1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/ratelimit.h> 25 #include <linux/printk.h> 26 #include <linux/slab.h> 27 #include <linux/list.h> 28 #include <linux/types.h> 29 #include <linux/bitops.h> 30 #include <linux/sched.h> 31 #include "kfd_priv.h" 32 #include "kfd_device_queue_manager.h" 33 #include "kfd_mqd_manager.h" 34 #include "cik_regs.h" 35 #include "kfd_kernel_queue.h" 36 #include "amdgpu_amdkfd.h" 37 38 /* Size of the per-pipe EOP queue */ 39 #define CIK_HPD_EOP_BYTES_LOG2 11 40 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2) 41 42 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, 43 unsigned int pasid, unsigned int vmid); 44 45 static int execute_queues_cpsch(struct device_queue_manager *dqm, 46 enum kfd_unmap_queues_filter filter, 47 uint32_t filter_param); 48 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 49 enum kfd_unmap_queues_filter filter, 50 uint32_t filter_param); 51 52 static int map_queues_cpsch(struct device_queue_manager *dqm); 53 54 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 55 struct queue *q); 56 57 static inline void deallocate_hqd(struct device_queue_manager *dqm, 58 struct queue *q); 59 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q); 60 static int allocate_sdma_queue(struct device_queue_manager *dqm, 61 struct queue *q); 62 static void kfd_process_hw_exception(struct work_struct *work); 63 64 static inline 65 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type) 66 { 67 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI) 68 return KFD_MQD_TYPE_SDMA; 69 return KFD_MQD_TYPE_CP; 70 } 71 72 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe) 73 { 74 int i; 75 int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec 76 + pipe * dqm->dev->shared_resources.num_queue_per_pipe; 77 78 /* queue is available for KFD usage if bit is 1 */ 79 for (i = 0; i < dqm->dev->shared_resources.num_queue_per_pipe; ++i) 80 if (test_bit(pipe_offset + i, 81 dqm->dev->shared_resources.queue_bitmap)) 82 return true; 83 return false; 84 } 85 86 unsigned int get_queues_num(struct device_queue_manager *dqm) 87 { 88 return bitmap_weight(dqm->dev->shared_resources.queue_bitmap, 89 KGD_MAX_QUEUES); 90 } 91 92 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm) 93 { 94 return dqm->dev->shared_resources.num_queue_per_pipe; 95 } 96 97 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm) 98 { 99 return dqm->dev->shared_resources.num_pipe_per_mec; 100 } 101 102 static unsigned int get_num_sdma_engines(struct device_queue_manager *dqm) 103 { 104 return dqm->dev->device_info->num_sdma_engines; 105 } 106 107 static unsigned int get_num_xgmi_sdma_engines(struct device_queue_manager *dqm) 108 { 109 return dqm->dev->device_info->num_xgmi_sdma_engines; 110 } 111 112 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm) 113 { 114 return dqm->dev->device_info->num_sdma_engines 115 * dqm->dev->device_info->num_sdma_queues_per_engine; 116 } 117 118 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm) 119 { 120 return dqm->dev->device_info->num_xgmi_sdma_engines 121 * dqm->dev->device_info->num_sdma_queues_per_engine; 122 } 123 124 void program_sh_mem_settings(struct device_queue_manager *dqm, 125 struct qcm_process_device *qpd) 126 { 127 return dqm->dev->kfd2kgd->program_sh_mem_settings( 128 dqm->dev->kgd, qpd->vmid, 129 qpd->sh_mem_config, 130 qpd->sh_mem_ape1_base, 131 qpd->sh_mem_ape1_limit, 132 qpd->sh_mem_bases); 133 } 134 135 static int allocate_doorbell(struct qcm_process_device *qpd, struct queue *q) 136 { 137 struct kfd_dev *dev = qpd->dqm->dev; 138 139 if (!KFD_IS_SOC15(dev->device_info->asic_family)) { 140 /* On pre-SOC15 chips we need to use the queue ID to 141 * preserve the user mode ABI. 142 */ 143 q->doorbell_id = q->properties.queue_id; 144 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 145 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 146 /* For SDMA queues on SOC15 with 8-byte doorbell, use static 147 * doorbell assignments based on the engine and queue id. 148 * The doobell index distance between RLC (2*i) and (2*i+1) 149 * for a SDMA engine is 512. 150 */ 151 uint32_t *idx_offset = 152 dev->shared_resources.sdma_doorbell_idx; 153 154 q->doorbell_id = idx_offset[q->properties.sdma_engine_id] 155 + (q->properties.sdma_queue_id & 1) 156 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET 157 + (q->properties.sdma_queue_id >> 1); 158 } else { 159 /* For CP queues on SOC15 reserve a free doorbell ID */ 160 unsigned int found; 161 162 found = find_first_zero_bit(qpd->doorbell_bitmap, 163 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 164 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) { 165 pr_debug("No doorbells available"); 166 return -EBUSY; 167 } 168 set_bit(found, qpd->doorbell_bitmap); 169 q->doorbell_id = found; 170 } 171 172 q->properties.doorbell_off = 173 kfd_doorbell_id_to_offset(dev, q->process, 174 q->doorbell_id); 175 176 return 0; 177 } 178 179 static void deallocate_doorbell(struct qcm_process_device *qpd, 180 struct queue *q) 181 { 182 unsigned int old; 183 struct kfd_dev *dev = qpd->dqm->dev; 184 185 if (!KFD_IS_SOC15(dev->device_info->asic_family) || 186 q->properties.type == KFD_QUEUE_TYPE_SDMA || 187 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 188 return; 189 190 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap); 191 WARN_ON(!old); 192 } 193 194 static int allocate_vmid(struct device_queue_manager *dqm, 195 struct qcm_process_device *qpd, 196 struct queue *q) 197 { 198 int bit, allocated_vmid; 199 200 if (dqm->vmid_bitmap == 0) 201 return -ENOMEM; 202 203 bit = ffs(dqm->vmid_bitmap) - 1; 204 dqm->vmid_bitmap &= ~(1 << bit); 205 206 allocated_vmid = bit + dqm->dev->vm_info.first_vmid_kfd; 207 pr_debug("vmid allocation %d\n", allocated_vmid); 208 qpd->vmid = allocated_vmid; 209 q->properties.vmid = allocated_vmid; 210 211 set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid); 212 program_sh_mem_settings(dqm, qpd); 213 214 /* qpd->page_table_base is set earlier when register_process() 215 * is called, i.e. when the first queue is created. 