = tma_addr;
1628 	} else {
1629 		qpd->tba_addr = tba_addr;
1630 		qpd->tma_addr = tma_addr;
1631 	}
1632 
1633 	return 0;
1634 }
1635 
1636 static int process_termination_nocpsch(struct device_queue_manager *dqm,
1637 		struct qcm_process_device *qpd)
1638 {
1639 	struct queue *q, *next;
1640 	struct device_process_node *cur, *next_dpn;
1641 	int retval = 0;
1642 	bool found = false;
1643 
1644 	dqm_lock(dqm);
1645 
1646 	/* Clear all user mode queues */
1647 	list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1648 		int ret;
1649 
1650 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
1651 		if (ret)
1652 			retval = ret;
1653 	}
1654 
1655 	/* Unregister process */
1656 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1657 		if (qpd == cur->qpd) {
1658 			list_del(&cur->list);
1659 			kfree(cur);
1660 			dqm->processes_count--;
1661 			found = true;
1662 			break;
1663 		}
1664 	}
1665 
1666 	dqm_unlock(dqm);
1667 
1668 	/* Outside the DQM lock because under the DQM lock we can't do
1669 	 * reclaim or take other locks that others hold while reclaiming.
1670 	 */
1671 	if (found)
1672 		kfd_dec_compute_active(dqm->dev);
1673 
1674 	return retval;
1675 }
1676 
1677 static int get_wave_state(struct device_queue_manager *dqm,
1678 			  struct queue *q,
1679 			  void __user *ctl_stack,
1680 			  u32 *ctl_stack_used_size,
1681 			  u32 *save_area_used_size)
1682 {
1683 	struct mqd_manager *mqd_mgr;
1684 	int r;
1685 
1686 	dqm_lock(dqm);
1687 
1688 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
1689 	    q->properties.is_active || !q->device->cwsr_enabled) {
1690 		r = -EINVAL;
1691 		goto dqm_unlock;
1692 	}
1693 
1694 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
1695 
1696 	if (!mqd_mgr->get_wave_state) {
1697 		r = -EINVAL;
1698 		goto dqm_unlock;
1699 	}
1700 
1701 	r = mqd_mgr->get_wave_state(mqd_mgr, q->mqd, ctl_stack,
1702 			ctl_stack_used_size, save_area_used_size);
1703 
1704 dqm_unlock:
1705 	dqm_unlock(dqm);
1706 	return r;
1707 }
1708 
1709 static int process_termination_cpsch(struct device_queue_manager *dqm,
1710 		struct qcm_process_device *qpd)
1711 {
1712 	int retval;
1713 	struct queue *q, *next;
1714 	struct kernel_queue *kq, *kq_next;
1715 	struct mqd_manager *mqd_mgr;
1716 	struct device_process_node *cur, *next_dpn;
1717 	enum kfd_unmap_queues_filter filter =
1718 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
1719 	bool found = false;
1720 
1721 	retval = 0;
1722 
1723 	dqm_lock(dqm);
1724 
1725 	/* Clean all kernel queues */
1726 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
1727 		list_del(&kq->list);
1728 		decrement_queue_count(dqm, kq->queue->properties.type);
1729 		qpd->is_debug = false;
1730 		dqm->total_queue_count--;
1731 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
1732 	}
1733 
1734 	/* Clear all user mode queues */
1735 	list_for_each_entry(q, &qpd->queues_list, list) {
1736 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1737 			deallocate_sdma_queue(dqm, q);
1738 		else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1739 			deallocate_sdma_queue(dqm, q);
1740 
1741 		if (q->properties.is_active) {
1742 			decrement_queue_count(dqm, q->properties.type);
1743 			if (q->properties.is_gws) {
1744 				dqm->gws_queue_count--;
1745 				qpd->mapped_gws_queue = false;
1746 			}
1747 		}
1748 
1749 		dqm->total_queue_count--;
1750 	}
1751 
1752 	/* Unregister process */
1753 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1754 		if (qpd == cur->qpd) {
1755 			list_del(&cur->list);
1756 			kfree(cur);
1757 			dqm->processes_count--;
1758 			found = true;
1759 			break;
1760 		}
1761 	}
1762 
1763 	retval = execute_queues_cpsch(dqm, filter, 0);
1764 	if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
1765 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
1766 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
1767 		qpd->reset_wavefronts = false;
1768 	}
1769 
1770 	dqm_unlock(dqm);
1771 
1772 	/* Outside the DQM lock because under the DQM lock we can't do
1773 	 * reclaim or take other locks that others hold while reclaiming.
