1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/ratelimit.h> 26 #include <linux/printk.h> 27 #include <linux/slab.h> 28 #include <linux/list.h> 29 #include <linux/types.h> 30 #include <linux/bitops.h> 31 #include <linux/sched.h> 32 #include "kfd_priv.h" 33 #include "kfd_device_queue_manager.h" 34 #include "kfd_mqd_manager.h" 35 #include "cik_regs.h" 36 #include "kfd_kernel_queue.h" 37 #include "amdgpu_amdkfd.h" 38 #include "mes_api_def.h" 39 #include "kfd_debug.h" 40 41 /* Size of the per-pipe EOP queue */ 42 #define CIK_HPD_EOP_BYTES_LOG2 11 43 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2) 44 45 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, 46 u32 pasid, unsigned int vmid); 47 48 static int execute_queues_cpsch(struct device_queue_manager *dqm, 49 enum kfd_unmap_queues_filter filter, 50 uint32_t filter_param, 51 uint32_t grace_period); 52 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 53 enum kfd_unmap_queues_filter filter, 54 uint32_t filter_param, 55 uint32_t grace_period, 56 bool reset); 57 58 static int map_queues_cpsch(struct device_queue_manager *dqm); 59 60 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 61 struct queue *q); 62 63 static inline void deallocate_hqd(struct device_queue_manager *dqm, 64 struct queue *q); 65 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q); 66 static int allocate_sdma_queue(struct device_queue_manager *dqm, 67 struct queue *q, const uint32_t *restore_sdma_id); 68 static void kfd_process_hw_exception(struct work_struct *work); 69 70 static inline 71 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type) 72 { 73 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI) 74 return KFD_MQD_TYPE_SDMA; 75 return KFD_MQD_TYPE_CP; 76 } 77 78 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe) 79 { 80 int i; 81 int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec 82 + pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe; 83 84 /* queue is available for KFD usage if bit is 1 */ 85 for (i = 0; i < dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i) 86 if (test_bit(pipe_offset + i, 87 dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 88 return true; 89 return false; 90 } 91 92 unsigned int get_cp_queues_num(struct device_queue_manager *dqm) 93 { 94 return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap, 95 KGD_MAX_QUEUES); 96 } 97 98 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm) 99 { 100 return dqm->dev->kfd->shared_resources.num_queue_per_pipe; 101 } 102 103 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm) 104 { 105 return dqm->dev->kfd->shared_resources.num_pipe_per_mec; 106 } 107 108 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm) 109 { 110 return kfd_get_num_sdma_engines(dqm->dev) + 111 kfd_get_num_xgmi_sdma_engines(dqm->dev); 112 } 113 114 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm) 115 { 116 return kfd_get_num_sdma_engines(dqm->dev) * 117 dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 118 } 119 120 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm) 121 { 122 return kfd_get_num_xgmi_sdma_engines(dqm->dev) * 123 dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 124 } 125 126 static void init_sdma_bitmaps(struct device_queue_manager *dqm) 127 { 128 bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES); 129 bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm)); 130 131 bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES); 132 bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm)); 133 134 /* Mask out the reserved queues */ 135 bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap, 136 dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap, 137 KFD_MAX_SDMA_QUEUES); 138 } 139 140 void program_sh_mem_settings(struct device_queue_manager *dqm, 141 struct qcm_process_device *qpd) 142 { 143 uint32_t xcc_mask = dqm->dev->xcc_mask; 144 int xcc_id; 145 146 for_each_inst(xcc_id, xcc_mask) 147 dqm->dev->kfd2kgd->program_sh_mem_settings( 148 dqm->dev->adev, qpd->vmid, qpd->sh_mem_config, 149 qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit, 150 qpd->sh_mem_bases, xcc_id); 151 } 152 153 static void kfd_hws_hang(struct device_queue_manager *dqm) 154 { 155 /* 156 * Issue a GPU reset if HWS is unresponsive 157 */ 158 dqm->is_hws_hang = true; 159 160 /* It's possible we're detecting a HWS hang in the 161 * middle of a GPU reset. No need to schedule another 162 * reset in this case. 163 */ 164 if (!dqm->is_resetting) 165 schedule_work(&dqm->hw_exception_work); 166 } 167 168 static int convert_to_mes_queue_type(int queue_type) 169 { 170 int mes_queue_type; 171 172 switch (queue_type) { 173 case KFD_QUEUE_TYPE_COMPUTE: 174 mes_queue_type = MES_QUEUE_TYPE_COMPUTE; 175 break; 176 case KFD_QUEUE_TYPE_SDMA: 177 mes_queue_type = MES_QUEUE_TYPE_SDMA; 178 break; 179 default: 180 WARN(1, "Invalid queue type %d", queue_type); 181 mes_queue_type = -EINVAL; 182 break; 183 } 184 185 return mes_queue_type; 186 } 187 188 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q, 189 struct qcm_process_device *qpd) 190 { 191 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 192 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 193 struct mes_add_queue_input queue_input; 194 int r, queue_type; 195 uint64_t wptr_addr_off; 196 197 if (dqm->is_hws_hang) 198 return -EIO; 199 200 memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input)); 201 queue_input.process_id = qpd->pqm->process->pasid; 202 queue_input.page_table_base_addr = qpd->page_table_base; 203 queue_input.process_va_start = 0; 204 queue_input.process_va_end = adev->vm_manager.max_pfn - 1; 205 /* MES unit for quantum is 100ns */ 206 queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM; /* Equivalent to 10ms. */ 207 queue_input.process_context_addr = pdd->proc_ctx_gpu_addr; 208 queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */ 209 queue_input.gang_context_addr = q->gang_ctx_gpu_addr; 210 queue_input.inprocess_gang_priority = q->properties.priority; 211 queue_input.gang_global_priority_level = 212 AMDGPU_MES_PRIORITY_LEVEL_NORMAL; 213 queue_input.doorbell_offset = q->properties.doorbell_off; 214 queue_input.mqd_addr = q->gart_mqd_addr; 215 queue_input.wptr_addr = (uint64_t)q->properties.write_ptr; 216 217 if (q->wptr_bo) { 218 wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1); 219 queue_input.wptr_mc_addr = ((uint64_t)q->wptr_bo->tbo.resource->start << PAGE_SHIFT) + wptr_addr_off; 220 } 221 222 queue_input.is_kfd_process = 1; 223 queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL); 224 queue_input.queue_size = q->properties.queue_size >> 2; 225 226 queue_input.paging = false; 227 queue_input.tba_addr = qpd->tba_addr; 228 queue_input.tma_addr = qpd->tma_addr; 229 queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device); 230 queue_input.skip_process_ctx_clear = qpd->pqm->process->debug_trap_enabled; 231 232 queue_type = convert_to_mes_queue_type(q->properties.type); 233 if (queue_type < 0) { 234 pr_err("Queue type not supported with MES, queue:%d\n", 235 q->properties.type); 236 return -EINVAL; 237 } 238 queue_input.queue_type = (uint32_t)queue_type; 239 240 queue_input.exclusively_scheduled = q->properties.is_gws; 241 242 amdgpu_mes_lock(&adev->mes); 243 r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input); 244 amdgpu_mes_unlock(&adev->mes); 245 if (r) { 246 pr_err("failed to add hardware queue to MES, doorbell=0x%x\n", 247 q->properties.doorbell_off); 248 pr_err("MES might be in unrecoverable state, issue a GPU reset\n"); 249 kfd_hws_hang(dqm); 250 } 251 252 return r; 253 } 254 255 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q, 256 struct qcm_process_device *qpd) 257 { 258 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 259 int r; 260 struct mes_remove_queue_input queue_input; 261 262 if (dqm->is_hws_hang) 263 return -EIO; 264 265 memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input)); 266 queue_input.doorbell_offset = q->properties.doorbell_off; 267 queue_input.gang_context_addr = q->gang_ctx_gpu_addr; 268 269 amdgpu_mes_lock(&adev->mes); 270 r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input); 271 amdgpu_mes_unlock(&adev->mes); 272 273 if (r) { 274 pr_err("failed to remove hardware queue from MES, doorbell=0x%x\n", 275 q->properties.doorbell_off); 276 pr_err("MES might be in unrecoverable state, issue a GPU reset\n"); 277 kfd_hws_hang(dqm); 278 } 279 280 return r; 281 } 282 283 static int remove_all_queues_mes(struct device_queue_manager *dqm) 284 { 285 struct device_process_node *cur; 286 struct qcm_process_device *qpd; 287 struct queue *q; 288 int retval = 0; 289 290 list_for_each_entry(cur, &dqm->queues, list) { 291 qpd = cur->qpd; 292 list_for_each_entry(q, &qpd->queues_list, list) { 293 if (q->properties.is_active) { 294 retval = remove_queue_mes(dqm, q, qpd); 295 if (retval) { 296 pr_err("%s: Failed to remove queue %d for dev %d", 297 __func__, 298 q->properties.queue_id, 299 dqm->dev->id); 300 return retval; 301 } 302 } 303 } 304 } 305 306 return retval; 307 } 308 309 static void increment_queue_count(struct device_queue_manager *dqm, 310 struct qcm_process_device *qpd, 311 struct queue *q) 312 { 313 dqm->active_queue_count++; 314 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 315 q->properties.type == KFD_QUEUE_TYPE_DIQ) 316 dqm->active_cp_queue_count++; 317 318 if (q->properties.is_gws) { 319 dqm->gws_queue_count++; 320 qpd->mapped_gws_queue = true; 321 } 322 } 323 324 static void decrement_queue_count(struct device_queue_manager *dqm, 325 struct qcm_process_device *qpd, 326 struct queue *q) 327 { 328 dqm->active_queue_count--; 329 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 330 q->properties.type == KFD_QUEUE_TYPE_DIQ) 331 dqm->active_cp_queue_count--; 332 333 if (q->properties.is_gws) { 334 dqm->gws_queue_count--; 335 qpd->mapped_gws_queue = false; 336 } 337 } 338 339 /* 340 * Allocate a doorbell ID to this queue. 341 * If doorbell_id is passed in, make sure requested ID is valid then allocate it. 342 */ 343 static int allocate_doorbell(struct qcm_process_device *qpd, 344 struct queue *q, 345 uint32_t const *restore_id) 346 { 347 struct kfd_node *dev = qpd->dqm->dev; 348 349 if (!KFD_IS_SOC15(dev)) { 350 /* On pre-SOC15 chips we need to use the queue ID to 351 * preserve the user mode ABI. 352 */ 353 354 if (restore_id && *restore_id != q->properties.queue_id) 355 return -EINVAL; 356 357 q->doorbell_id = q->properties.queue_id; 358 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 359 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 360 /* For SDMA queues on SOC15 with 8-byte doorbell, use static 361 * doorbell assignments based on the engine and queue id. 362 * The doobell index distance between RLC (2*i) and (2*i+1) 363 * for a SDMA engine is 512. 364 */ 365 366 uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx; 367 368 /* 369 * q->properties.sdma_engine_id corresponds to the virtual 370 * sdma engine number. However, for doorbell allocation, 371 * we need the physical sdma engine id in order to get the 372 * correct doorbell offset. 