216 */ 217 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->kgd, 218 qpd->vmid, 219 qpd->page_table_base); 220 /* invalidate the VM context after pasid and vmid mapping is set up */ 221 kfd_flush_tlb(qpd_to_pdd(qpd)); 222 223 dqm->dev->kfd2kgd->set_scratch_backing_va( 224 dqm->dev->kgd, qpd->sh_hidden_private_base, qpd->vmid); 225 226 return 0; 227 } 228 229 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev, 230 struct qcm_process_device *qpd) 231 { 232 const struct packet_manager_funcs *pmf = qpd->dqm->packets.pmf; 233 int ret; 234 235 if (!qpd->ib_kaddr) 236 return -ENOMEM; 237 238 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr); 239 if (ret) 240 return ret; 241 242 return amdgpu_amdkfd_submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid, 243 qpd->ib_base, (uint32_t *)qpd->ib_kaddr, 244 pmf->release_mem_size / sizeof(uint32_t)); 245 } 246 247 static void deallocate_vmid(struct device_queue_manager *dqm, 248 struct qcm_process_device *qpd, 249 struct queue *q) 250 { 251 int bit = qpd->vmid - dqm->dev->vm_info.first_vmid_kfd; 252 253 /* On GFX v7, CP doesn't flush TC at dequeue */ 254 if (q->device->device_info->asic_family == CHIP_HAWAII) 255 if (flush_texture_cache_nocpsch(q->device, qpd)) 256 pr_err("Failed to flush TC\n"); 257 258 kfd_flush_tlb(qpd_to_pdd(qpd)); 259 260 /* Release the vmid mapping */ 261 set_pasid_vmid_mapping(dqm, 0, qpd->vmid); 262 263 dqm->vmid_bitmap |= (1 << bit); 264 qpd->vmid = 0; 265 q->properties.vmid = 0; 266 } 267 268 static int create_queue_nocpsch(struct device_queue_manager *dqm, 269 struct queue *q, 270 struct qcm_process_device *qpd) 271 { 272 struct mqd_manager *mqd_mgr; 273 int retval; 274 275 print_queue(q); 276 277 dqm_lock(dqm); 278 279 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 280 pr_warn("Can't create new usermode queue because %d queues were already created\n", 281 dqm->total_queue_count); 282 retval = -EPERM; 283 goto out_unlock; 284 } 285 286 if (list_empty(&qpd->queues_list)) { 287 retval = allocate_vmid(dqm, qpd, q); 288 if (retval) 289 goto out_unlock; 290 } 291 q->properties.vmid = qpd->vmid; 292 /* 293 * Eviction state logic: mark all queues as evicted, even ones 294 * not currently active. Restoring inactive queues later only 295 * updates the is_evicted flag but is a no-op otherwise. 296 */ 297 q->properties.is_evicted = !!qpd->evicted; 298 299 q->properties.tba_addr = qpd->tba_addr; 300 q->properties.tma_addr = qpd->tma_addr; 301 302 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 303 q->properties.type)]; 304 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) { 305 retval = allocate_hqd(dqm, q); 306 if (retval) 307 goto deallocate_vmid; 308 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n", 309 q->pipe, q->queue); 310 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 311 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 312 retval = allocate_sdma_queue(dqm, q); 313 if (retval) 314 goto deallocate_vmid; 315 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 316 } 317 318 retval = allocate_doorbell(qpd, q); 319 if (retval) 320 goto out_deallocate_hqd; 321 322 /* Temporarily release dqm lock to avoid a circular lock dependency */ 323 dqm_unlock(dqm); 324 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 325 dqm_lock(dqm); 326 327 if (!q->mqd_mem_obj) { 328 retval = -ENOMEM; 329 goto out_deallocate_doorbell; 330 } 331 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 332 &q->gart_mqd_addr, &q->properties); 333 if (q->properties.is_active) { 334 335 if (WARN(q->process->mm != current->mm, 336 "should only run in user thread")) 337 retval = -EFAULT; 338 else 339 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 340 q->queue, &q->properties, current->mm); 341 if (retval) 342 goto out_free_mqd; 343 } 344 345 list_add(&q->list, &qpd->queues_list); 346 qpd->queue_count++; 347 if (q->properties.is_active) 348 dqm->queue_count++; 349 350 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 351 dqm->sdma_queue_count++; 352 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 353 dqm->xgmi_sdma_queue_count++; 354 355 /* 356 * Unconditionally increment this counter, regardless of the queue's 357 * type or whether the queue is active. 358 */ 359 dqm->total_queue_count++; 360 pr_debug("Total of %d queues are accountable so far\n", 361 dqm->total_queue_count); 362 goto out_unlock; 363 364 out_free_mqd: 365 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 366 out_deallocate_doorbell: 367 deallocate_doorbell(qpd, q); 368 out_deallocate_hqd: 369 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 370 deallocate_hqd(dqm, q); 371 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 372 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 373 deallocate_sdma_queue(dqm, q); 374 deallocate_vmid: 375 if (list_empty(&qpd->queues_list)) 376 deallocate_vmid(dqm, qpd, q); 377 out_unlock: 378 dqm_unlock(dqm); 379 return retval; 380 } 381 382 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q) 383 { 384 bool set; 385 int pipe, bit, i; 386 387 set = false; 388 389 for (pipe = dqm->next_pipe_to_allocate, i = 0; 390 i < get_pipes_per_mec(dqm); 391 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) { 392 393 if (!is_pipe_enabled(dqm, 0, pipe)) 394 continue; 395 396 if (dqm->allocated_queues[pipe] != 0) { 397 bit = ffs(dqm->allocated_queues[pipe]) - 1; 398 dqm->allocated_queues[pipe] &= ~(1 << bit); 399 q->pipe = pipe; 400 q->queue = bit; 401 set = true; 402 break; 403 } 404 } 405 406 if (!set) 407 return -EBUSY; 408 409 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue); 410 /* horizontal hqd allocation */ 411 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm); 412 413 return 0; 414 } 415 416 static inline void deallocate_hqd(struct device_queue_manager *dqm, 417 struct queue *q) 418 { 419 dqm->allocated_queues[q->pipe] |= (1 << q->queue); 420 } 421 422 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked 423 * to avoid asynchronized access 424 */ 425 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm, 426 struct qcm_process_device *qpd, 427 struct queue *q) 428 { 429 int retval; 430 struct mqd_manager *mqd_mgr; 431 432 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 433 q->properties.type)]; 434 435 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) { 436 deallocate_hqd(dqm, q); 437 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 438 dqm->sdma_queue_count--; 439 deallocate_sdma_queue(dqm, q); 440 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 441 dqm->xgmi_sdma_queue_count--; 442 deallocate_sdma_queue(dqm, q); 443 } else { 444 pr_debug("q->properties.type %d is invalid\n", 445 q->properties.type); 446 return -EINVAL; 447 } 448 dqm->total_queue_count--; 449 450 deallocate_doorbell(qpd, q); 451 452 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 453 KFD_PREEMPT_TYPE_WAVEFRONT_RESET, 454 KFD_UNMAP_LATENCY_MS, 455 q->pipe, q->queue); 456 if (retval == -ETIME) 457 qpd->reset_wavefronts = true; 458 459 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 460 461 list_del(&q->list); 462 if (list_empty(&qpd->queues_list)) { 463 if (qpd->reset_wavefronts) { 464 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n", 465 dqm->dev); 466 /* dbgdev_wave_reset_wavefronts has to be called before 467 * deallocate_vmid(), i.e. when vmid is still in use. 468 */ 469 dbgdev_wave_reset_wavefronts(dqm->dev, 470 qpd->pqm->process); 471 qpd->reset_wavefronts = false; 472 } 473 474 deallocate_vmid(dqm, qpd, q); 475 } 476 qpd->queue_count--; 477 if (q->properties.is_active) 478 dqm->queue_count--; 479 480 return retval; 481 } 482 483 static int destroy_queue_nocpsch(struct device_queue_manager *dqm, 484 struct qcm_process_device *qpd, 485 struct queue *q) 486 { 487 int retval; 488 489 dqm_lock(dqm); 490 retval = destroy_queue_nocpsch_locked(dqm, qpd, q); 491 dqm_unlock(dqm); 492 493 return retval; 494 } 495 496 static int update_queue(struct device_queue_manager *dqm, struct queue *q) 497 { 498 int retval = 0; 499 struct mqd_manager *mqd_mgr; 500 struct kfd_process_device *pdd; 501 bool prev_active = false; 502 503 dqm_lock(dqm); 504 pdd = kfd_get_process_device_data(q->device, q->process); 505 if (!pdd) { 506 retval = -ENODEV; 507 goto out_unlock; 508 } 509 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 510 q->properties.type)]; 511 512 /* Save previous activity state for counters */ 513 prev_active = q->properties.is_active; 514 515 /* Make sure the queue is unmapped before updating the MQD */ 516 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { 517 retval = unmap_queues_cpsch(dqm, 518 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 519 if (retval) { 520 pr_err("unmap queue failed\n"); 521 goto out_unlock; 522 } 523 } else if (prev_active && 524 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 525 q->properties.type == KFD_QUEUE_TYPE_SDMA || 526 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 527 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 528 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN, 529 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 530 if (retval) { 531 pr_err("destroy mqd failed\n"); 532 goto out_unlock; 533 } 534 } 535 536 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties); 537 538 /* 539 * check active state vs. the previous state and modify 540 * counter accordingly. map_queues_cpsch uses the 541 * dqm->queue_count to determine whether a new runlist must be 542 * uploaded. 543 */ 544 if (q->properties.is_active && !prev_active) 545 dqm->queue_count++; 546 else if (!q->properties.is_active && prev_active) 547 dqm->queue_count--; 548 549 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) 550 retval = map_queues_cpsch(dqm); 551 else if (q->properties.is_active && 552 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 553 q->properties.type == KFD_QUEUE_TYPE_SDMA || 554 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 555 if (WARN(q->process->mm != current->mm, 556 "should only run in user thread")) 557 retval = -EFAULT; 558 else 559 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, 560 q->pipe, q->queue, 561 &q->properties, current->mm); 562 } 563 564 out_unlock: 565 dqm_unlock(dqm); 566 return retval; 567 } 568 569 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm, 570 struct qcm_process_device *qpd) 571 { 572 struct queue *q; 573 struct mqd_manager *mqd_mgr; 574 struct kfd_process_device *pdd; 575 int retval, ret = 0; 576 577 dqm_lock(dqm); 578 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 579 goto out; 580 581 pdd = qpd_to_pdd(qpd); 582 pr_info_ratelimited("Evicting PASID %u queues\n", 583 pdd->process->pasid); 584 585 /* Mark all queues as evicted. Deactivate all active queues on 586 * the qpd. 587 */ 588 list_for_each_entry(q, &qpd->queues_list, list) { 589 q->properties.is_evicted = true; 590 if (!q->properties.is_active) 591 continue; 592 593 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 594 q->properties.type)]; 595 q->properties.is_active = false; 596 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 597 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN, 598 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 599 if (retval && !ret) 600 /* Return the first error, but keep going to 601 * maintain a consistent eviction state 602 */ 603 ret = retval; 604 dqm->queue_count--; 605 } 606 607 out: 608 dqm_unlock(dqm); 609 return ret; 610 } 611 612 static int evict_process_queues_cpsch(struct device_queue_manager *dqm, 613 struct qcm_process_device *qpd) 614 { 615 struct queue *q; 616 struct kfd_process_device *pdd; 617 int retval = 0; 618 619 dqm_lock(dqm); 620 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 621 goto out; 622 623 pdd = qpd_to_pdd(qpd); 624 pr_info_ratelimited("Evicting PASID %u queues\n", 625 pdd->process->pasid); 626 627 /* Mark all queues as evicted. Deactivate all active queues on 628 * the qpd. 629 */ 630 list_for_each_entry(q, &qpd->queues_list, list) { 631 q->properties.is_evicted = true; 632 if (!q->properties.is_active) 633 continue; 634 635 q->properties.is_active = false; 636 dqm->queue_count--; 637 } 638 retval = execute_queues_cpsch(dqm, 639 qpd->is_debug ? 640 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES : 641 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 642 643 out: 644 dqm_unlock(dqm); 645 return retval; 646 } 647 648 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm, 649 struct qcm_process_device *qpd) 650 { 651 struct mm_struct *mm = NULL; 652 struct queue *q; 653 struct mqd_manager *mqd_mgr; 654 struct kfd_process_device *pdd; 655 uint64_t pd_base; 656 int retval, ret = 0; 657 658 pdd = qpd_to_pdd(qpd); 659 /* Retrieve PD base */ 660 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm); 661 662 dqm_lock(dqm); 663 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 664 goto out; 665 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 666 qpd->evicted--; 667 goto out; 668 } 669 670 pr_info_ratelimited("Restoring PASID %u queues\n", 671 pdd->process->pasid); 672 673 /* Update PD Base in QPD */ 674 qpd->page_table_base = pd_base; 675 pr_debug("Updated PD address to 0x%llx\n", pd_base); 676 677 if (!list_empty(&qpd->queues_list)) { 678 dqm->dev->kfd2kgd->set_vm_context_page_table_base( 679 dqm->dev->kgd, 680 qpd->vmid, 681 qpd->page_table_base); 682 kfd_flush_tlb(pdd); 683 } 684 685 /* Take a safe reference to the mm_struct, which may otherwise 686 * disappear even while the kfd_process is still referenced. 