1774 	 */
1775 	if (found)
1776 		kfd_dec_compute_active(dqm->dev);
1777 
1778 	/* Lastly, free mqd resources.
1779 	 * Do free_mqd() after dqm_unlock to avoid circular locking.
1780 	 */
1781 	list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1782 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1783 				q->properties.type)];
1784 		list_del(&q->list);
1785 		qpd->queue_count--;
1786 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1787 	}
1788 
1789 	return retval;
1790 }
1791 
1792 static int init_mqd_managers(struct device_queue_manager *dqm)
1793 {
1794 	int i, j;
1795 	struct mqd_manager *mqd_mgr;
1796 
1797 	for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
1798 		mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
1799 		if (!mqd_mgr) {
1800 			pr_err("mqd manager [%d] initialization failed\n", i);
1801 			goto out_free;
1802 		}
1803 		dqm->mqd_mgrs[i] = mqd_mgr;
1804 	}
1805 
1806 	return 0;
1807 
1808 out_free:
1809 	for (j = 0; j < i; j++) {
1810 		kfree(dqm->mqd_mgrs[j]);
1811 		dqm->mqd_mgrs[j] = NULL;
1812 	}
1813 
1814 	return -ENOMEM;
1815 }
1816 
1817 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
1818 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
1819 {
1820 	int retval;
1821 	struct kfd_dev *dev = dqm->dev;
1822 	struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
1823 	uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
1824 		get_num_all_sdma_engines(dqm) *
1825 		dev->device_info->num_sdma_queues_per_engine +
1826 		dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size;
1827 
1828 	retval = amdgpu_amdkfd_alloc_gtt_mem(dev->kgd, size,
1829 		&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
1830 		(void *)&(mem_obj->cpu_ptr), false);
1831 
1832 	return retval;
1833 }
1834 
1835 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1836 {
1837 	struct device_queue_manager *dqm;
1838 
1839 	pr_debug("Loading device queue manager\n");
1840 
1841 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
1842 	if (!dqm)
1843 		return NULL;
1844 
1845 	switch (dev->device_info->asic_family) {
1846 	/* HWS is not available on Hawaii. */
1847 	case CHIP_HAWAII:
1848 	/* HWS depends on CWSR for timely dequeue. CWSR is not
1849 	 * available on Tonga.
1850 	 *
1851 	 * FIXME: This argument also applies to Kaveri.