373 */ 374 uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id * 375 get_num_all_sdma_engines(qpd->dqm) + 376 q->properties.sdma_engine_id] 377 + (q->properties.sdma_queue_id & 1) 378 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET 379 + (q->properties.sdma_queue_id >> 1); 380 381 if (restore_id && *restore_id != valid_id) 382 return -EINVAL; 383 q->doorbell_id = valid_id; 384 } else { 385 /* For CP queues on SOC15 */ 386 if (restore_id) { 387 /* make sure that ID is free */ 388 if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap)) 389 return -EINVAL; 390 391 q->doorbell_id = *restore_id; 392 } else { 393 /* or reserve a free doorbell ID */ 394 unsigned int found; 395 396 found = find_first_zero_bit(qpd->doorbell_bitmap, 397 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 398 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) { 399 pr_debug("No doorbells available"); 400 return -EBUSY; 401 } 402 set_bit(found, qpd->doorbell_bitmap); 403 q->doorbell_id = found; 404 } 405 } 406 407 q->properties.doorbell_off = 408 kfd_get_doorbell_dw_offset_in_bar(dev->kfd, qpd_to_pdd(qpd), 409 q->doorbell_id); 410 return 0; 411 } 412 413 static void deallocate_doorbell(struct qcm_process_device *qpd, 414 struct queue *q) 415 { 416 unsigned int old; 417 struct kfd_node *dev = qpd->dqm->dev; 418 419 if (!KFD_IS_SOC15(dev) || 420 q->properties.type == KFD_QUEUE_TYPE_SDMA || 421 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 422 return; 423 424 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap); 425 WARN_ON(!old); 426 } 427 428 static void program_trap_handler_settings(struct device_queue_manager *dqm, 429 struct qcm_process_device *qpd) 430 { 431 uint32_t xcc_mask = dqm->dev->xcc_mask; 432 int xcc_id; 433 434 if (dqm->dev->kfd2kgd->program_trap_handler_settings) 435 for_each_inst(xcc_id, xcc_mask) 436 dqm->dev->kfd2kgd->program_trap_handler_settings( 437 dqm->dev->adev, qpd->vmid, qpd->tba_addr, 438 qpd->tma_addr, xcc_id); 439 } 440 441 static int allocate_vmid(struct device_queue_manager *dqm, 442 struct qcm_process_device *qpd, 443 struct queue *q) 444 { 445 int allocated_vmid = -1, i; 446 447 for (i = dqm->dev->vm_info.first_vmid_kfd; 448 i <= dqm->dev->vm_info.last_vmid_kfd; i++) { 449 if (!dqm->vmid_pasid[i]) { 450 allocated_vmid = i; 451 break; 452 } 453 } 454 455 if (allocated_vmid < 0) { 456 pr_err("no more vmid to allocate\n"); 457 return -ENOSPC; 458 } 459 460 pr_debug("vmid allocated: %d\n", allocated_vmid); 461 462 dqm->vmid_pasid[allocated_vmid] = q->process->pasid; 463 464 set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid); 465 466 qpd->vmid = allocated_vmid; 467 q->properties.vmid = allocated_vmid; 468 469 program_sh_mem_settings(dqm, qpd); 470 471 if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled) 472 program_trap_handler_settings(dqm, qpd); 473 474 /* qpd->page_table_base is set earlier when register_process() 475 * is called, i.e. when the first queue is created. 476 */ 477 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev, 478 qpd->vmid, 479 qpd->page_table_base); 480 /* invalidate the VM context after pasid and vmid mapping is set up */ 481 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY); 482 483 if (dqm->dev->kfd2kgd->set_scratch_backing_va) 484 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev, 485 qpd->sh_hidden_private_base, qpd->vmid); 486 487 return 0; 488 } 489 490 static int flush_texture_cache_nocpsch(struct kfd_node *kdev, 491 struct qcm_process_device *qpd) 492 { 493 const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf; 494 int ret; 495 496 if (!qpd->ib_kaddr) 497 return -ENOMEM; 498 499 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr); 500 if (ret) 501 return ret; 502 503 return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid, 504 qpd->ib_base, (uint32_t *)qpd->ib_kaddr, 505 pmf->release_mem_size / sizeof(uint32_t)); 506 } 507 508 static void deallocate_vmid(struct device_queue_manager *dqm, 509 struct qcm_process_device *qpd, 510 struct queue *q) 511 { 512 /* On GFX v7, CP doesn't flush TC at dequeue */ 513 if (q->device->adev->asic_type == CHIP_HAWAII) 514 if (flush_texture_cache_nocpsch(q->device, qpd)) 515 pr_err("Failed to flush TC\n"); 516 517 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY); 518 519 /* Release the vmid mapping */ 520 set_pasid_vmid_mapping(dqm, 0, qpd->vmid); 521 dqm->vmid_pasid[qpd->vmid] = 0; 522 523 qpd->vmid = 0; 524 q->properties.vmid = 0; 525 } 526 527 static int create_queue_nocpsch(struct device_queue_manager *dqm, 528 struct queue *q, 529 struct qcm_process_device *qpd, 530 const struct kfd_criu_queue_priv_data *qd, 531 const void *restore_mqd, const void *restore_ctl_stack) 532 { 533 struct mqd_manager *mqd_mgr; 534 int retval; 535 536 dqm_lock(dqm); 537 538 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 539 pr_warn("Can't create new usermode queue because %d queues were already created\n", 540 dqm->total_queue_count); 541 retval = -EPERM; 542 goto out_unlock; 543 } 544 545 if (list_empty(&qpd->queues_list)) { 546 retval = allocate_vmid(dqm, qpd, q); 547 if (retval) 548 goto out_unlock; 549 } 550 q->properties.vmid = qpd->vmid; 551 /* 552 * Eviction state logic: mark all queues as evicted, even ones 553 * not currently active. Restoring inactive queues later only 554 * updates the is_evicted flag but is a no-op otherwise. 555 */ 556 q->properties.is_evicted = !!qpd->evicted; 557 558 q->properties.tba_addr = qpd->tba_addr; 559 q->properties.tma_addr = qpd->tma_addr; 560 561 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 562 q->properties.type)]; 563 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) { 564 retval = allocate_hqd(dqm, q); 565 if (retval) 566 goto deallocate_vmid; 567 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n", 568 q->pipe, q->queue); 569 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 570 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 571 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL); 572 if (retval) 573 goto deallocate_vmid; 574 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 575 } 576 577 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL); 578 if (retval) 579 goto out_deallocate_hqd; 580 581 /* Temporarily release dqm lock to avoid a circular lock dependency */ 582 dqm_unlock(dqm); 583 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 584 dqm_lock(dqm); 585 586 if (!q->mqd_mem_obj) { 587 retval = -ENOMEM; 588 goto out_deallocate_doorbell; 589 } 590 591 if (qd) 592 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr, 593 &q->properties, restore_mqd, restore_ctl_stack, 594 qd->ctl_stack_size); 595 else 596 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 597 &q->gart_mqd_addr, &q->properties); 598 599 if (q->properties.is_active) { 600 if (!dqm->sched_running) { 601 WARN_ONCE(1, "Load non-HWS mqd while stopped\n"); 602 goto add_queue_to_list; 603 } 604 605 if (WARN(q->process->mm != current->mm, 606 "should only run in user thread")) 607 retval = -EFAULT; 608 else 609 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 610 q->queue, &q->properties, current->mm); 611 if (retval) 612 goto out_free_mqd; 613 } 614 615 add_queue_to_list: 616 list_add(&q->list, &qpd->queues_list); 617 qpd->queue_count++; 618 if (q->properties.is_active) 619 increment_queue_count(dqm, qpd, q); 620 621 /* 622 * Unconditionally increment this counter, regardless of the queue's 623 * type or whether the queue is active. 624 */ 625 dqm->total_queue_count++; 626 pr_debug("Total of %d queues are accountable so far\n", 627 dqm->total_queue_count); 628 goto out_unlock; 629 630 out_free_mqd: 631 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 632 out_deallocate_doorbell: 633 deallocate_doorbell(qpd, q); 634 out_deallocate_hqd: 635 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 636 deallocate_hqd(dqm, q); 637 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 638 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 639 deallocate_sdma_queue(dqm, q); 640 deallocate_vmid: 641 if (list_empty(&qpd->queues_list)) 642 deallocate_vmid(dqm, qpd, q); 643 out_unlock: 644 dqm_unlock(dqm); 645 return retval; 646 } 647 648 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q) 649 { 650 bool set; 651 int pipe, bit, i; 652 653 set = false; 654 655 for (pipe = dqm->next_pipe_to_allocate, i = 0; 656 i < get_pipes_per_mec(dqm); 657 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) { 658 659 if (!is_pipe_enabled(dqm, 0, pipe)) 660 continue; 661 662 if (dqm->allocated_queues[pipe] != 0) { 663 bit = ffs(dqm->allocated_queues[pipe]) - 1; 664 dqm->allocated_queues[pipe] &= ~(1 << bit); 665 q->pipe = pipe; 666 q->queue = bit; 667 set = true; 668 break; 669 } 670 } 671 672 if (!set) 673 return -EBUSY; 674 675 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue); 676 /* horizontal hqd allocation */ 677 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm); 678 679 return 0; 680 } 681 682 static inline void deallocate_hqd(struct device_queue_manager *dqm, 683 struct queue *q) 684 { 685 dqm->allocated_queues[q->pipe] |= (1 << q->queue); 686 } 687 688 #define SQ_IND_CMD_CMD_KILL 0x00000003 689 #define SQ_IND_CMD_MODE_BROADCAST 0x00000001 690 691 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p) 692 { 693 int status = 0; 694 unsigned int vmid; 695 uint16_t queried_pasid; 696 union SQ_CMD_BITS reg_sq_cmd; 697 union GRBM_GFX_INDEX_BITS reg_gfx_index; 698 struct kfd_process_device *pdd; 699 int first_vmid_to_scan = dev->vm_info.first_vmid_kfd; 700 int last_vmid_to_scan = dev->vm_info.last_vmid_kfd; 701 uint32_t xcc_mask = dev->xcc_mask; 702 int xcc_id; 703 704 reg_sq_cmd.u32All = 0; 705 reg_gfx_index.u32All = 0; 706 707 pr_debug("Killing all process wavefronts\n"); 708 709 if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) { 710 pr_err("no vmid pasid mapping supported \n"); 711 return -EOPNOTSUPP; 712 } 713 714 /* Scan all registers in the range ATC_VMID8_PASID_MAPPING .. 715 * ATC_VMID15_PASID_MAPPING 716 * to check which VMID the current process is mapped to. 717 */ 718 719 for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) { 720 status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info 721 (dev->adev, vmid, &queried_pasid); 722 723 if (status && queried_pasid == p->pasid) { 724 pr_debug("Killing wave fronts of vmid %d and pasid 0x%x\n", 725 vmid, p->pasid); 726 break; 727 } 728 } 729 730 if (vmid > last_vmid_to_scan) { 731 pr_err("Didn't find vmid for pasid 0x%x\n", p->pasid); 732 return -EFAULT; 733 } 734 735 /* taking the VMID for that process on the safe way using PDD */ 736 pdd = kfd_get_process_device_data(dev, p); 737 if (!pdd) 738 return -EFAULT; 739 740 reg_gfx_index.bits.sh_broadcast_writes = 1; 741 reg_gfx_index.bits.se_broadcast_writes = 1; 742 reg_gfx_index.bits.instance_broadcast_writes = 1; 743 reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST; 744 reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL; 745 reg_sq_cmd.bits.vm_id = vmid; 746 747 for_each_inst(xcc_id, xcc_mask) 748 dev->kfd2kgd->wave_control_execute( 749 dev->adev, reg_gfx_index.u32All, 750 reg_sq_cmd.u32All, xcc_id); 751 752 return 0; 753 } 754 755 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked 756 * to avoid asynchronized access 757 */ 758 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm, 759 struct qcm_process_device *qpd, 760 struct queue *q) 761 { 762 int retval; 763 struct mqd_manager *mqd_mgr; 764 765 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 766 q->properties.type)]; 767 768 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 769 deallocate_hqd(dqm, q); 770 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 771 deallocate_sdma_queue(dqm, q); 772 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 773 deallocate_sdma_queue(dqm, q); 774 else { 775 pr_debug("q->properties.type %d is invalid\n", 776 q->properties.type); 777 return -EINVAL; 778 } 779 dqm->total_queue_count--; 780 781 deallocate_doorbell(qpd, q); 782 783 if (!dqm->sched_running) { 784 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n"); 785 return 0; 786 } 787 788 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 789 KFD_PREEMPT_TYPE_WAVEFRONT_RESET, 790 KFD_UNMAP_LATENCY_MS, 791 q->pipe, q->queue); 792 if (retval == -ETIME) 793 qpd->reset_wavefronts = true; 794 795 list_del(&q->list); 796 if (list_empty(&qpd->queues_list)) { 797 if (qpd->reset_wavefronts) { 798 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n", 799 dqm->dev); 800 /* dbgdev_wave_reset_wavefronts has to be called