687 */ 688 mm = get_task_mm(pdd->process->lead_thread); 689 if (!mm) { 690 ret = -EFAULT; 691 goto out; 692 } 693 694 /* Remove the eviction flags. Activate queues that are not 695 * inactive for other reasons. 696 */ 697 list_for_each_entry(q, &qpd->queues_list, list) { 698 q->properties.is_evicted = false; 699 if (!QUEUE_IS_ACTIVE(q->properties)) 700 continue; 701 702 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 703 q->properties.type)]; 704 q->properties.is_active = true; 705 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 706 q->queue, &q->properties, mm); 707 if (retval && !ret) 708 /* Return the first error, but keep going to 709 * maintain a consistent eviction state 710 */ 711 ret = retval; 712 dqm->queue_count++; 713 } 714 qpd->evicted = 0; 715 out: 716 if (mm) 717 mmput(mm); 718 dqm_unlock(dqm); 719 return ret; 720 } 721 722 static int restore_process_queues_cpsch(struct device_queue_manager *dqm, 723 struct qcm_process_device *qpd) 724 { 725 struct queue *q; 726 struct kfd_process_device *pdd; 727 uint64_t pd_base; 728 int retval = 0; 729 730 pdd = qpd_to_pdd(qpd); 731 /* Retrieve PD base */ 732 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm); 733 734 dqm_lock(dqm); 735 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 736 goto out; 737 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 738 qpd->evicted--; 739 goto out; 740 } 741 742 pr_info_ratelimited("Restoring PASID %u queues\n", 743 pdd->process->pasid); 744 745 /* Update PD Base in QPD */ 746 qpd->page_table_base = pd_base; 747 pr_debug("Updated PD address to 0x%llx\n", pd_base); 748 749 /* activate all active queues on the qpd */ 750 list_for_each_entry(q, &qpd->queues_list, list) { 751 q->properties.is_evicted = false; 752 if (!QUEUE_IS_ACTIVE(q->properties)) 753 continue; 754 755 q->properties.is_active = true; 756 dqm->queue_count++; 757 } 758 retval = execute_queues_cpsch(dqm, 759 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 760 qpd->evicted = 0; 761 out: 762 dqm_unlock(dqm); 763 return retval; 764 } 765 766 static int register_process(struct device_queue_manager *dqm, 767 struct qcm_process_device *qpd) 768 { 769 struct device_process_node *n; 770 struct kfd_process_device *pdd; 771 uint64_t pd_base; 772 int retval; 773 774 n = kzalloc(sizeof(*n), GFP_KERNEL); 775 if (!n) 776 return -ENOMEM; 777 778 n->qpd = qpd; 779 780 pdd = qpd_to_pdd(qpd); 781 /* Retrieve PD base */ 782 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm); 783 784 dqm_lock(dqm); 785 list_add(&n->list, &dqm->queues); 786 787 /* Update PD Base in QPD */ 788 qpd->page_table_base = pd_base; 789 pr_debug("Updated PD address to 0x%llx\n", pd_base); 790 791 retval = dqm->asic_ops.update_qpd(dqm, qpd); 792 793 dqm->processes_count++; 794 795 dqm_unlock(dqm); 796 797 /* Outside the DQM lock because under the DQM lock we can't do 798 * reclaim or take other locks that others hold while reclaiming. 799 */ 800 kfd_inc_compute_active(dqm->dev); 801 802 return retval; 803 } 804 805 static int unregister_process(struct device_queue_manager *dqm, 806 struct qcm_process_device *qpd) 807 { 808 int retval; 809 struct device_process_node *cur, *next; 810 811 pr_debug("qpd->queues_list is %s\n", 812 list_empty(&qpd->queues_list) ? "empty" : "not empty"); 813 814 retval = 0; 815 dqm_lock(dqm); 816 817 list_for_each_entry_safe(cur, next, &dqm->queues, list) { 818 if (qpd == cur->qpd) { 819 list_del(&cur->list); 820 kfree(cur); 821 dqm->processes_count--; 822 goto out; 823 } 824 } 825 /* qpd not found in dqm list */ 826 retval = 1; 827 out: 828 dqm_unlock(dqm); 829 830 /* Outside the DQM lock because under the DQM lock we can't do 831 * reclaim or take other locks that others hold while reclaiming. 832 */ 833 if (!retval) 834 kfd_dec_compute_active(dqm->dev); 835 836 return retval; 837 } 838 839 static int 840 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid, 841 unsigned int vmid) 842 { 843 return dqm->dev->kfd2kgd->set_pasid_vmid_mapping( 844 dqm->dev->kgd, pasid, vmid); 845 } 846 847 static void init_interrupts(struct device_queue_manager *dqm) 848 { 849 unsigned int i; 850 851 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) 852 if (is_pipe_enabled(dqm, 0, i)) 853 dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i); 854 } 855 856 static int initialize_nocpsch(struct device_queue_manager *dqm) 857 { 858 int pipe, queue; 859 860 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 861 862 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm), 863 sizeof(unsigned int), GFP_KERNEL); 864 if (!dqm->allocated_queues) 865 return -ENOMEM; 866 867 mutex_init(&dqm->lock_hidden); 868 INIT_LIST_HEAD(&dqm->queues); 869 dqm->queue_count = dqm->next_pipe_to_allocate = 0; 870 dqm->sdma_queue_count = 0; 871 dqm->xgmi_sdma_queue_count = 0; 872 873 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 874 int pipe_offset = pipe * get_queues_per_pipe(dqm); 875 876 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) 877 if (test_bit(pipe_offset + queue, 878 dqm->dev->shared_resources.queue_bitmap)) 879 dqm->allocated_queues[pipe] |= 1 << queue; 880 } 881 882 dqm->vmid_bitmap = (1 << dqm->dev->vm_info.vmid_num_kfd) - 1; 883 dqm->sdma_bitmap = (1ULL << get_num_sdma_queues(dqm)) - 1; 884 dqm->xgmi_sdma_bitmap = (1ULL << get_num_xgmi_sdma_queues(dqm)) - 1; 885 886 return 0; 887 } 888 889 static void uninitialize(struct device_queue_manager *dqm) 890 { 891 int i; 892 893 WARN_ON(dqm->queue_count > 0 || dqm->processes_count > 0); 894 895 kfree(dqm->allocated_queues); 896 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++) 897 kfree(dqm->mqd_mgrs[i]); 898 mutex_destroy(&dqm->lock_hidden); 899 kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem); 900 } 901 902 static int start_nocpsch(struct device_queue_manager *dqm) 903 { 904 init_interrupts(dqm); 905 return pm_init(&dqm->packets, dqm); 906 } 907 908 static int stop_nocpsch(struct device_queue_manager *dqm) 909 { 910 pm_uninit(&dqm->packets); 911 