1852 	 */
1853 	case CHIP_TONGA:
1854 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
1855 		break;
1856 	default:
1857 		dqm->sched_policy = sched_policy;
1858 		break;
1859 	}
1860 
1861 	dqm->dev = dev;
1862 	switch (dqm->sched_policy) {
1863 	case KFD_SCHED_POLICY_HWS:
1864 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1865 		/* initialize dqm for cp scheduling */
1866 		dqm->ops.create_queue = create_queue_cpsch;
1867 		dqm->ops.initialize = initialize_cpsch;
1868 		dqm->ops.start = start_cpsch;
1869 		dqm->ops.stop = stop_cpsch;
1870 		dqm->ops.pre_reset = pre_reset;
1871 		dqm->ops.destroy_queue = destroy_queue_cpsch;
1872 		dqm->ops.update_queue = update_queue;
1873 		dqm->ops.register_process = register_process;
1874 		dqm->ops.unregister_process = unregister_process;
1875 		dqm->ops.uninitialize = uninitialize;
1876 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1877 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1878 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1879 		dqm->ops.set_trap_handler = set_trap_handler;
1880 		dqm->ops.process_termination = process_termination_cpsch;
1881 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
1882 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
1883 		dqm->ops.get_wave_state = get_wave_state;
1884 		break;
1885 	case KFD_SCHED_POLICY_NO_HWS:
1886 		/* initialize dqm for no cp scheduling */
1887 		dqm->ops.start = start_nocpsch;
1888 		dqm->ops.stop = stop_nocpsch;
1889 		dqm->ops.pre_reset = pre_reset;
1890 		dqm->ops.create_queue = create_queue_nocpsch;
1891 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
1892 		dqm->ops.update_queue = update_queue;
1893 		dqm->ops.register_process = register_process;
1894 		dqm->ops.unregister_process = unregister_process;
1895 		dqm->ops.initialize = initialize_nocpsch;
1896 		dqm->ops.uninitialize = uninitialize;
1897 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1898 		dqm->ops.set_trap_handler = set_trap_handler;
1899 		dqm->ops.process_termination = process_termination_nocpsch;
1900 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
1901 		dqm->ops.restore_process_queues =
1902 			restore_process_queues_nocpsch;
1903 		dqm->ops.get_wave_state = get_wave_state;
1904 		break;
1905 	default:
1906 		pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
1907 		goto out_free;
1908 	}
1909 
1910 	switch (dev->device_info->asic_family) {
1911 	case CHIP_CARRIZO:
1912 		device_queue_manager_init_vi(&dqm->asic_ops);
1913 		break;
1914 
1915 	case CHIP_KAVERI:
1916 		device_queue_manager_init_cik(&dqm->asic_ops);
1917 		break;
1918 
1919 	case CHIP_HAWAII:
1920 		device_queue_manager_init_cik_hawaii(&dqm->asic_ops);
1921 		break;
1922 
1923 	case CHIP_TONGA:
1924 	case CHIP_FIJI:
1925 	case CHIP_POLARIS10:
1926 	case CHIP_POLARIS11:
1927 	case CHIP_POLARIS12:
1928 	case CHIP_VEGAM:
1929 		device_queue_manager_init_vi_tonga(&dqm->asic_ops);
1930 		break;
1931 
1932 	case CHIP_VEGA10:
1933 	case CHIP_VEGA12:
1934 	case CHIP_VEGA20:
1935 	case CHIP_RAVEN:
1936 	case CHIP_RENOIR:
1937 	case CHIP_ARCTURUS:
1938 		device_queue_manager_init_v9(&dqm->asic_ops);
1939 		break;
1940 	case CHIP_NAVI10:
1941 	case CHIP_NAVI12:
1942 	case CHIP_NAVI14:
1943 	case CHIP_SIENNA_CICHLID:
1944 	case CHIP_NAVY_FLOUNDER:
1945 		device_queue_manager_init_v10_navi10(&dqm->asic_ops);
1946 		break;
1947 	default:
1948 		WARN(1, "Unexpected ASIC family %u",
1949 		     dev->device_info->asic_family);
1950 		goto out_free;
1951 	}
1952 
1953 	if (init_mqd_managers(dqm))
1954 		goto out_free;
1955 
1956 	if (allocate_hiq_sdma_mqd(dqm)) {
1957 		pr_err("Failed to allocate hiq sdma mqd trunk buffer\n");
1958 		goto out_free;
1959 	}
1960 
1961 	if (!dqm->ops.initialize(dqm))
1962 		return dqm;
1963 
1964 out_free:
1965 	kfree(dqm);
1966 	return NULL;
1967 }
1968 