before 801 * deallocate_vmid(), i.e. when vmid is still in use. 802 */ 803 dbgdev_wave_reset_wavefronts(dqm->dev, 804 qpd->pqm->process); 805 qpd->reset_wavefronts = false; 806 } 807 808 deallocate_vmid(dqm, qpd, q); 809 } 810 qpd->queue_count--; 811 if (q->properties.is_active) 812 decrement_queue_count(dqm, qpd, q); 813 814 return retval; 815 } 816 817 static int destroy_queue_nocpsch(struct device_queue_manager *dqm, 818 struct qcm_process_device *qpd, 819 struct queue *q) 820 { 821 int retval; 822 uint64_t sdma_val = 0; 823 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 824 struct mqd_manager *mqd_mgr = 825 dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)]; 826 827 /* Get the SDMA queue stats */ 828 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 829 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 830 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr, 831 &sdma_val); 832 if (retval) 833 pr_err("Failed to read SDMA queue counter for queue: %d\n", 834 q->properties.queue_id); 835 } 836 837 dqm_lock(dqm); 838 retval = destroy_queue_nocpsch_locked(dqm, qpd, q); 839 if (!retval) 840 pdd->sdma_past_activity_counter += sdma_val; 841 dqm_unlock(dqm); 842 843 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 844 845 return retval; 846 } 847 848 static int update_queue(struct device_queue_manager *dqm, struct queue *q, 849 struct mqd_update_info *minfo) 850 { 851 int retval = 0; 852 struct mqd_manager *mqd_mgr; 853 struct kfd_process_device *pdd; 854 bool prev_active = false; 855 856 dqm_lock(dqm); 857 pdd = kfd_get_process_device_data(q->device, q->process); 858 if (!pdd) { 859 retval = -ENODEV; 860 goto out_unlock; 861 } 862 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 863 q->properties.type)]; 864 865 /* Save previous activity state for counters */ 866 prev_active = q->properties.is_active; 867 868 /* Make sure the queue is unmapped before updating the MQD */ 869 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { 870 if (!dqm->dev->kfd->shared_resources.enable_mes) 871 retval = unmap_queues_cpsch(dqm, 872 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false); 873 else if (prev_active) 874 retval = remove_queue_mes(dqm, q, &pdd->qpd); 875 876 if (retval) { 877 pr_err("unmap queue failed\n"); 878 goto out_unlock; 879 } 880 } else if (prev_active && 881 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 882 q->properties.type == KFD_QUEUE_TYPE_SDMA || 883 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 884 885 if (!dqm->sched_running) { 886 WARN_ONCE(1, "Update non-HWS queue while stopped\n"); 887 goto out_unlock; 888 } 889 890 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 891 (dqm->dev->kfd->cwsr_enabled ? 892 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE : 893 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN), 894 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 895 if (retval) { 896 pr_err("destroy mqd failed\n"); 897 goto out_unlock; 898 } 899 } 900 901 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo); 902 903 /* 904 * check active state vs. the previous state and modify 905 * counter accordingly. map_queues_cpsch uses the 906 * dqm->active_queue_count to determine whether a new runlist must be 907 * uploaded. 908 */ 909 if (q->properties.is_active && !prev_active) { 910 increment_queue_count(dqm, &pdd->qpd, q); 911 } else if (!q->properties.is_active && prev_active) { 912 decrement_queue_count(dqm, &pdd->qpd, q); 913 } else if (q->gws && !q->properties.is_gws) { 914 if (q->properties.is_active) { 915 dqm->gws_queue_count++; 916 pdd->qpd.mapped_gws_queue = true; 917 } 918 q->properties.is_gws = true; 919 } else if (!q->gws && q->properties.is_gws) { 920 if (q->properties.is_active) { 921 dqm->gws_queue_count--; 922 pdd->qpd.mapped_gws_queue = false; 923 } 924 q->properties.is_gws = false; 925 } 926 927 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { 928 if (!dqm->dev->kfd->shared_resources.enable_mes) 929 retval = map_queues_cpsch(dqm); 930 else if (q->properties.is_active) 931 retval = add_queue_mes(dqm, q, &pdd->qpd); 932 } else if (q->properties.is_active && 933 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 934 q->properties.type == KFD_QUEUE_TYPE_SDMA || 935 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 936 if (WARN(q->process->mm != current->mm, 937 "should only run in user thread")) 938 retval = -EFAULT; 939 else 940 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, 941 q->pipe, q->queue, 942 &q->properties, current->mm); 943 } 944 945 out_unlock: 946 dqm_unlock(dqm); 947 return retval; 948 } 949 950 /* suspend_single_queue does not lock the dqm like the 951 * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should 952 * lock the dqm before calling, and unlock after calling. 953 * 954 * The reason we don't lock the dqm is because this function may be 955 * called on multiple queues in a loop, so rather than locking/unlocking 956 * multiple times, we will just keep the dqm locked for all of the calls. 957 */ 958 static int suspend_single_queue(struct device_queue_manager *dqm, 959 struct kfd_process_device *pdd, 960 struct queue *q) 961 { 962 bool is_new; 963 964 if (q->properties.is_suspended) 965 return 0; 966 967 pr_debug("Suspending PASID %u queue [%i]\n", 968 pdd->process->pasid, 969 q->properties.queue_id); 970 971 is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW); 972 973 if (is_new || q->properties.is_being_destroyed) { 974 pr_debug("Suspend: skip %s queue id %i\n", 975 is_new ? "new" : "destroyed", 976 q->properties.queue_id); 977 return -EBUSY; 978 } 979 980 q->properties.is_suspended = true; 981 if (q->properties.is_active) { 982 if (dqm->dev->kfd->shared_resources.enable_mes) { 983 int r = remove_queue_mes(dqm, q, &pdd->qpd); 984 985 if (r) 986 return r; 987 } 988 989 decrement_queue_count(dqm, &pdd->qpd, q); 990 q->properties.is_active = false; 991 } 992 993 return 0; 994 } 995 996 /* resume_single_queue does not lock the dqm like the functions 997 * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should 998 * lock the dqm before calling, and unlock after calling. 999 * 1000 * The reason we don't lock the dqm is because this function may be 1001 * called on multiple queues in a loop, so rather than locking/unlocking 1002 * multiple times, we will just keep the dqm locked for all of the calls. 1003 */ 1004 static int resume_single_queue(struct device_queue_manager *dqm, 1005 struct qcm_process_device *qpd, 1006 struct queue *q) 1007 { 1008 struct kfd_process_device *pdd; 1009 1010 if (!q->properties.is_suspended) 1011 return 0; 1012 1013 pdd = qpd_to_pdd(qpd); 1014 1015 pr_debug("Restoring from suspend PASID %u queue [%i]\n", 1016 pdd->process->pasid, 1017 q->properties.queue_id); 1018 1019 q->properties.is_suspended = false; 1020 1021 if (QUEUE_IS_ACTIVE(q->properties)) { 1022 if (dqm->dev->kfd->shared_resources.enable_mes) { 1023 int r = add_queue_mes(dqm, q, &pdd->qpd); 1024 1025 if (r) 1026 return r; 1027 } 1028 1029 q->properties.is_active = true; 1030 increment_queue_count(dqm, qpd, q); 1031 } 1032 1033 return 0; 1034 } 1035 1036 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm, 1037 struct qcm_process_device *qpd) 1038 { 1039 struct queue *q; 1040 struct mqd_manager *mqd_mgr; 1041 struct kfd_process_device *pdd; 1042 int retval, ret = 0; 1043 1044 dqm_lock(dqm); 1045 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 1046 goto out; 1047 1048 pdd = qpd_to_pdd(qpd); 1049 pr_debug_ratelimited("Evicting PASID 0x%x queues\n", 1050 pdd->process->pasid); 1051 1052 pdd->last_evict_timestamp = get_jiffies_64(); 1053 /* Mark all queues as evicted. Deactivate all active queues on 1054 * the qpd. 1055 */ 1056 list_for_each_entry(q, &qpd->queues_list, list) { 1057 q->properties.is_evicted = true; 1058 if (!q->properties.is_active) 1059 continue; 1060 1061 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1062 q->properties.type)]; 1063 q->properties.is_active = false; 1064 decrement_queue_count(dqm, qpd, q); 1065 1066 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n")) 1067 continue; 1068 1069 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 1070 (dqm->dev->kfd->cwsr_enabled ? 1071 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE : 1072 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN), 1073 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 1074 if (retval && !ret) 1075 /* Return the first error, but keep going to 1076 * maintain a consistent eviction state 1077 */ 1078 ret = retval; 1079 } 1080 1081 out: 1082 dqm_unlock(dqm); 1083 return ret; 1084 } 1085 1086 static int evict_process_queues_cpsch(struct device_queue_manager *dqm, 1087 struct qcm_process_device *qpd) 1088 { 1089 struct queue *q; 1090 struct kfd_process_device *pdd; 1091 int retval = 0; 1092 1093 dqm_lock(dqm); 1094 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 1095 goto out; 1096 1097 pdd = qpd_to_pdd(qpd); 1098 1099 /* The debugger creates processes that temporarily have not acquired 1100 * all VMs for all devices and has no VMs itself. 1101 * Skip queue eviction on process eviction. 1102 */ 1103 if (!pdd->drm_priv) 1104 goto out; 1105 1106 pr_debug_ratelimited("Evicting PASID 0x%x queues\n", 1107 pdd->process->pasid); 1108 1109 /* Mark all queues as evicted. Deactivate all active queues on 1110 * the qpd. 1111 */ 1112 list_for_each_entry(q, &qpd->queues_list, list) { 1113 q->properties.is_evicted = true; 1114 if (!q->properties.is_active) 1115 continue; 1116 1117 q->properties.is_active = false; 1118 decrement_queue_count(dqm, qpd, q); 1119 1120 if (dqm->dev->kfd->shared_resources.enable_mes) { 1121 retval = remove_queue_mes(dqm, q, qpd); 1122 if (retval) { 1123 pr_err("Failed to evict queue %d\n", 1124 q->properties.queue_id); 1125 goto out; 1126 } 1127 } 1128 } 1129 pdd->last_evict_timestamp = get_jiffies_64(); 1130 if (!dqm->dev->kfd->shared_resources.enable_mes) 1131 retval = execute_queues_cpsch(dqm, 1132 qpd->is_debug ? 1133 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES : 1134 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 1135 USE_DEFAULT_GRACE_PERIOD); 1136 1137 out: 1138 dqm_unlock(dqm); 1139 return retval; 1140 } 1141 1142 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm, 1143 struct qcm_process_device *qpd) 1144 { 1145 struct mm_struct *mm = NULL; 1146 struct queue *q; 1147 struct mqd_manager *mqd_mgr; 1148 struct kfd_process_device *pdd; 1149 uint64_t pd_base; 1150 uint64_t eviction_duration; 1151 int retval, ret = 0; 1152 1153 pdd = qpd_to_pdd(qpd); 1154 /* Retrieve PD base */ 1155 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1156 1157 dqm_lock(dqm); 1158 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 1159 goto out; 1160 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 1161 qpd->evicted--; 1162 goto out; 1163 } 1164 1165 pr_debug_ratelimited("Restoring PASID 0x%x queues\n", 1166 pdd->process->pasid); 1167 1168 /* Update PD Base in QPD */ 1169 qpd->page_table_base = pd_base; 1170 pr_debug("Updated PD address to 0x%llx\n", pd_base); 1171 1172 if (!list_empty(&qpd->queues_list)) { 1173 dqm->dev->kfd2kgd->set_vm_context_page_table_base( 1174 dqm->dev->adev, 1175 qpd->vmid, 1176 qpd->page_table_base); 1177 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY); 1178 } 1179 1180 /* Take a safe reference to the mm_struct, which may otherwise 1181 * disappear even while the kfd_process is still referenced. 1182 */ 1183 mm = get_task_mm(pdd->process->lead_thread); 1184 if (!mm) { 1185 ret = -EFAULT; 1186 goto out; 1187 } 1188 1189 /* Remove the eviction flags. Activate queues that are not 1190 * inactive for other reasons. 