return 0; 912 } 913 914 static int allocate_sdma_queue(struct device_queue_manager *dqm, 915 struct queue *q) 916 { 917 int bit; 918 919 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 920 if (dqm->sdma_bitmap == 0) 921 return -ENOMEM; 922 bit = __ffs64(dqm->sdma_bitmap); 923 dqm->sdma_bitmap &= ~(1ULL << bit); 924 q->sdma_id = bit; 925 q->properties.sdma_engine_id = q->sdma_id % 926 get_num_sdma_engines(dqm); 927 q->properties.sdma_queue_id = q->sdma_id / 928 get_num_sdma_engines(dqm); 929 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 930 if (dqm->xgmi_sdma_bitmap == 0) 931 return -ENOMEM; 932 bit = __ffs64(dqm->xgmi_sdma_bitmap); 933 dqm->xgmi_sdma_bitmap &= ~(1ULL << bit); 934 q->sdma_id = bit; 935 /* sdma_engine_id is sdma id including 936 * both PCIe-optimized SDMAs and XGMI- 937 * optimized SDMAs. The calculation below 938 * assumes the first N engines are always 939 * PCIe-optimized ones 940 */ 941 q->properties.sdma_engine_id = get_num_sdma_engines(dqm) + 942 q->sdma_id % get_num_xgmi_sdma_engines(dqm); 943 q->properties.sdma_queue_id = q->sdma_id / 944 get_num_xgmi_sdma_engines(dqm); 945 } 946 947 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id); 948 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id); 949 950 return 0; 951 } 952 953 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 954 struct queue *q) 955 { 956 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 957 if (q->sdma_id >= get_num_sdma_queues(dqm)) 958 return; 959 dqm->sdma_bitmap |= (1ULL << q->sdma_id); 960 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 961 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm)) 962 return; 963 dqm->xgmi_sdma_bitmap |= (1ULL << q->sdma_id); 964 } 965 } 966 967 /* 968 * Device Queue Manager implementation for cp scheduler 969 */ 970 971 static int set_sched_resources(struct device_queue_manager *dqm) 972 { 973 int i, mec; 974 struct scheduling_resources res; 975 976 res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap; 977 978 res.queue_mask = 0; 979 for (i = 0; i < KGD_MAX_QUEUES; ++i) { 980 mec = (i / dqm->dev->shared_resources.num_queue_per_pipe) 981 / dqm->dev->shared_resources.num_pipe_per_mec; 982 983 if (!test_bit(i, dqm->dev->shared_resources.queue_bitmap)) 984 continue; 985 986 /* only acquire queues from the first MEC */ 987 if (mec > 0) 988 continue; 989 990 /* This situation may be hit in the future if a new HW 991 * generation exposes more than 64 queues. If so, the 992 * definition of res.queue_mask needs updating 993 */ 994 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) { 995 pr_err("Invalid queue enabled by amdgpu: %d\n", i); 996 break; 997 } 998 999 res.queue_mask |= (1ull << i); 1000 } 1001 res.gws_mask = res.oac_mask = res.gds_heap_base = 1002 res.gds_heap_size = 0; 1003 1004 pr_debug("Scheduling resources:\n" 1005 "vmid mask: 0x%8X\n" 1006 "queue mask: 0x%8llX\n", 1007 res.vmid_mask, res.queue_mask); 1008 1009 return pm_send_set_resources(&dqm->packets, &res); 1010 } 1011 1012 static int initialize_cpsch(struct device_queue_manager *dqm) 1013 { 1014 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 1015 1016 mutex_init(&dqm->lock_hidden); 1017 INIT_LIST_HEAD(&dqm->queues); 1018 dqm->queue_count = dqm->processes_count = 0; 1019 dqm->sdma_queue_count = 0; 1020 dqm->xgmi_sdma_queue_count = 0; 1021 dqm->active_runlist = false; 1022 dqm->sdma_bitmap = (1ULL << get_num_sdma_queues(dqm)) - 1; 1023 dqm->xgmi_sdma_bitmap = (1ULL << get_num_xgmi_sdma_queues(dqm)) - 1; 1024 1025 INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception); 1026 1027 return 0; 1028 } 1029 1030 static int start_cpsch(struct device_queue_manager *dqm) 1031 { 1032 int retval; 1033 1034 retval = 0; 1035 1036 retval = pm_init(&dqm->packets, dqm); 1037 if (retval) 1038 goto fail_packet_manager_init; 1039 1040 retval = set_sched_resources(dqm); 1041 if (retval) 1042 goto fail_set_sched_resources; 1043 1044 pr_debug("Allocating fence memory\n"); 1045 1046 /* allocate fence memory on the gart */ 1047 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr), 1048 &dqm->fence_mem); 1049 1050 if (retval) 1051 goto fail_allocate_vidmem; 1052 1053 dqm->fence_addr = dqm->fence_mem->cpu_ptr; 1054 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr; 1055 1056 init_interrupts(dqm); 1057 1058 dqm_lock(dqm); 1059 /* clear hang status when driver try to start the hw scheduler */ 1060 dqm->is_hws_hang = false; 1061 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1062 dqm_unlock(dqm); 1063 1064 return 0; 1065 fail_allocate_vidmem: 1066 fail_set_sched_resources: 1067 pm_uninit(&dqm->packets); 1068 fail_packet_manager_init: 1069 return retval; 1070 } 1071 1072 static int stop_cpsch(struct device_queue_manager *dqm) 1073 { 1074 dqm_lock(dqm); 1075 unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0); 1076 dqm_unlock(dqm); 1077 1078 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); 1079 pm_uninit(&dqm->packets); 1080 1081 return 0; 1082 } 1083 1084 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm, 1085 struct kernel_queue *kq, 1086 struct qcm_process_device *qpd) 1087 { 1088 dqm_lock(dqm); 1089 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1090 pr_warn("Can't create new kernel queue because %d queues were already created\n", 1091 dqm->total_queue_count); 1092 dqm_unlock(dqm); 1093 return -EPERM; 1094 } 1095 1096 /* 1097 * Unconditionally increment this counter, regardless of the queue's 1098 * type or whether the queue is active. 