1969 static void deallocate_hiq_sdma_mqd(struct kfd_dev *dev,
1970 				    struct kfd_mem_obj *mqd)
1971 {
1972 	WARN(!mqd, "No hiq sdma mqd trunk to free");
1973 
1974 	amdgpu_amdkfd_free_gtt_mem(dev->kgd, mqd->gtt_mem);
1975 }
1976 
1977 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1978 {
1979 	dqm->ops.uninitialize(dqm);
1980 	deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
1981 	kfree(dqm);
1982 }
1983 
1984 int kfd_process_vm_fault(struct device_queue_manager *dqm, u32 pasid)
1985 {
1986 	struct kfd_process_device *pdd;
1987 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1988 	int ret = 0;
1989 
1990 	if (!p)
1991 		return -EINVAL;
1992 	pdd = kfd_get_process_device_data(dqm->dev, p);
1993 	if (pdd)
1994 		ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
1995 	kfd_unref_process(p);
1996 
1997 	return ret;
1998 }
1999 
2000 static void kfd_process_hw_exception(struct work_struct *work)
2001 {
2002 	struct device_queue_manager *dqm = container_of(work,
2003 			struct device_queue_manager, hw_exception_work);
2004 	amdgpu_amdkfd_gpu_reset(dqm->dev->kgd);
2005 }
2006 
2007 #if defined(CONFIG_DEBUG_FS)
2008 
2009 static void seq_reg_dump(struct seq_file *m,
2010 			 uint32_t (*dump)[2], uint32_t n_regs)
2011 {
2012 	uint32_t i, count;
2013 
2014 	for (i = 0, count = 0; i < n_regs; i++) {
2015 		if (count == 0 ||
2016 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
2017 			seq_printf(m, "%s    %08x: %08x",
2018 				   i ? "\n" : "",
2019 				   dump[i][0], dump[i][1]);
2020 			count = 7;
2021 		} else {
2022 			seq_printf(m, " %08x", dump[i][1]);
2023 			count--;
2024 		}
2025 	}
2026 
2027 	seq_puts(m, "\n");
2028 }
2029 
2030 int dqm_debugfs_hqds(struct seq_file *m, void *data)
2031 {
2032 	struct device_queue_manager *dqm = data;
2033 	uint32_t (*dump)[2], n_regs;
2034 	int pipe, queue;
2035 	int r = 0;
2036 
2037 	if (!dqm->sched_running) {
2038 		seq_printf(m, " Device is stopped\n");
2039 
2040 		return 0;
2041 	}
2042 
2043 	r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->kgd,
2044 					KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE,
2045 					&dump, &n_regs);
2046 	if (!r) {
2047 		seq_printf(m, "  HIQ on MEC %d Pipe %d Queue %d\n",
2048 			   KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1,
2049 			   KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm),
2050 			   KFD_CIK_HIQ_QUEUE);
2051 		seq_reg_dump(m, dump, n_regs);
2052 
2053 		kfree(dump);
2054 	}
2055 
2056 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
2057 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
2058 
2059 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
2060 			if (!test_bit(pipe_offset + queue,
2061 				      dqm->dev->shared_resources.cp_queue_bitmap))
2062 				continue;
2063 
2064 			r = dqm->dev->kfd2kgd->hqd_dump(
2065 				dqm->dev->kgd, pipe, queue, &dump, &n_regs);
2066 			if (r)
2067 				break;
2068 
2069 			seq_printf(m, "  CP Pipe %d, Queue %d\n",
2070 				  pipe, queue);
2071 			seq_reg_dump(m, dump, n_regs);
2072 
2073 			kfree(dump);
2074 		}
2075 	}
2076 
2077 	for (pipe = 0; pipe < get_num_all_sdma_engines(dqm); pipe++) {
2078 		for (queue = 0;
2079 		     queue < dqm->dev->device_info->num_sdma_queues_per_engine;
2080 		     queue++) {
2081 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
2082 				dqm->dev->kgd, pipe, queue, &dump, &n_regs);
2083 			if (r)
2084 				break;
2085 
2086 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
2087 				  pipe, queue);
2088 			seq_reg_dump(m, dump, n_regs);
2089 
2090 			kfree(dump);
2091 		}
2092 	}
2093 
2094 	return r;
2095 }
2096 
2097 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm)
2098 {
2099 	int r = 0;
2100 
2101 	dqm_lock(dqm);
2102 	dqm->active_runlist = true;
2103 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
2104 	dqm_unlock(dqm);
2105 
2106 	return r;
2107 }
2108 
2109 #endif
2110