1191 */ 1192 list_for_each_entry(q, &qpd->queues_list, list) { 1193 q->properties.is_evicted = false; 1194 if (!QUEUE_IS_ACTIVE(q->properties)) 1195 continue; 1196 1197 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1198 q->properties.type)]; 1199 q->properties.is_active = true; 1200 increment_queue_count(dqm, qpd, q); 1201 1202 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n")) 1203 continue; 1204 1205 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 1206 q->queue, &q->properties, mm); 1207 if (retval && !ret) 1208 /* Return the first error, but keep going to 1209 * maintain a consistent eviction state 1210 */ 1211 ret = retval; 1212 } 1213 qpd->evicted = 0; 1214 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp; 1215 atomic64_add(eviction_duration, &pdd->evict_duration_counter); 1216 out: 1217 if (mm) 1218 mmput(mm); 1219 dqm_unlock(dqm); 1220 return ret; 1221 } 1222 1223 static int restore_process_queues_cpsch(struct device_queue_manager *dqm, 1224 struct qcm_process_device *qpd) 1225 { 1226 struct queue *q; 1227 struct kfd_process_device *pdd; 1228 uint64_t eviction_duration; 1229 int retval = 0; 1230 1231 pdd = qpd_to_pdd(qpd); 1232 1233 dqm_lock(dqm); 1234 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 1235 goto out; 1236 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 1237 qpd->evicted--; 1238 goto out; 1239 } 1240 1241 /* The debugger creates processes that temporarily have not acquired 1242 * all VMs for all devices and has no VMs itself. 1243 * Skip queue restore on process restore. 1244 */ 1245 if (!pdd->drm_priv) 1246 goto vm_not_acquired; 1247 1248 pr_debug_ratelimited("Restoring PASID 0x%x queues\n", 1249 pdd->process->pasid); 1250 1251 /* Update PD Base in QPD */ 1252 qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1253 pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base); 1254 1255 /* activate all active queues on the qpd */ 1256 list_for_each_entry(q, &qpd->queues_list, list) { 1257 q->properties.is_evicted = false; 1258 if (!QUEUE_IS_ACTIVE(q->properties)) 1259 continue; 1260 1261 q->properties.is_active = true; 1262 increment_queue_count(dqm, &pdd->qpd, q); 1263 1264 if (dqm->dev->kfd->shared_resources.enable_mes) { 1265 retval = add_queue_mes(dqm, q, qpd); 1266 if (retval) { 1267 pr_err("Failed to restore queue %d\n", 1268 q->properties.queue_id); 1269 goto out; 1270 } 1271 } 1272 } 1273 if (!dqm->dev->kfd->shared_resources.enable_mes) 1274 retval = execute_queues_cpsch(dqm, 1275 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); 1276 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp; 1277 atomic64_add(eviction_duration, &pdd->evict_duration_counter); 1278 vm_not_acquired: 1279 qpd->evicted = 0; 1280 out: 1281 dqm_unlock(dqm); 1282 return retval; 1283 } 1284 1285 static int register_process(struct device_queue_manager *dqm, 1286 struct qcm_process_device *qpd) 1287 { 1288 struct device_process_node *n; 1289 struct kfd_process_device *pdd; 1290 uint64_t pd_base; 1291 int retval; 1292 1293 n = kzalloc(sizeof(*n), GFP_KERNEL); 1294 if (!n) 1295 return -ENOMEM; 1296 1297 n->qpd = qpd; 1298 1299 pdd = qpd_to_pdd(qpd); 1300 /* Retrieve PD base */ 1301 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1302 1303 dqm_lock(dqm); 1304 list_add(&n->list, &dqm->queues); 1305 1306 /* Update PD Base in QPD */ 1307 qpd->page_table_base = pd_base; 1308 pr_debug("Updated PD address to 0x%llx\n", pd_base); 1309 1310 retval = dqm->asic_ops.update_qpd(dqm, qpd); 1311 1312 dqm->processes_count++; 1313 1314 dqm_unlock(dqm); 1315 1316 /* Outside the DQM lock because under the DQM lock we can't do 1317 * reclaim or take other locks that others hold while reclaiming. 1318 */ 1319 kfd_inc_compute_active(dqm->dev); 1320 1321 return retval; 1322 } 1323 1324 static int unregister_process(struct device_queue_manager *dqm, 1325 struct qcm_process_device *qpd) 1326 { 1327 int retval; 1328 struct device_process_node *cur, *next; 1329 1330 pr_debug("qpd->queues_list is %s\n", 1331 list_empty(&qpd->queues_list) ? "empty" : "not empty"); 1332 1333 retval = 0; 1334 dqm_lock(dqm); 1335 1336 list_for_each_entry_safe(cur, next, &dqm->queues, list) { 1337 if (qpd == cur->qpd) { 1338 list_del(&cur->list); 1339 kfree(cur); 1340 dqm->processes_count--; 1341 goto out; 1342 } 1343 } 1344 /* qpd not found in dqm list */ 1345 retval = 1; 1346 out: 1347 dqm_unlock(dqm); 1348 1349 /* Outside the DQM lock because under the DQM lock we can't do 1350 * reclaim or take other locks that others hold while reclaiming. 1351 */ 1352 if (!retval) 1353 kfd_dec_compute_active(dqm->dev); 1354 1355 return retval; 1356 } 1357 1358 static int 1359 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid, 1360 unsigned int vmid) 1361 { 1362 uint32_t xcc_mask = dqm->dev->xcc_mask; 1363 int xcc_id, ret; 1364 1365 for_each_inst(xcc_id, xcc_mask) { 1366 ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping( 1367 dqm->dev->adev, pasid, vmid, xcc_id); 1368 if (ret) 1369 break; 1370 } 1371 1372 return ret; 1373 } 1374 1375 static void init_interrupts(struct device_queue_manager *dqm) 1376 { 1377 uint32_t xcc_mask = dqm->dev->xcc_mask; 1378 unsigned int i, xcc_id; 1379 1380 for_each_inst(xcc_id, xcc_mask) { 1381 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) { 1382 if (is_pipe_enabled(dqm, 0, i)) { 1383 dqm->dev->kfd2kgd->init_interrupts( 1384 dqm->dev->adev, i, xcc_id); 1385 } 1386 } 1387 } 1388 } 1389 1390 static int initialize_nocpsch(struct device_queue_manager *dqm) 1391 { 1392 int pipe, queue; 1393 1394 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 1395 1396 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm), 1397 sizeof(unsigned int), GFP_KERNEL); 1398 if (!dqm->allocated_queues) 1399 return -ENOMEM; 1400 1401 mutex_init(&dqm->lock_hidden); 1402 INIT_LIST_HEAD(&dqm->queues); 1403 dqm->active_queue_count = dqm->next_pipe_to_allocate = 0; 1404 dqm->active_cp_queue_count = 0; 1405 dqm->gws_queue_count = 0; 1406 1407 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 1408 int pipe_offset = pipe * get_queues_per_pipe(dqm); 1409 1410 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) 1411 if (test_bit(pipe_offset + queue, 1412 dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 1413 dqm->allocated_queues[pipe] |= 1 << queue; 1414 } 1415 1416 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid)); 1417 1418 init_sdma_bitmaps(dqm); 1419 1420 return 0; 1421 } 1422 1423 static void uninitialize(struct device_queue_manager *dqm) 1424 { 1425 int i; 1426 1427 WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0); 1428 1429 kfree(dqm->allocated_queues); 1430 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++) 1431 kfree(dqm->mqd_mgrs[i]); 1432 mutex_destroy(&dqm->lock_hidden); 1433 } 1434 1435 static int start_nocpsch(struct device_queue_manager *dqm) 1436 { 1437 int r = 0; 1438 1439 pr_info("SW scheduler is used"); 1440 init_interrupts(dqm); 1441 1442 if (dqm->dev->adev->asic_type == CHIP_HAWAII) 1443 r = pm_init(&dqm->packet_mgr, dqm); 1444 if (!r) 1445 dqm->sched_running = true; 1446 1447 return r; 1448 } 1449 1450 static int stop_nocpsch(struct device_queue_manager *dqm) 1451 { 1452 dqm_lock(dqm); 1453 if (!dqm->sched_running) { 1454 dqm_unlock(dqm); 1455 return 0; 1456 } 1457 1458 if (dqm->dev->adev->asic_type == CHIP_HAWAII) 1459 pm_uninit(&dqm->packet_mgr, false); 1460 dqm->sched_running = false; 1461 dqm_unlock(dqm); 1462 1463 return 0; 1464 } 1465 1466 static void pre_reset(struct device_queue_manager *dqm) 1467 { 1468 dqm_lock(dqm); 1469 dqm->is_resetting = true; 1470 dqm_unlock(dqm); 1471 } 1472 1473 static int allocate_sdma_queue(struct device_queue_manager *dqm, 1474 struct queue *q, const uint32_t *restore_sdma_id) 1475 { 1476 int bit; 1477 1478 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1479 if (bitmap_empty(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES)) { 1480 pr_err("No more SDMA queue to allocate\n"); 1481 return -ENOMEM; 1482 } 1483 1484 if (restore_sdma_id) { 1485 /* Re-use existing sdma_id */ 1486 if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) { 1487 pr_err("SDMA queue already in use\n"); 1488 return -EBUSY; 1489 } 1490 clear_bit(*restore_sdma_id, dqm->sdma_bitmap); 1491 q->sdma_id = *restore_sdma_id; 1492 } else { 1493 /* Find first available sdma_id */ 1494 bit = find_first_bit(dqm->sdma_bitmap, 1495 get_num_sdma_queues(dqm)); 1496 clear_bit(bit, dqm->sdma_bitmap); 1497 q->sdma_id = bit; 1498 } 1499 1500 q->properties.sdma_engine_id = 1501 q->sdma_id % kfd_get_num_sdma_engines(dqm->dev); 1502 q->properties.sdma_queue_id = q->sdma_id / 1503 kfd_get_num_sdma_engines(dqm->dev); 1504 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1505 if (bitmap_empty(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES)) { 1506 pr_err("No more XGMI SDMA queue to allocate\n"); 1507 return -ENOMEM; 1508 } 1509 if (restore_sdma_id) { 1510 /* Re-use existing sdma_id */ 1511 if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) { 1512 pr_err("SDMA queue already in use\n"); 1513 return -EBUSY; 1514 } 1515 clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap); 1516 q->sdma_id = *restore_sdma_id; 1517 } else { 1518 bit = find_first_bit(dqm->xgmi_sdma_bitmap, 1519 get_num_xgmi_sdma_queues(dqm)); 1520 clear_bit(bit, dqm->xgmi_sdma_bitmap); 1521 q->sdma_id = bit; 1522 } 1523 /* sdma_engine_id is sdma id including 1524 * both PCIe-optimized SDMAs and XGMI- 1525 * optimized SDMAs. The calculation below 1526 * assumes the first N engines are always 1527 * PCIe-optimized ones 1528 */ 1529 q->properties.sdma_engine_id = 1530 kfd_get_num_sdma_engines(dqm->dev) + 1531 q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev); 1532 q->properties.sdma_queue_id = q->sdma_id / 1533 kfd_get_num_xgmi_sdma_engines(dqm->dev); 1534 } 1535 1536 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id); 1537 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id); 1538 1539 return 0; 1540 } 1541 1542 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 1543 struct queue *q) 1544 { 1545 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1546 if (q->sdma_id >= get_num_sdma_queues(dqm)) 1547 return; 1548 set_bit(q->sdma_id, dqm->sdma_bitmap); 1549 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1550 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm)) 1551 return; 1552 set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap); 1553 } 1554 } 1555 1556 /* 1557 * Device Queue Manager implementation for cp scheduler 1558 */ 1559 1560 static int set_sched_resources(struct device_queue_manager *dqm) 1561 { 1562 int i, mec; 1563 struct scheduling_resources res; 1564 1565 res.vmid_mask = dqm->dev->compute_vmid_bitmap; 1566 1567 res.queue_mask = 0; 1568 for (i = 0; i < KGD_MAX_QUEUES; ++i) { 1569 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe) 1570 / dqm->dev->kfd->shared_resources.num_pipe_per_mec; 1571 1572 if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 1573 continue; 1574 1575 /* only acquire queues from the first MEC */ 1576 if (mec > 0) 1577 continue; 1578 1579 /* This situation may be hit in the future if a new HW 1580 * generation exposes more than 64 queues. If so, the 1581 * definition of res.queue_mask needs updating 1582 */ 1583 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) { 1584 pr_err("Invalid queue enabled by amdgpu: %d\n", i); 1585 break; 1586 } 1587 1588 res.queue_mask |= 1ull 1589 << amdgpu_queue_mask_bit_to_set_resource_bit( 1590 dqm->dev->adev, i); 1591 } 1592 res.gws_mask = ~0ull; 1593 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0; 1594 1595 pr_debug("Scheduling resources:\n" 1596 "vmid mask: 0x%8X\n" 1597 "queue mask: 0x%8llX\n", 1598 res.vmid_mask, res.queue_mask); 1599 1600 return pm_send_set_resources(&dqm->packet_mgr, &res); 1601 } 1602 1603 static int initialize_cpsch(struct device_queue_manager *dqm) 1604 { 1605 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 1606 1607 mutex_init(&dqm->lock_hidden); 1608 INIT_LIST_HEAD(&dqm->queues); 