1099 */ 1100 dqm->total_queue_count++; 1101 pr_debug("Total of %d queues are accountable so far\n", 1102 dqm->total_queue_count); 1103 1104 list_add(&kq->list, &qpd->priv_queue_list); 1105 dqm->queue_count++; 1106 qpd->is_debug = true; 1107 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1108 dqm_unlock(dqm); 1109 1110 return 0; 1111 } 1112 1113 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm, 1114 struct kernel_queue *kq, 1115 struct qcm_process_device *qpd) 1116 { 1117 dqm_lock(dqm); 1118 list_del(&kq->list); 1119 dqm->queue_count--; 1120 qpd->is_debug = false; 1121 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0); 1122 /* 1123 * Unconditionally decrement this counter, regardless of the queue's 1124 * type. 1125 */ 1126 dqm->total_queue_count--; 1127 pr_debug("Total of %d queues are accountable so far\n", 1128 dqm->total_queue_count); 1129 dqm_unlock(dqm); 1130 } 1131 1132 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q, 1133 struct qcm_process_device *qpd) 1134 { 1135 int retval; 1136 struct mqd_manager *mqd_mgr; 1137 1138 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1139 pr_warn("Can't create new usermode queue because %d queues were already created\n", 1140 dqm->total_queue_count); 1141 retval = -EPERM; 1142 goto out; 1143 } 1144 1145 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1146 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1147 dqm_lock(dqm); 1148 retval = allocate_sdma_queue(dqm, q); 1149 dqm_unlock(dqm); 1150 if (retval) 1151 goto out; 1152 } 1153 1154 retval = allocate_doorbell(qpd, q); 1155 if (retval) 1156 goto out_deallocate_sdma_queue; 1157 1158 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1159 q->properties.type)]; 1160 /* 1161 * Eviction state logic: mark all queues as evicted, even ones 1162 * not currently active. Restoring inactive queues later only 1163 * updates the is_evicted flag but is a no-op otherwise. 1164 */ 1165 q->properties.is_evicted = !!qpd->evicted; 1166 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1167 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 1168 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 1169 q->properties.tba_addr = qpd->tba_addr; 1170 q->properties.tma_addr = qpd->tma_addr; 1171 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 1172 if (!q->mqd_mem_obj) { 1173 retval = -ENOMEM; 1174 goto out_deallocate_doorbell; 1175 } 1176 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 1177 &q->gart_mqd_addr, &q->properties); 1178 dqm_lock(dqm); 1179 1180 list_add(&q->list, &qpd->queues_list); 1181 qpd->queue_count++; 1182 if (q->properties.is_active) { 1183 dqm->queue_count++; 1184 retval = execute_queues_cpsch(dqm, 1185 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1186 } 1187 1188 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 1189 dqm->sdma_queue_count++; 1190 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 1191 dqm->xgmi_sdma_queue_count++; 1192 /* 1193 * Unconditionally increment this counter, regardless of the queue's 1194 * type or whether the queue is active. 1195 */ 1196 dqm->total_queue_count++; 1197 1198 pr_debug("Total of %d queues are accountable so far\n", 1199 dqm->total_queue_count); 1200 1201 dqm_unlock(dqm); 1202 return retval; 1203 1204 out_deallocate_doorbell: 1205 deallocate_doorbell(qpd, q); 1206 out_deallocate_sdma_queue: 1207 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1208 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1209 dqm_lock(dqm); 1210 deallocate_sdma_queue(dqm, q); 1211 dqm_unlock(dqm); 1212 } 1213 out: 1214 return retval; 1215 } 1216 1217 int amdkfd_fence_wait_timeout(unsigned int *fence_addr, 1218 unsigned int fence_value, 1219 unsigned int timeout_ms) 1220 { 1221 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies; 1222 1223 while (*fence_addr != fence_value) { 1224 if (time_after(jiffies, end_jiffies)) { 1225 pr_err("qcm fence wait loop timeout expired\n"); 1226 /* In HWS case, this is used to halt the driver thread 1227 * in order not to mess up CP states before doing 1228 * scandumps for FW debugging. 1229 */ 1230 while (halt_if_hws_hang) 1231 schedule(); 1232 1233 return -ETIME; 1234 } 1235 schedule(); 1236 } 1237 1238 return 0; 1239 } 1240 1241 static int unmap_sdma_queues(struct device_queue_manager *dqm) 1242 { 1243 int i, retval = 0; 1244 1245 for (i = 0; i < dqm->dev->device_info->num_sdma_engines + 1246 dqm->dev->device_info->num_xgmi_sdma_engines; i++) { 1247 retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA, 1248 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, false, i); 1249 if (retval) 1250 return retval; 1251 } 1252 return retval; 1253 } 1254 1255 /* dqm->lock mutex has to be locked before calling this function */ 1256 static int map_queues_cpsch(struct device_queue_manager *dqm) 1257 { 1258 int retval; 1259 1260 if (dqm->queue_count <= 0 || dqm->processes_count <= 0) 1261 return 0; 1262 1263 if (dqm->active_runlist) 1264 return 0; 1265 1266 retval = pm_send_runlist(&dqm->packets, &dqm->queues); 1267 if (retval) { 1268 pr_err("failed to execute runlist\n"); 1269 return retval; 1270 } 1271 dqm->active_runlist = true; 1272 1273 return retval; 1274 } 1275 1276 /* dqm->lock mutex has to be locked before calling this function */ 1277 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 1278 enum kfd_unmap_queues_filter filter, 1279 uint32_t filter_param) 1280 { 1281 int retval = 0; 1282 1283 if (dqm->is_hws_hang) 1284 return -EIO; 1285 if (!dqm->active_runlist) 1286 return retval; 1287 1288 pr_debug("Before destroying queues, sdma queue count is : %u, xgmi sdma queue count is : %u\n", 1289 dqm->sdma_queue_count, dqm->xgmi_sdma_queue_count); 1290 1291 if (dqm->sdma_queue_count > 0 || dqm->xgmi_sdma_queue_count) 1292 unmap_sdma_queues(dqm); 1293 1294 retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE, 1295 filter, filter_param, false, 0); 1296 if (retval) 1297 return retval; 1298 1299 *dqm->fence_addr = KFD_FENCE_INIT; 1300 pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr, 1301 KFD_FENCE_COMPLETED); 1302 /* should be timed out */ 1303 retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED, 1304 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS); 1305 if (retval) 1306 return retval; 1307 1308 pm_release_ib(&dqm->packets); 1309 dqm->active_runlist = false; 1310 1311 return retval; 1312 } 1313 1314 /* dqm->lock mutex has to be locked before calling this function */ 1315 static int execute_queues_cpsch(struct device_queue_manager *dqm, 1316 enum kfd_unmap_queues_filter filter, 1317 uint32_t filter_param) 1318 { 1319 int retval; 1320 1321 if (dqm->is_hws_hang) 1322 return -EIO; 1323 retval = unmap_queues_cpsch(dqm, filter, filter_param); 1324 if (retval) { 1325 pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n"); 1326 dqm->is_hws_hang = true; 1327 schedule_work(&dqm->hw_exception_work); 1328 return retval; 1329 } 1330 1331 return map_queues_cpsch(dqm); 1332 } 1333 1334 static int destroy_queue_cpsch(struct device_queue_manager *dqm, 1335 struct qcm_process_device *qpd, 1336 struct queue *q) 1337 { 1338 int retval; 1339 struct mqd_manager *mqd_mgr; 1340 1341 retval = 0; 1342 1343 /* remove queue from list to prevent rescheduling after preemption */ 1344 dqm_lock(dqm); 1345 1346 if (qpd->is_debug) { 1347 /* 