1609 dqm->active_queue_count = dqm->processes_count = 0; 1610 dqm->active_cp_queue_count = 0; 1611 dqm->gws_queue_count = 0; 1612 dqm->active_runlist = false; 1613 INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception); 1614 dqm->trap_debug_vmid = 0; 1615 1616 init_sdma_bitmaps(dqm); 1617 1618 if (dqm->dev->kfd2kgd->get_iq_wait_times) 1619 dqm->dev->kfd2kgd->get_iq_wait_times(dqm->dev->adev, 1620 &dqm->wait_times, 1621 ffs(dqm->dev->xcc_mask) - 1); 1622 return 0; 1623 } 1624 1625 static int start_cpsch(struct device_queue_manager *dqm) 1626 { 1627 int retval; 1628 1629 retval = 0; 1630 1631 dqm_lock(dqm); 1632 1633 if (!dqm->dev->kfd->shared_resources.enable_mes) { 1634 retval = pm_init(&dqm->packet_mgr, dqm); 1635 if (retval) 1636 goto fail_packet_manager_init; 1637 1638 retval = set_sched_resources(dqm); 1639 if (retval) 1640 goto fail_set_sched_resources; 1641 } 1642 pr_debug("Allocating fence memory\n"); 1643 1644 /* allocate fence memory on the gart */ 1645 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr), 1646 &dqm->fence_mem); 1647 1648 if (retval) 1649 goto fail_allocate_vidmem; 1650 1651 dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr; 1652 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr; 1653 1654 init_interrupts(dqm); 1655 1656 /* clear hang status when driver try to start the hw scheduler */ 1657 dqm->is_hws_hang = false; 1658 dqm->is_resetting = false; 1659 dqm->sched_running = true; 1660 1661 if (!dqm->dev->kfd->shared_resources.enable_mes) 1662 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); 1663 1664 /* Set CWSR grace period to 1x1000 cycle for GFX9.4.3 APU */ 1665 if (amdgpu_emu_mode == 0 && dqm->dev->adev->gmc.is_app_apu && 1666 (KFD_GC_VERSION(dqm->dev) == IP_VERSION(9, 4, 3))) { 1667 uint32_t reg_offset = 0; 1668 uint32_t grace_period = 1; 1669 1670 retval = pm_update_grace_period(&dqm->packet_mgr, 1671 grace_period); 1672 if (retval) 1673 pr_err("Setting grace timeout failed\n"); 1674 else if (dqm->dev->kfd2kgd->build_grace_period_packet_info) 1675 /* Update dqm->wait_times maintained in software */ 1676 dqm->dev->kfd2kgd->build_grace_period_packet_info( 1677 dqm->dev->adev, dqm->wait_times, 1678 grace_period, ®_offset, 1679 &dqm->wait_times, 1680 ffs(dqm->dev->xcc_mask) - 1); 1681 } 1682 1683 dqm_unlock(dqm); 1684 1685 return 0; 1686 fail_allocate_vidmem: 1687 fail_set_sched_resources: 1688 if (!dqm->dev->kfd->shared_resources.enable_mes) 1689 pm_uninit(&dqm->packet_mgr, false); 1690 fail_packet_manager_init: 1691 dqm_unlock(dqm); 1692 return retval; 1693 } 1694 1695 static int stop_cpsch(struct device_queue_manager *dqm) 1696 { 1697 bool hanging; 1698 1699 dqm_lock(dqm); 1700 if (!dqm->sched_running) { 1701 dqm_unlock(dqm); 1702 return 0; 1703 } 1704 1705 if (!dqm->is_hws_hang) { 1706 if (!dqm->dev->kfd->shared_resources.enable_mes) 1707 unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false); 1708 else 1709 remove_all_queues_mes(dqm); 1710 } 1711 1712 hanging = dqm->is_hws_hang || dqm->is_resetting; 1713 dqm->sched_running = false; 1714 1715 if (!dqm->dev->kfd->shared_resources.enable_mes) 1716 pm_release_ib(&dqm->packet_mgr); 1717 1718 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); 1719 if (!dqm->dev->kfd->shared_resources.enable_mes) 1720 pm_uninit(&dqm->packet_mgr, hanging); 1721 dqm_unlock(dqm); 1722 1723 return 0; 1724 } 1725 1726 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm, 1727 struct kernel_queue *kq, 1728 struct qcm_process_device *qpd) 1729 { 1730 dqm_lock(dqm); 1731 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1732 pr_warn("Can't create new kernel queue because %d queues were already created\n", 1733 dqm->total_queue_count); 1734 dqm_unlock(dqm); 1735 return -EPERM; 1736 } 1737 1738 /* 1739 * Unconditionally increment this counter, regardless of the queue's 1740 * type or whether the queue is active. 1741 */ 1742 dqm->total_queue_count++; 1743 pr_debug("Total of %d queues are accountable so far\n", 1744 dqm->total_queue_count); 1745 1746 list_add(&kq->list, &qpd->priv_queue_list); 1747 increment_queue_count(dqm, qpd, kq->queue); 1748 qpd->is_debug = true; 1749 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 1750 USE_DEFAULT_GRACE_PERIOD); 1751 dqm_unlock(dqm); 1752 1753 return 0; 1754 } 1755 1756 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm, 1757 struct kernel_queue *kq, 1758 struct qcm_process_device *qpd) 1759 { 1760 dqm_lock(dqm); 1761 list_del(&kq->list); 1762 decrement_queue_count(dqm, qpd, kq->queue); 1763 qpd->is_debug = false; 1764 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 1765 USE_DEFAULT_GRACE_PERIOD); 1766 /* 1767 * Unconditionally decrement this counter, regardless of the queue's 1768 * type. 1769 */ 1770 dqm->total_queue_count--; 1771 pr_debug("Total of %d queues are accountable so far\n", 1772 dqm->total_queue_count); 1773 dqm_unlock(dqm); 1774 } 1775 1776 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q, 1777 struct qcm_process_device *qpd, 1778 const struct kfd_criu_queue_priv_data *qd, 1779 const void *restore_mqd, const void *restore_ctl_stack) 1780 { 1781 int retval; 1782 struct mqd_manager *mqd_mgr; 1783 1784 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1785 pr_warn("Can't create new usermode queue because %d queues were already created\n", 1786 dqm->total_queue_count); 1787 retval = -EPERM; 1788 goto out; 1789 } 1790 1791 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1792 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1793 dqm_lock(dqm); 1794 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL); 1795 dqm_unlock(dqm); 1796 if (retval) 1797 goto out; 1798 } 1799 1800 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL); 1801 if (retval) 1802 goto out_deallocate_sdma_queue; 1803 1804 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1805 q->properties.type)]; 1806 1807 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1808 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 1809 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 1810 q->properties.tba_addr = qpd->tba_addr; 1811 q->properties.tma_addr = qpd->tma_addr; 1812 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 1813 if (!q->mqd_mem_obj) { 1814 retval = -ENOMEM; 1815 goto out_deallocate_doorbell; 1816 } 1817 1818 dqm_lock(dqm); 1819 /* 1820 * Eviction state logic: mark all queues as evicted, even ones 1821 * not currently active. Restoring inactive queues later only 1822 * updates the is_evicted flag but is a no-op otherwise. 1823 */ 1824 q->properties.is_evicted = !!qpd->evicted; 1825 q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled && 1826 kfd_dbg_has_cwsr_workaround(q->device); 1827 1828 if (qd) 1829 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr, 1830 &q->properties, restore_mqd, restore_ctl_stack, 1831 qd->ctl_stack_size); 1832 else 1833 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 1834 &q->gart_mqd_addr, &q->properties); 1835 1836 list_add(&q->list, &qpd->queues_list); 1837 qpd->queue_count++; 1838 1839 if (q->properties.is_active) { 1840 increment_queue_count(dqm, qpd, q); 1841 1842 if (!dqm->dev->kfd->shared_resources.enable_mes) 1843 retval = execute_queues_cpsch(dqm, 1844 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); 1845 else 1846 retval = add_queue_mes(dqm, q, qpd); 1847 if (retval) 1848 goto cleanup_queue; 1849 } 1850 1851 /* 1852 * Unconditionally increment this counter, regardless of the queue's 1853 * type or whether the queue is active. 1854 */ 1855 dqm->total_queue_count++; 1856 1857 pr_debug("Total of %d queues are accountable so far\n", 1858 dqm->total_queue_count); 1859 1860 dqm_unlock(dqm); 1861 return retval; 1862 1863 cleanup_queue: 1864 qpd->queue_count--; 1865 list_del(&q->list); 1866 if (q->properties.is_active) 1867 decrement_queue_count(dqm, qpd, q); 1868 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 1869 dqm_unlock(dqm); 1870 out_deallocate_doorbell: 1871 deallocate_doorbell(qpd, q); 1872 out_deallocate_sdma_queue: 1873 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1874 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1875 dqm_lock(dqm); 1876 deallocate_sdma_queue(dqm, q); 1877 dqm_unlock(dqm); 1878 } 1879 out: 1880 return retval; 1881 } 1882 1883 int amdkfd_fence_wait_timeout(uint64_t *fence_addr, 1884 uint64_t fence_value, 1885 unsigned int timeout_ms) 1886 { 1887 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies; 1888 1889 while (*fence_addr != fence_value) { 1890 if (time_after(jiffies, end_jiffies)) { 1891 pr_err("qcm fence wait loop timeout expired\n"); 1892 /* In HWS case, this is used to halt the driver thread 1893 * in order not to mess up CP states before doing 1894 * scandumps for FW debugging. 1895 */ 1896 while (halt_if_hws_hang) 1897 schedule(); 1898 1899 return -ETIME; 1900 } 1901 schedule(); 1902 } 1903 1904 return 0; 1905 } 1906 1907 /* dqm->lock mutex has to be locked before calling this function */ 1908 static int map_queues_cpsch(struct device_queue_manager *dqm) 1909 { 1910 int retval; 1911 1912 if (!dqm->sched_running) 1913 return 0; 1914 if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0) 1915 return 0; 1916 if (dqm->active_runlist) 1917 return 0; 1918 1919 retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues); 1920 pr_debug("%s sent runlist\n", __func__); 1921 if (retval) { 1922 pr_err("failed to execute runlist\n"); 1923 return retval; 1924 } 1925 dqm->active_runlist = true; 1926 1927 return retval; 1928 } 1929 1930 /* dqm->lock mutex has to be locked before calling this function */ 1931 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 1932 enum kfd_unmap_queues_filter filter, 1933 uint32_t filter_param, 1934 uint32_t grace_period, 1935 bool reset) 1936 { 1937 int retval = 0; 1938 struct mqd_manager *mqd_mgr; 1939 1940 if (!dqm->sched_running) 1941 return 0; 1942 if (dqm->is_hws_hang || dqm->is_resetting) 1943 return -EIO; 1944 if (!dqm->active_runlist) 1945 return retval; 1946 1947 if (grace_period != USE_DEFAULT_GRACE_PERIOD) { 1948 retval = pm_update_grace_period(&dqm->packet_mgr, grace_period); 1949 if (retval) 1950 return retval; 1951 } 1952 1953 retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset); 1954 if (retval) 1955 return retval; 1956 1957 *dqm->fence_addr = KFD_FENCE_INIT; 1958 pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr, 1959 KFD_FENCE_COMPLETED); 1960 /* should be timed out */ 1961 retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED, 1962 queue_preemption_timeout_ms); 1963 if (retval) { 1964 pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n"); 1965 kfd_hws_hang(dqm); 1966 return retval; 1967 } 1968 1969 /* In the current MEC firmware implementation, if compute queue 1970 * doesn't response to the preemption request in time, HIQ will 1971 * abandon the unmap request without returning any timeout error 1972 * to driver. Instead, MEC firmware will log the doorbell of the 1973 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields. 1974 * To make sure the queue unmap was successful, driver need to 1975 * check those fields 1976 */ 1977 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]; 1978 if (mqd_mgr->read_doorbell_id(dqm->packet_mgr.priv_queue->queue->mqd)) { 1979 pr_err("HIQ MQD's queue_doorbell_id0 is not 0, Queue preemption time out\n"); 1980 while (halt_if_hws_hang) 1981 schedule(); 1982 return -ETIME; 1983 } 1984 1985 /* We need to reset the grace period value for this device */ 1986 if (grace_period != USE_DEFAULT_GRACE_PERIOD) { 1987 if (pm_update_grace_period(&dqm->packet_mgr, 1988 USE_DEFAULT_GRACE_PERIOD)) 1989 pr_err("Failed to reset grace period\n"); 1990 } 1991 1992 pm_release_ib(&dqm->packet_mgr); 1993 dqm->active_runlist = false; 1994 1995 return retval; 1996 } 1997 1998 /* only for compute queue */ 1999 static int reset_queues_cpsch(struct device_queue_manager *dqm, 2000 uint16_t pasid) 2001 { 2002 int retval; 2003 2004 dqm_lock(dqm); 2005 2006 retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID, 2007 pasid, USE_DEFAULT_GRACE_PERIOD, true); 2008 2009 dqm_unlock(dqm); 2010 return retval; 2011 } 2012 2013 /* dqm->lock mutex has to be locked before calling this function */ 2014 static int execute_queues_cpsch(struct device_queue_manager *dqm, 2015 enum kfd_unmap_queues_filter filter, 2016 uint32_t filter_param, 2017 uint32_t grace_period) 2018 { 2019 int retval; 2020 2021 if (dqm->is_hws_hang) 2022 return -EIO; 2023 retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false); 2024 if (retval) 2025 return retval; 2026 2027 return map_queues_cpsch(dqm); 2028 } 2029 2030 static int wait_on_destroy_queue(struct device_queue_manager *dqm, 2031 struct queue *q) 2032 { 2033 struct kfd_process_device *pdd = kfd_get_process_device_data(q->device, 2034 q->process); 2035 int ret = 0; 2036 2037 if (pdd->qpd.is_debug) 2038 return ret; 2039 2040 q->properties.is_being_destroyed = true; 2041 2042 if (pdd->process->debug_trap_enabled && q->properties.is_suspended) { 2043 dqm_unlock(dqm); 2044 mutex_unlock(&q->process->mutex); 2045 ret = wait_event_interruptible(dqm->destroy_wait, 2046 !q->properties.is_suspended); 2047 2048 mutex_lock(&q->process->mutex); 2049 dqm_lock(dqm); 2050 } 2051 2052 return ret; 2053 } 2054 2055 static int destroy_queue_cpsch(struct device_queue_manager *dqm, 2056 struct qcm_process_device *qpd, 2057 struct queue *q) 2058 { 2059 int retval; 2060 struct mqd_manager *mqd_mgr; 2061 uint64_t sdma_val = 0; 2062 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 2063 2064 /* Get the SDMA queue stats */ 2065 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 2066 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 2067 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr, 2068 &sdma_val); 2069 if (retval) 2070 pr_err("Failed to read SDMA queue counter for queue: %d\n", 2071 q->properties.queue_id); 2072 } 2073 2074 /* remove queue from list to prevent rescheduling after preemption */ 2075 dqm_lock(dqm); 2076 2077 retval = wait_on_destroy_queue(dqm, q); 2078 2079 if (retval) { 2080 dqm_unlock(dqm); 2081 return retval; 2082 } 2083 2084 if (qpd->is_debug) { 2085 /* 2086 * error, currently we do not allow to destroy a queue 2087 * of a currently debugged process 2088 */ 2089 retval = -EBUSY; 2090 goto failed_try_destroy_debugged_queue; 2091 2092 } 2093 2094 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2095 q->properties.type)]; 2096 2097 deallocate_doorbell(qpd, q); 2098 2099 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 2100 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 2101 deallocate_sdma_queue(dqm, q); 2102 pdd->sdma_past_activity_counter += sdma_val; 2103 } 2104 2105 list_del(&q->list); 2106 qpd->queue_count--; 2107 if (q->properties.is_active) { 2108 decrement_queue_count(dqm, qpd, q); 2109 if (!dqm->dev->kfd->shared_resources.enable_mes) { 2110 retval = execute_queues_cpsch(dqm, 2111 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 2112 USE_DEFAULT_GRACE_PERIOD); 2113 if (retval == -ETIME) 2114 qpd->reset_wavefronts = true; 2115 } else { 2116 retval = remove_queue_mes(dqm, q, qpd); 2117 } 2118 } 2119 2120 /* 2121 * Unconditionally decrement this counter, regardless of the queue's 2122 * type 2123 */ 2124 dqm->total_queue_count--; 2125 pr_debug("Total of %d queues are accountable so far\n", 2126 dqm->total_queue_count); 2127 2128 dqm_unlock(dqm); 2129 2130 /* 2131 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid 2132 * circular locking 2133 */ 2134 kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE), 2135 qpd->pqm->process, q->device, 2136 -1, false, NULL, 0); 2137 2138 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2139 2140 return retval; 2141 2142 failed_try_destroy_debugged_queue: 2143 2144 dqm_unlock(dqm); 2145 return retval; 2146 } 2147 2148 /* 2149 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to 2150 * stay in user mode. 2151 */ 2152 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL 2153 /* APE1 limit is inclusive and 64K aligned. */ 2154 #define APE1_LIMIT_ALIGNMENT 0xFFFF 2155 2156 static bool set_cache_memory_policy(struct device_queue_manager *dqm, 2157 struct qcm_process_device *qpd, 2158 enum cache_policy default_policy, 2159 enum cache_policy alternate_policy, 2160 void __user *alternate_aperture_base, 2161 uint64_t alternate_aperture_size) 2162 { 2163 bool retval = true; 2164 2165 if (!dqm->asic_ops.set_cache_memory_policy) 2166 return retval; 2167 2168 dqm_lock(dqm); 2169 2170 if (alternate_aperture_size == 0) { 2171 /* base > limit disables APE1 */ 2172 qpd->sh_mem_ape1_base = 1; 2173 qpd->sh_mem_ape1_limit = 0; 2174 } else { 2175 /* 2176 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]}, 2177 * SH_MEM_APE1_BASE[31:0], 0x0000 } 2178 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]}, 2179 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF } 2180 * Verify that the base and size parameters can be 2181 * represented in this format and convert them. 2182 * Additionally restrict APE1 to user-mode addresses. 2183 */ 2184 2185 uint64_t base = (uintptr_t)alternate_aperture_base; 2186 uint64_t limit = base + alternate_aperture_size - 1; 2187 2188 if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 || 2189 (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) { 2190 retval = false; 2191 goto out; 2192 } 2193 2194 qpd->sh_mem_ape1_base = base >> 16; 2195 qpd->sh_mem_ape1_limit = limit >> 16; 2196 } 2197 2198 retval = dqm->asic_ops.set_cache_memory_policy( 2199 dqm, 2200 qpd, 2201 default_policy, 2202 alternate_policy, 2203 alternate_aperture_base, 2204 alternate_aperture_size); 2205 2206 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0)) 2207 program_sh_mem_settings(dqm, qpd); 2208 2209 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n", 2210 qpd->sh_mem_config, qpd->sh_mem_ape1_base, 2211 qpd->sh_mem_ape1_limit); 2212 2213 out: 2214 dqm_unlock(dqm); 2215 return retval; 2216 } 2217 2218 static int process_termination_nocpsch(struct device_queue_manager *dqm, 2219 struct qcm_process_device *qpd) 2220 { 2221 struct queue *q; 2222 struct device_process_node *cur, *next_dpn; 2223 int retval = 0; 2224 bool found = false; 2225 2226 dqm_lock(dqm); 2227 2228 /* Clear all user mode queues */ 2229 while (!list_empty(&qpd->queues_list)) { 2230 struct mqd_manager *mqd_mgr; 2231 int ret; 2232 2233 q = list_first_entry(&qpd->queues_list, struct queue, list); 2234 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2235 q->properties.type)]; 2236 ret = destroy_queue_nocpsch_locked(dqm, qpd, q); 2237 if (ret) 2238 retval = ret; 2239 dqm_unlock(dqm); 2240 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2241 dqm_lock(dqm); 2242 } 2243 2244 /* Unregister process */ 2245 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 2246 if (qpd == cur->qpd) { 2247 list_del(&cur->list); 2248 kfree(cur); 2249 dqm->processes_count--; 2250 found = true; 2251 break; 2252 } 2253 } 2254 2255 dqm_unlock(dqm); 2256 2257 /* Outside the DQM lock because under the DQM lock we can't do 2258 * reclaim or take other locks that others hold while reclaiming. 2259 */ 2260 if (found) 2261 kfd_dec_compute_active(dqm->dev); 2262 2263 return retval; 2264 } 2265 2266 static int get_wave_state(struct device_queue_manager *dqm, 2267 struct queue *q, 2268 void __user *ctl_stack, 2269 u32 *ctl_stack_used_size, 2270 u32 *save_area_used_size) 2271 { 2272 struct mqd_manager *mqd_mgr; 2273 2274 dqm_lock(dqm); 2275 2276 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP]; 2277 2278 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE || 2279 q->properties.is_active || !q->device->kfd->cwsr_enabled || 2280 !mqd_mgr->get_wave_state) { 2281 dqm_unlock(dqm); 2282 return -EINVAL; 2283 } 2284 2285 dqm_unlock(dqm); 2286 2287 /* 2288 * get_wave_state is outside the dqm lock to prevent circular locking 2289 * and the queue should be protected against destruction by the process 2290 * lock. 2291 */ 2292 return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties, 2293 ctl_stack, ctl_stack_used_size, save_area_used_size); 2294 } 2295 2296 static void get_queue_checkpoint_info(struct device_queue_manager *dqm, 2297 const struct queue *q, 2298 u32 *mqd_size, 2299 u32 *ctl_stack_size) 2300 { 2301 struct mqd_manager *mqd_mgr; 2302 enum KFD_MQD_TYPE mqd_type = 2303 get_mqd_type_from_queue_type(q->properties.type); 2304 2305 dqm_lock(dqm); 2306 mqd_mgr = dqm->mqd_mgrs[mqd_type]; 2307 *mqd_size = mqd_mgr->mqd_size; 2308 *ctl_stack_size = 0; 2309 2310 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info) 2311 mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size); 2312 2313 dqm_unlock(dqm); 2314 } 2315 2316 static int checkpoint_mqd(struct device_queue_manager *dqm, 2317 const struct queue *q, 2318 void *mqd, 2319 void *ctl_stack) 2320 { 2321 struct mqd_manager *mqd_mgr; 2322 int r = 0; 2323 enum KFD_MQD_TYPE mqd_type = 2324 get_mqd_type_from_queue_type(q->properties.type); 2325 2326 dqm_lock(dqm); 2327 2328 if (q->properties.is_active || !q->device->kfd->cwsr_enabled) { 2329 r = -EINVAL; 2330 goto dqm_unlock; 2331 } 2332 2333 mqd_mgr = dqm->mqd_mgrs[mqd_type]; 2334 if (!mqd_mgr->checkpoint_mqd) { 2335 r = -EOPNOTSUPP; 2336 goto dqm_unlock; 2337 } 2338 2339 mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack); 2340 2341 dqm_unlock: 2342 dqm_unlock(dqm); 2343 return r; 2344 } 2345 2346 static int process_termination_cpsch(struct device_queue_manager *dqm, 2347 struct qcm_process_device *qpd) 2348 { 2349 int retval; 2350 struct queue *q; 2351 struct kernel_queue *kq, *kq_next; 2352 struct mqd_manager *mqd_mgr; 2353 struct device_process_node *cur, *next_dpn; 2354 enum kfd_unmap_queues_filter filter = 2355 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES; 2356 bool found = false; 2357 2358 retval = 0; 2359 2360 dqm_lock(dqm); 2361 2362 /* Clean all kernel queues */ 2363 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) { 2364 list_del(&kq->list); 2365 decrement_queue_count(dqm, qpd, kq->queue); 2366 qpd->is_debug = false; 2367 dqm->total_queue_count--; 2368 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES; 2369 } 2370 2371 /* Clear all user mode queues */ 2372 list_for_each_entry(q, &qpd->queues_list, list) { 2373 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 2374 deallocate_sdma_queue(dqm, q); 2375 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 2376 deallocate_sdma_queue(dqm, q); 2377 2378 if (q->properties.is_active) { 2379 decrement_queue_count(dqm, qpd, q); 2380 2381 if (dqm->dev->kfd->shared_resources.enable_mes) { 2382 retval = remove_queue_mes(dqm, q, qpd); 2383 if (retval) 2384 pr_err("Failed to remove queue %d\n", 2385 q->properties.queue_id); 2386 } 2387 } 2388 2389 dqm->total_queue_count--; 2390 } 2391 2392 /* Unregister process */ 2393 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 2394 if (qpd == cur->qpd) { 2395 list_del(&cur->list); 2396 kfree(cur); 2397 dqm->processes_count--; 2398 found = true; 2399 break; 2400 } 2401 } 2402 2403 if (!dqm->dev->kfd->shared_resources.enable_mes) 2404 retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD); 2405 2406 if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) { 2407 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev); 2408 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process); 2409 qpd->reset_wavefronts = false; 2410 } 2411 2412 /* Lastly, free mqd resources. 2413 * Do free_mqd() after dqm_unlock to avoid circular locking. 