1348 * error, currently we do not allow to destroy a queue 1349 * of a currently debugged process 1350 */ 1351 retval = -EBUSY; 1352 goto failed_try_destroy_debugged_queue; 1353 1354 } 1355 1356 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1357 q->properties.type)]; 1358 1359 deallocate_doorbell(qpd, q); 1360 1361 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1362 dqm->sdma_queue_count--; 1363 deallocate_sdma_queue(dqm, q); 1364 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1365 dqm->xgmi_sdma_queue_count--; 1366 deallocate_sdma_queue(dqm, q); 1367 } 1368 1369 list_del(&q->list); 1370 qpd->queue_count--; 1371 if (q->properties.is_active) { 1372 dqm->queue_count--; 1373 retval = execute_queues_cpsch(dqm, 1374 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1375 if (retval == -ETIME) 1376 qpd->reset_wavefronts = true; 1377 } 1378 1379 /* 1380 * Unconditionally decrement this counter, regardless of the queue's 1381 * type 1382 */ 1383 dqm->total_queue_count--; 1384 pr_debug("Total of %d queues are accountable so far\n", 1385 dqm->total_queue_count); 1386 1387 dqm_unlock(dqm); 1388 1389 /* Do free_mqd after dqm_unlock(dqm) to avoid circular locking */ 1390 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 1391 1392 return retval; 1393 1394 failed_try_destroy_debugged_queue: 1395 1396 dqm_unlock(dqm); 1397 return retval; 1398 } 1399 1400 /* 1401 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to 1402 * stay in user mode. 1403 */ 1404 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL 1405 /* APE1 limit is inclusive and 64K aligned. */ 1406 #define APE1_LIMIT_ALIGNMENT 0xFFFF 1407 1408 static bool set_cache_memory_policy(struct device_queue_manager *dqm, 1409 struct qcm_process_device *qpd, 1410 enum cache_policy default_policy, 1411 enum cache_policy alternate_policy, 1412 void __user *alternate_aperture_base, 1413 uint64_t alternate_aperture_size) 1414 { 1415 bool retval = true; 1416 1417 if (!dqm->asic_ops.set_cache_memory_policy) 1418 return retval; 1419 1420 dqm_lock(dqm); 1421 1422 if (alternate_aperture_size == 0) { 1423 /* base > limit disables APE1 */ 1424 qpd->sh_mem_ape1_base = 1; 1425 qpd->sh_mem_ape1_limit = 0; 1426 } else { 1427 /* 1428 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]}, 1429 * SH_MEM_APE1_BASE[31:0], 0x0000 } 1430 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]}, 1431 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF } 1432 * Verify that the base and size parameters can be 1433 * represented in this format and convert them. 1434 * Additionally restrict APE1 to user-mode addresses. 1435 */ 1436 1437 uint64_t base = (uintptr_t)alternate_aperture_base; 1438 uint64_t limit = base + alternate_aperture_size - 1; 1439 1440 if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 || 1441 (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) { 1442 retval = false; 1443 goto out; 1444 } 1445 1446 qpd->sh_mem_ape1_base = base >> 16; 1447 qpd->sh_mem_ape1_limit = limit >> 16; 1448 } 1449 1450 retval = dqm->asic_ops.set_cache_memory_policy( 1451 dqm, 1452 qpd, 1453 default_policy, 1454 alternate_policy, 1455 alternate_aperture_base, 1456 alternate_aperture_size); 1457 1458 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0)) 1459 program_sh_mem_settings(dqm, qpd); 1460 1461 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n", 1462 qpd->sh_mem_config, qpd->sh_mem_ape1_base, 1463 qpd->sh_mem_ape1_limit); 1464 1465 out: 1466 dqm_unlock(dqm); 1467 return retval; 1468 } 1469 1470 static int set_trap_handler(struct device_queue_manager *dqm, 1471 struct qcm_process_device *qpd, 1472 uint64_t tba_addr, 1473 uint64_t tma_addr) 1474 { 1475 uint64_t *tma; 1476 1477 if (dqm->dev->cwsr_enabled) { 1478 /* Jump from CWSR trap handler to user trap */ 1479 tma = (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1480 tma[0] = tba_addr; 1481 tma[1] = tma_addr; 1482 } else { 1483 qpd->tba_addr = tba_addr; 1484 qpd->tma_addr = tma_addr; 1485 } 1486 1487 return 0; 1488 } 1489 1490 static int process_termination_nocpsch(struct device_queue_manager *dqm, 1491 struct qcm_process_device *qpd) 1492 { 1493 struct queue *q, *next; 1494 struct device_process_node *cur, *next_dpn; 1495 int retval = 0; 1496 bool found = false; 1497 1498 dqm_lock(dqm); 1499 1500 /* Clear all user mode queues */ 1501 list_for_each_entry_safe(q, next, &qpd->queues_list, list) { 1502 int ret; 1503 1504 ret = destroy_queue_nocpsch_locked(dqm, qpd, q); 1505 if (ret) 1506 retval = ret; 1507 } 1508 1509 /* Unregister process */ 1510 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 1511 if (qpd == cur->qpd) { 1512 list_del(&cur->list); 1513 kfree(cur); 1514 dqm->processes_count--; 1515 found = true; 1516 break; 1517 } 1518 } 1519 1520 dqm_unlock(dqm); 1521 1522 /* Outside the DQM lock because under the DQM lock we can't do 1523 * reclaim or take other locks that others hold while reclaiming. 1524 */ 1525 if (found) 1526 kfd_dec_compute_active(dqm->dev); 1527 1528 return retval; 1529 } 1530 1531 static int get_wave_state(struct device_queue_manager *dqm, 1532 struct queue *q, 1533 void __user *ctl_stack, 1534 u32 *ctl_stack_used_size, 1535 u32 *save_area_used_size) 1536 { 1537 struct mqd_manager *mqd_mgr; 1538 int r; 1539 1540 dqm_lock(dqm); 1541 1542 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE || 1543 q->properties.is_active || !q->device->cwsr_enabled) { 1544 r = -EINVAL; 1545 goto dqm_unlock; 1546 } 1547 1548 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_COMPUTE]; 1549 1550 if (!mqd_mgr->get_wave_state) { 1551 r = -EINVAL; 1552 goto dqm_unlock; 1553 } 1554 1555 r = mqd_mgr->get_wave_state(mqd_mgr, q->mqd, ctl_stack, 1556 ctl_stack_used_size, save_area_used_size); 1557 1558 dqm_unlock: 1559 dqm_unlock(dqm); 1560 return r; 1561 } 1562 1563 static int process_termination_cpsch(struct device_queue_manager *dqm, 1564 struct qcm_process_device *qpd) 1565 { 1566 int retval; 1567 struct queue *q, *next; 1568 struct kernel_queue *kq, *kq_next; 1569 struct mqd_manager *mqd_mgr; 1570 struct device_process_node *cur, *next_dpn; 1571 enum kfd_unmap_queues_filter filter = 1572 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES; 1573 bool found = false; 1574 1575 retval = 0; 1576 1577 dqm_lock(dqm); 1578 1579 /* Clean all kernel queues */ 1580 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) { 1581 list_del(&kq->list); 1582 