2414 */ 2415 while (!list_empty(&qpd->queues_list)) { 2416 q = list_first_entry(&qpd->queues_list, struct queue, list); 2417 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2418 q->properties.type)]; 2419 list_del(&q->list); 2420 qpd->queue_count--; 2421 dqm_unlock(dqm); 2422 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2423 dqm_lock(dqm); 2424 } 2425 dqm_unlock(dqm); 2426 2427 /* Outside the DQM lock because under the DQM lock we can't do 2428 * reclaim or take other locks that others hold while reclaiming. 2429 */ 2430 if (found) 2431 kfd_dec_compute_active(dqm->dev); 2432 2433 return retval; 2434 } 2435 2436 static int init_mqd_managers(struct device_queue_manager *dqm) 2437 { 2438 int i, j; 2439 struct mqd_manager *mqd_mgr; 2440 2441 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) { 2442 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev); 2443 if (!mqd_mgr) { 2444 pr_err("mqd manager [%d] initialization failed\n", i); 2445 goto out_free; 2446 } 2447 dqm->mqd_mgrs[i] = mqd_mgr; 2448 } 2449 2450 return 0; 2451 2452 out_free: 2453 for (j = 0; j < i; j++) { 2454 kfree(dqm->mqd_mgrs[j]); 2455 dqm->mqd_mgrs[j] = NULL; 2456 } 2457 2458 return -ENOMEM; 2459 } 2460 2461 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/ 2462 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm) 2463 { 2464 int retval; 2465 struct kfd_node *dev = dqm->dev; 2466 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd; 2467 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size * 2468 get_num_all_sdma_engines(dqm) * 2469 dev->kfd->device_info.num_sdma_queues_per_engine + 2470 (dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size * 2471 NUM_XCC(dqm->dev->xcc_mask)); 2472 2473 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size, 2474 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr), 2475 (void *)&(mem_obj->cpu_ptr), false); 2476 2477 return retval; 2478 } 2479 2480 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev) 2481 { 2482 struct device_queue_manager *dqm; 2483 2484 pr_debug("Loading device queue manager\n"); 2485 2486 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL); 2487 if (!dqm) 2488 return NULL; 2489 2490 switch (dev->adev->asic_type) { 2491 /* HWS is not available on Hawaii. */ 2492 case CHIP_HAWAII: 2493 /* HWS depends on CWSR for timely dequeue. CWSR is not 2494 * available on Tonga. 2495 * 2496 * FIXME: This argument also applies to Kaveri. 2497 */ 2498 case CHIP_TONGA: 2499 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS; 2500 break; 2501 default: 2502 dqm->sched_policy = sched_policy; 2503 break; 2504 } 2505 2506 dqm->dev = dev; 2507 switch (dqm->sched_policy) { 2508 case KFD_SCHED_POLICY_HWS: 2509 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: 2510 /* initialize dqm for cp scheduling */ 2511 dqm->ops.create_queue = create_queue_cpsch; 2512 dqm->ops.initialize = initialize_cpsch; 2513 dqm->ops.start = start_cpsch; 2514 dqm->ops.stop = stop_cpsch; 2515 dqm->ops.pre_reset = pre_reset; 2516 dqm->ops.destroy_queue = destroy_queue_cpsch; 2517 dqm->ops.update_queue = update_queue; 2518 dqm->ops.register_process = register_process; 2519 dqm->ops.unregister_process = unregister_process; 2520 dqm->ops.uninitialize = uninitialize; 2521 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch; 2522 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch; 2523 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 2524 dqm->ops.process_termination = process_termination_cpsch; 2525 dqm->ops.evict_process_queues = evict_process_queues_cpsch; 2526 dqm->ops.restore_process_queues = restore_process_queues_cpsch; 2527 dqm->ops.get_wave_state = get_wave_state; 2528 dqm->ops.reset_queues = reset_queues_cpsch; 2529 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info; 2530 dqm->ops.checkpoint_mqd = checkpoint_mqd; 2531 break; 2532 case KFD_SCHED_POLICY_NO_HWS: 2533 /* initialize dqm for no cp scheduling */ 2534 dqm->ops.start = start_nocpsch; 2535 dqm->ops.stop = stop_nocpsch; 2536 dqm->ops.pre_reset = pre_reset; 2537 dqm->ops.create_queue = create_queue_nocpsch; 2538 dqm->ops.destroy_queue = destroy_queue_nocpsch; 2539 dqm->ops.update_queue = update_queue; 2540 dqm->ops.register_process = register_process; 2541 dqm->ops.unregister_process = unregister_process; 2542 dqm->ops.initialize = initialize_nocpsch; 2543 dqm->ops.uninitialize = uninitialize; 2544 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 2545 dqm->ops.process_termination = process_termination_nocpsch; 2546 dqm->ops.evict_process_queues = evict_process_queues_nocpsch; 2547 dqm->ops.restore_process_queues = 2548 restore_process_queues_nocpsch; 2549 dqm->ops.get_wave_state = get_wave_state; 2550 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info; 2551 dqm->ops.checkpoint_mqd = checkpoint_mqd; 2552 break; 2553 default: 2554 pr_err("Invalid scheduling policy %d\n", dqm->sched_policy); 2555 goto out_free; 2556 } 2557 2558 switch (dev->adev->asic_type) { 2559 case CHIP_CARRIZO: 2560 device_queue_manager_init_vi(&dqm->asic_ops); 2561 break; 2562 2563 case CHIP_KAVERI: 2564 device_queue_manager_init_cik(&dqm->asic_ops); 2565 break; 2566 2567 case CHIP_HAWAII: 2568 device_queue_manager_init_cik_hawaii(&dqm->asic_ops); 2569 break; 2570 2571 case CHIP_TONGA: 2572 case CHIP_FIJI: 2573 case CHIP_POLARIS10: 2574 case CHIP_POLARIS11: 2575 case CHIP_POLARIS12: 2576 case CHIP_VEGAM: 2577 device_queue_manager_init_vi_tonga(&dqm->asic_ops); 2578 break; 2579 2580 default: 2581 if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0)) 2582 device_queue_manager_init_v11(&dqm->asic_ops); 2583 else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) 2584 device_queue_manager_init_v10_navi10(&dqm->asic_ops); 2585 else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1)) 2586 device_queue_manager_init_v9(&dqm->asic_ops); 2587 else { 2588 WARN(1, "Unexpected ASIC family %u", 2589 dev->adev->asic_type); 2590 goto out_free; 2591 } 2592 } 2593 2594 if (init_mqd_managers(dqm)) 2595 goto out_free; 2596 2597 if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) { 2598 pr_err("Failed to allocate hiq sdma mqd trunk buffer\n"); 2599 goto out_free; 2600 } 2601 2602 if (!dqm->ops.initialize(dqm)) { 2603 init_waitqueue_head(&dqm->destroy_wait); 2604 return dqm; 2605 } 2606 2607 out_free: 2608 kfree(dqm); 2609 return NULL; 2610 } 2611 2612 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev, 2613 struct kfd_mem_obj *mqd) 2614 { 2615 WARN(!mqd, "No hiq sdma mqd trunk to free"); 2616 2617 amdgpu_amdkfd_free_gtt_mem(dev->adev, mqd->gtt_mem); 2618 } 2619 2620 void device_queue_manager_uninit(struct device_queue_manager *dqm) 2621 { 2622 dqm->ops.stop(dqm); 2623 dqm->ops.uninitialize(dqm); 2624 if (!dqm->dev->kfd->shared_resources.enable_mes) 2625 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd); 2626 kfree(dqm); 2627 } 2628 2629 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid) 2630 { 2631 struct kfd_process_device *pdd; 2632 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 2633 int ret = 0; 2634 2635 if (!p) 2636 return -EINVAL; 2637 WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid); 2638 pdd = kfd_get_process_device_data(dqm->dev, p); 2639 if (pdd) 2640 ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd); 2641 kfd_unref_process(p); 2642 2643 return ret; 2644 } 2645 2646 static void kfd_process_hw_exception(struct work_struct *work) 2647 { 2648 struct device_queue_manager *dqm = container_of(work, 2649 struct device_queue_manager, hw_exception_work); 2650 amdgpu_amdkfd_gpu_reset(dqm->dev->adev); 2651 } 2652 2653 int reserve_debug_trap_vmid(struct device_queue_manager *dqm, 2654 struct qcm_process_device *qpd) 2655 { 2656 int r; 2657 int updated_vmid_mask; 2658 2659 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 2660 pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy); 2661 return -EINVAL; 2662 } 2663 2664 dqm_lock(dqm); 2665 2666 if (dqm->trap_debug_vmid != 0) { 2667 pr_err("Trap debug id already reserved\n"); 2668 r = -EBUSY; 2669 goto out_unlock; 2670 } 2671 2672 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 2673 USE_DEFAULT_GRACE_PERIOD, false); 2674 if (r) 2675 goto out_unlock; 2676 2677 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap; 2678 updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd); 2679 2680 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask; 2681 dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd; 2682 r = set_sched_resources(dqm); 2683 if (r) 2684 goto out_unlock; 2685 2686 r = map_queues_cpsch(dqm); 2687 if (r) 2688 goto out_unlock; 2689 2690 pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid); 2691 2692 out_unlock: 2693 dqm_unlock(dqm); 2694 return r; 2695 } 2696 2697 /* 2698 * Releases vmid for the trap debugger 2699 */ 2700 int release_debug_trap_vmid(struct device_queue_manager *dqm, 2701 struct qcm_process_device *qpd) 2702 { 2703 int r; 2704 int updated_vmid_mask; 2705 uint32_t trap_debug_vmid; 2706 2707 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 2708 pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy); 2709 return -EINVAL; 2710 } 2711 2712 dqm_lock(dqm); 2713 trap_debug_vmid = dqm->trap_debug_vmid; 2714 if (dqm->trap_debug_vmid == 0) { 2715 pr_err("Trap debug id is not reserved\n"); 2716 r = -EINVAL; 2717 goto out_unlock; 2718 } 2719 2720 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 2721 USE_DEFAULT_GRACE_PERIOD, false); 2722 if (r) 2723 goto out_unlock; 2724 2725 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap; 2726 updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd); 2727 2728 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask; 2729 dqm->trap_debug_vmid = 0; 2730 r = set_sched_resources(dqm); 2731 if (r) 2732 goto out_unlock; 2733 2734 r = map_queues_cpsch(dqm); 2735 if (r) 2736 goto out_unlock; 2737 2738 pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid); 2739 2740 out_unlock: 2741 dqm_unlock(dqm); 2742 return r; 2743 } 2744 2745 #define QUEUE_NOT_FOUND -1 2746 /* invalidate queue operation in array */ 2747 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids) 2748 { 2749 int i; 2750 2751 for (i = 0; i < num_queues; i++) 2752 queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK; 2753 } 2754 2755 /* find queue index in array */ 2756 static int q_array_get_index(unsigned int queue_id, 2757 uint32_t num_queues, 2758 uint32_t *queue_ids) 2759 { 2760 int i; 2761 2762 for (i = 0; i < num_queues; i++) 2763 if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK)) 2764 return i; 2765 2766 return QUEUE_NOT_FOUND; 2767 } 2768 2769 struct copy_context_work_handler_workarea { 2770 struct work_struct copy_context_work; 2771 struct kfd_process *p; 2772 }; 2773 2774 static void copy_context_work_handler (struct work_struct *work) 2775 { 2776 struct copy_context_work_handler_workarea *workarea; 2777 struct mqd_manager *mqd_mgr; 2778 struct queue *q; 2779 struct mm_struct *mm; 2780 struct kfd_process *p; 2781 uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size; 2782 int i; 2783 2784 workarea = container_of(work, 2785 struct copy_context_work_handler_workarea, 2786 copy_context_work); 2787 2788 p = workarea->p; 2789 mm = get_task_mm(p->lead_thread); 2790 2791 if (!mm) 2792 return; 2793 2794 kthread_use_mm(mm); 2795 for (i = 0; i < p->n_pdds; i++) { 2796 struct kfd_process_device *pdd = p->pdds[i]; 2797 struct device_queue_manager *dqm = pdd->dev->dqm; 2798 struct qcm_process_device *qpd = &pdd->qpd; 2799 2800 list_for_each_entry(q, &qpd->queues_list, list) { 2801 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP]; 2802 2803 /* We ignore the return value from get_wave_state 2804 * because 2805 * i) right now, it always returns 0, and 2806 * ii) if we hit an error, we would continue to the 2807 * next queue anyway. 2808 */ 2809 mqd_mgr->get_wave_state(mqd_mgr, 2810 q->mqd, 2811 &q->properties, 2812 (void __user *) q->properties.ctx_save_restore_area_address, 2813 &tmp_ctl_stack_used_size, 2814 &tmp_save_area_used_size); 2815 } 2816 } 2817 kthread_unuse_mm(mm); 2818 mmput(mm); 2819 } 2820 2821 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array) 2822 { 2823 size_t array_size = num_queues * sizeof(uint32_t); 2824 uint32_t *queue_ids = NULL; 2825 2826 if (!usr_queue_id_array) 2827 return NULL; 2828 2829 queue_ids = kzalloc(array_size, GFP_KERNEL); 2830 if (!queue_ids) 2831 return ERR_PTR(-ENOMEM); 2832 2833 if (copy_from_user(queue_ids, usr_queue_id_array, array_size)) 2834 return ERR_PTR(-EFAULT); 2835 2836 return queue_ids; 2837 } 2838 2839 int resume_queues(struct kfd_process *p, 2840 uint32_t num_queues, 2841 uint32_t *usr_queue_id_array) 2842 { 2843 uint32_t *queue_ids = NULL; 2844 int total_resumed = 0; 2845 int i; 2846 2847 if (usr_queue_id_array) { 2848 queue_ids = get_queue_ids(num_queues, usr_queue_id_array); 2849 2850 if (IS_ERR(queue_ids)) 2851 return PTR_ERR(queue_ids); 2852 2853 /* mask all queues as invalid. unmask per successful request */ 2854 q_array_invalidate(num_queues, queue_ids); 2855 } 2856 2857 for (i = 0; i < p->n_pdds; i++) { 2858 struct kfd_process_device *pdd = p->pdds[i]; 2859 struct device_queue_manager *dqm = pdd->dev->dqm; 2860 struct qcm_process_device *qpd = &pdd->qpd; 2861 struct queue *q; 2862 int r, per_device_resumed = 0; 2863 2864 dqm_lock(dqm); 2865 2866 /* unmask queues that resume or already resumed as valid */ 2867 list_for_each_entry(q, &qpd->queues_list, list) { 2868 int q_idx = QUEUE_NOT_FOUND; 2869 2870 if (queue_ids) 2871 q_idx = q_array_get_index( 2872 q->properties.queue_id, 2873 num_queues, 2874 queue_ids); 2875 2876 if (!queue_ids || q_idx != QUEUE_NOT_FOUND) { 2877 int err = resume_single_queue(dqm, &pdd->qpd, q); 2878 2879 if (queue_ids) { 2880 if (!err) { 2881 queue_ids[q_idx] &= 2882 ~KFD_DBG_QUEUE_INVALID_MASK; 2883 } else { 2884 queue_ids[q_idx] |= 2885 KFD_DBG_QUEUE_ERROR_MASK; 2886 break; 2887 } 2888 } 2889 2890 if (dqm->dev->kfd->shared_resources.enable_mes) { 2891 wake_up_all(&dqm->destroy_wait); 2892 if (!err) 2893 total_resumed++; 2894 } else { 2895 per_device_resumed++; 2896 } 2897 } 2898 } 2899 2900 if (!per_device_resumed) { 2901 dqm_unlock(dqm); 2902 continue; 2903 } 2904 2905 r = execute_queues_cpsch(dqm, 2906 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 2907 0, 2908 USE_DEFAULT_GRACE_PERIOD); 2909 if (r) { 2910 pr_err("Failed to resume process queues\n"); 2911 if (queue_ids) { 2912 list_for_each_entry(q, &qpd->queues_list, list) { 2913 int q_idx = q_array_get_index( 2914 q->properties.queue_id, 2915 num_queues, 2916 queue_ids); 2917 2918 /* mask queue as error on resume fail */ 2919 if (q_idx != QUEUE_NOT_FOUND) 2920 queue_ids[q_idx] |= 2921 KFD_DBG_QUEUE_ERROR_MASK; 2922 } 2923 } 2924 } else { 2925 wake_up_all(&dqm->destroy_wait); 2926 total_resumed += per_device_resumed; 2927 } 2928 2929 dqm_unlock(dqm); 2930 } 2931 2932 if (queue_ids) { 2933 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids, 2934 num_queues * sizeof(uint32_t))) 2935 pr_err("copy_to_user failed on queue resume\n"); 2936 2937 kfree(queue_ids); 2938 } 2939 2940 return total_resumed; 2941 } 2942 2943 int suspend_queues(struct kfd_process *p, 2944 uint32_t num_queues, 2945 uint32_t grace_period, 2946 uint64_t exception_clear_mask, 2947 uint32_t *usr_queue_id_array) 2948 { 2949 uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array); 2950 int total_suspended = 0; 2951 int i; 2952 2953 if (IS_ERR(queue_ids)) 2954 return PTR_ERR(queue_ids); 2955 2956 /* mask all queues as invalid. umask on successful request */ 2957 q_array_invalidate(num_queues, queue_ids); 2958 2959 for (i = 0; i < p->n_pdds; i++) { 2960 struct kfd_process_device *pdd = p->pdds[i]; 2961 struct device_queue_manager *dqm = pdd->dev->dqm; 2962 struct qcm_process_device *qpd = &pdd->qpd; 2963 struct queue *q; 2964 int r, per_device_suspended = 0; 2965 2966 mutex_lock(&p->event_mutex); 2967 dqm_lock(dqm); 2968 2969 /* unmask queues that suspend or already suspended */ 2970 list_for_each_entry(q, &qpd->queues_list, list) { 2971 int q_idx = q_array_get_index(q->properties.queue_id, 2972 num_queues, 2973 queue_ids); 2974 2975 if (q_idx != QUEUE_NOT_FOUND) { 2976 int err = suspend_single_queue(dqm, pdd, q); 2977 bool is_mes = dqm->dev->kfd->shared_resources.enable_mes; 2978 2979 if (!err) { 2980 queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK; 2981 if (exception_clear_mask && is_mes) 2982 q->properties.exception_status &= 2983 ~exception_clear_mask; 2984 2985 if (is_mes) 2986 total_suspended++; 2987 else 2988 per_device_suspended++; 2989 } else if (err != -EBUSY) { 2990 r = err; 2991 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK; 2992 break; 2993 } 2994 } 2995 } 2996 2997 if (!per_device_suspended) { 2998 dqm_unlock(dqm); 2999 mutex_unlock(&p->event_mutex); 3000 if (total_suspended) 3001 amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev); 3002 continue; 3003 } 3004 3005 r = execute_queues_cpsch(dqm, 3006 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 3007 grace_period); 3008 3009 if (r) 3010 pr_err("Failed to suspend process queues.\n"); 3011 else 3012 total_suspended += per_device_suspended; 3013 3014 list_for_each_entry(q, &qpd->queues_list, list) { 3015 int q_idx = q_array_get_index(q->properties.queue_id, 3016 num_queues, queue_ids); 3017 3018 if (q_idx == QUEUE_NOT_FOUND) 3019 continue; 3020 3021 /* mask queue as error on suspend fail */ 3022 if (r) 3023 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK; 3024 else if (exception_clear_mask) 3025 q->properties.exception_status &= 3026 ~exception_clear_mask; 3027 } 3028 3029 dqm_unlock(dqm); 3030 mutex_unlock(&p->event_mutex); 3031 amdgpu_device_flush_hdp(dqm->dev->adev, NULL); 3032 } 3033 3034 if (total_suspended) { 3035 struct copy_context_work_handler_workarea copy_context_worker; 3036 3037 INIT_WORK_ONSTACK( 3038 ©_context_worker.copy_context_work, 3039 copy_context_work_handler); 3040 3041 copy_context_worker.p = p; 3042 3043 schedule_work(©_context_worker.copy_context_work); 3044 3045 3046 flush_work(©_context_worker.copy_context_work); 3047 destroy_work_on_stack(©_context_worker.copy_context_work); 3048 } 3049 3050 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids, 3051 num_queues * sizeof(uint32_t))) 3052 pr_err("copy_to_user failed on queue suspend\n"); 3053 3054 kfree(queue_ids); 3055 3056 return total_suspended; 3057 } 3058 3059 static uint32_t set_queue_type_for_user(struct queue_properties *q_props) 3060 { 3061 switch (q_props->type) { 3062 case KFD_QUEUE_TYPE_COMPUTE: 3063 return q_props->format == KFD_QUEUE_FORMAT_PM4 3064 ? KFD_IOC_QUEUE_TYPE_COMPUTE 3065 : KFD_IOC_QUEUE_TYPE_COMPUTE_AQL; 3066 case KFD_QUEUE_TYPE_SDMA: 3067 return KFD_IOC_QUEUE_TYPE_SDMA; 3068 case KFD_QUEUE_TYPE_SDMA_XGMI: 3069 return KFD_IOC_QUEUE_TYPE_SDMA_XGMI; 3070 default: 3071 WARN_ONCE(true, "queue type not recognized!"); 3072 return 0xffffffff; 3073 }; 3074 } 3075 3076 void set_queue_snapshot_entry(struct queue *q, 3077 uint64_t exception_clear_mask, 3078 struct kfd_queue_snapshot_entry *qss_entry) 3079 { 3080 qss_entry->ring_base_address = q->properties.queue_address; 3081 qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr; 3082 qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr; 3083 qss_entry->ctx_save_restore_address = 3084 q->properties.ctx_save_restore_area_address; 3085 qss_entry->ctx_save_restore_area_size = 3086 q->properties.ctx_save_restore_area_size; 3087 qss_entry->exception_status = q->properties.exception_status; 3088 qss_entry->queue_id = q->properties.queue_id; 3089 qss_entry->gpu_id = q->device->id; 3090 qss_entry->ring_size = (uint32_t)q->properties.queue_size; 3091 qss_entry->queue_type = set_queue_type_for_user(&q->properties); 3092 q->properties.exception_status &= ~exception_clear_mask; 3093 } 3094 3095 int debug_lock_and_unmap(struct device_queue_manager *dqm) 3096 { 3097 int r; 3098 3099 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 3100 pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy); 3101 return -EINVAL; 3102 } 3103 3104 if (!kfd_dbg_is_per_vmid_supported(dqm->dev)) 3105 return 0; 3106 3107 dqm_lock(dqm); 3108 3109 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false); 3110 if (r) 3111 dqm_unlock(dqm); 3112 3113 return r; 3114 } 3115 3116 int debug_map_and_unlock(struct device_queue_manager *dqm) 3117 { 3118 int r; 3119 3120 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 3121 pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy); 3122 return -EINVAL; 3123 } 3124 3125 if (!kfd_dbg_is_per_vmid_supported(dqm->dev)) 3126 return 0; 3127 3128 r = map_queues_cpsch(dqm); 3129 3130 dqm_unlock(dqm); 3131 3132 return r; 3133 } 3134 3135 int debug_refresh_runlist(struct device_queue_manager *dqm) 3136 { 3137 int r = debug_lock_and_unmap(dqm); 3138 3139 if (r) 3140 return r; 3141 3142 return debug_map_and_unlock(dqm); 3143 } 3144 3145 #if defined(CONFIG_DEBUG_FS) 3146 3147 static void seq_reg_dump(struct seq_file *m, 3148 uint32_t (*dump)[2], uint32_t n_regs) 3149 { 3150 uint32_t i, count; 3151 3152 for (i = 0, count = 0; i < n_regs; i++) { 3153 if (count == 0 || 3154 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) { 3155 seq_printf(m, "%s %08x: %08x", 3156 i ? "\n" : "", 3157 dump[i][0], dump[i][1]); 3158 count = 7; 3159 } else { 3160 seq_printf(m, " %08x", dump[i][1]); 3161 count--; 3162 } 3163 } 3164 3165 seq_puts(m, "\n"); 3166 } 3167 3168 int dqm_debugfs_hqds(struct seq_file *m, void *data) 3169 { 3170 struct device_queue_manager *dqm = data; 3171 uint32_t xcc_mask = dqm->dev->xcc_mask; 3172 uint32_t (*dump)[2], n_regs; 3173 int pipe, queue; 3174 int r = 0, xcc_id; 3175 uint32_t sdma_engine_start; 3176 3177 if (!dqm->sched_running) { 3178 seq_puts(m, " Device is stopped\n"); 3179 return 0; 3180 } 3181 3182 for_each_inst(xcc_id, xcc_mask) { 3183 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev, 3184 KFD_CIK_HIQ_PIPE, 3185 KFD_CIK_HIQ_QUEUE, &dump, 3186 &n_regs, xcc_id); 3187 if (!r) { 3188 seq_printf( 3189 m, 3190 " Inst %d, HIQ on MEC %d Pipe %d Queue %d\n", 3191 xcc_id, 3192 KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1, 3193 KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm), 3194 KFD_CIK_HIQ_QUEUE); 3195 seq_reg_dump(m, dump, n_regs); 3196 3197 kfree(dump); 3198 } 3199 3200 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 3201 int pipe_offset = pipe * get_queues_per_pipe(dqm); 3202 3203 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) { 3204 if (!test_bit(pipe_offset + queue, 3205 dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 3206 continue; 3207 3208 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev, 3209 pipe, queue, 3210 &dump, &n_regs, 3211 xcc_id); 3212 if (r) 3213 break; 3214 3215 seq_printf(m, 3216 " Inst %d, CP Pipe %d, Queue %d\n", 3217 xcc_id, pipe, queue); 3218 seq_reg_dump(m, dump, n_regs); 3219 3220 kfree(dump); 3221 } 3222 } 3223 } 3224 3225 sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm); 3226 for (pipe = sdma_engine_start; 3227 pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm)); 3228 pipe++) { 3229 for (queue = 0; 3230 queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 3231 queue++) { 3232 r = dqm->dev->kfd2kgd->hqd_sdma_dump( 3233 dqm->dev->adev, pipe, queue, &dump, &n_regs); 3234 if (r) 3235 break; 3236 3237 seq_printf(m, " SDMA Engine %d, RLC %d\n", 3238 pipe, queue); 3239 seq_reg_dump(m, dump, n_regs); 3240 3241 kfree(dump); 3242 } 3243 } 3244 3245 return r; 3246 } 3247 3248 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm) 3249 { 3250 int r = 0; 3251 3252 dqm_lock(dqm); 3253 r = pm_debugfs_hang_hws(&dqm->packet_mgr); 3254 if (r) { 3255 dqm_unlock(dqm); 3256 return r; 3257 } 3258 dqm->active_runlist = true; 3259 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 3260 0, USE_DEFAULT_GRACE_PERIOD); 3261 dqm_unlock(dqm); 3262 3263 return r; 3264 } 3265 3266 #endif 3267