dqm->queue_count--; 1583 qpd->is_debug = false; 1584 dqm->total_queue_count--; 1585 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES; 1586 } 1587 1588 /* Clear all user mode queues */ 1589 list_for_each_entry(q, &qpd->queues_list, list) { 1590 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1591 dqm->sdma_queue_count--; 1592 deallocate_sdma_queue(dqm, q); 1593 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1594 dqm->xgmi_sdma_queue_count--; 1595 deallocate_sdma_queue(dqm, q); 1596 } 1597 1598 if (q->properties.is_active) 1599 dqm->queue_count--; 1600 1601 dqm->total_queue_count--; 1602 } 1603 1604 /* Unregister process */ 1605 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 1606 if (qpd == cur->qpd) { 1607 list_del(&cur->list); 1608 kfree(cur); 1609 dqm->processes_count--; 1610 found = true; 1611 break; 1612 } 1613 } 1614 1615 retval = execute_queues_cpsch(dqm, filter, 0); 1616 if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) { 1617 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev); 1618 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process); 1619 qpd->reset_wavefronts = false; 1620 } 1621 1622 dqm_unlock(dqm); 1623 1624 /* Outside the DQM lock because under the DQM lock we can't do 1625 * reclaim or take other locks that others hold while reclaiming. 1626 */ 1627 if (found) 1628 kfd_dec_compute_active(dqm->dev); 1629 1630 /* Lastly, free mqd resources. 1631 * Do free_mqd() after dqm_unlock to avoid circular locking. 1632 */ 1633 list_for_each_entry_safe(q, next, &qpd->queues_list, list) { 1634 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1635 q->properties.type)]; 1636 list_del(&q->list); 1637 qpd->queue_count--; 1638 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 1639 } 1640 1641 return retval; 1642 } 1643 1644 static int init_mqd_managers(struct device_queue_manager *dqm) 1645 { 1646 int i, j; 1647 struct mqd_manager *mqd_mgr; 1648 1649 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) { 1650 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev); 1651 if (!mqd_mgr) { 1652 pr_err("mqd manager [%d] initialization failed\n", i); 1653 goto out_free; 1654 } 1655 dqm->mqd_mgrs[i] = mqd_mgr; 1656 } 1657 1658 return 0; 1659 1660 out_free: 1661 for (j = 0; j < i; j++) { 1662 kfree(dqm->mqd_mgrs[j]); 1663 dqm->mqd_mgrs[j] = NULL; 1664 } 1665 1666 return -ENOMEM; 1667 } 1668 1669 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/ 1670 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm) 1671 { 1672 int retval; 1673 struct kfd_dev *dev = dqm->dev; 1674 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd; 1675 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size * 1676 dev->device_info->num_sdma_engines * 1677 dev->device_info->num_sdma_queues_per_engine + 1678 dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size; 1679 1680 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->kgd, size, 1681 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr), 1682 (void *)&(mem_obj->cpu_ptr), true); 1683 1684 return retval; 1685 } 1686 1687 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev) 1688 { 1689 struct device_queue_manager *dqm; 1690 1691 pr_debug("Loading device queue manager\n"); 1692 1693 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL); 1694 if (!dqm) 1695 return NULL; 1696 1697 switch (dev->device_info->asic_family) { 1698 /* HWS is not available on Hawaii. */ 1699 case CHIP_HAWAII: 1700 /* HWS depends on CWSR for timely dequeue. CWSR is not 1701 * available on Tonga. 1702 * 1703 * FIXME: This argument also applies to Kaveri. 1704 */ 1705 case CHIP_TONGA: 1706 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS; 1707 break; 1708 default: 1709 dqm->sched_policy = sched_policy; 1710 break; 1711 } 1712 1713 dqm->dev = dev; 1714 switch (dqm->sched_policy) { 1715 case KFD_SCHED_POLICY_HWS: 1716 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: 1717 /* initialize dqm for cp scheduling */ 1718 dqm->ops.create_queue = create_queue_cpsch; 1719 dqm->ops.initialize = initialize_cpsch; 1720 dqm->ops.start = start_cpsch; 1721 dqm->ops.stop = stop_cpsch; 1722 dqm->ops.destroy_queue = destroy_queue_cpsch; 1723 dqm->ops.update_queue = update_queue; 1724 dqm->ops.register_process = register_process; 1725 dqm->ops.unregister_process = unregister_process; 1726 dqm->ops.uninitialize = uninitialize; 1727 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch; 1728 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch; 1729 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 1730 dqm->ops.set_trap_handler = set_trap_handler; 1731 dqm->ops.process_termination = process_termination_cpsch; 1732 dqm->ops.evict_process_queues = evict_process_queues_cpsch; 1733 dqm->ops.restore_process_queues = restore_process_queues_cpsch; 1734 dqm->ops.get_wave_state = get_wave_state; 1735 break; 1736 case KFD_SCHED_POLICY_NO_HWS: 1737 /* initialize dqm for no cp scheduling */ 1738 dqm->ops.start = start_nocpsch; 1739 dqm->ops.stop = stop_nocpsch; 1740 dqm->ops.create_queue = create_queue_nocpsch; 1741 dqm->ops.destroy_queue = destroy_queue_nocpsch; 1742 dqm->ops.update_queue = update_queue; 1743 dqm->ops.register_process = register_process; 1744 dqm->ops.unregister_process = unregister_process; 1745 dqm->ops.initialize = initialize_nocpsch; 1746 dqm->ops.uninitialize = uninitialize; 1747 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 1748 dqm->ops.set_trap_handler = set_trap_handler; 1749 dqm->ops.process_termination = process_termination_nocpsch; 1750 dqm->ops.evict_process_queues = evict_process_queues_nocpsch; 1751 dqm->ops.restore_process_queues = 1752 restore_process_queues_nocpsch; 1753 dqm->ops.get_wave_state = get_wave_state; 1754 break; 1755 default: 1756 pr_err("Invalid scheduling policy %d\n", dqm->sched_policy); 1757 goto out_free; 1758 } 1759 1760 switch (dev->device_info->asic_family) { 1761 case CHIP_CARRIZO: 1762 device_queue_manager_init_vi(&dqm->asic_ops); 1763 break; 1764 1765 case CHIP_KAVERI: 1766 device_queue_manager_init_cik(&dqm->asic_ops); 1767 break; 1768 1769 case CHIP_HAWAII: 1770 device_queue_manager_init_cik_hawaii(&dqm->asic_ops); 1771 break; 1772 1773 case CHIP_TONGA: 1774 case CHIP_FIJI: 1775 case CHIP_POLARIS10: 1776 case CHIP_POLARIS11: 1777 case CHIP_POLARIS12: 1778 case CHIP_VEGAM: 1779 device_queue_manager_init_vi_tonga(&dqm->asic_ops); 1780 break; 1781 1782 case CHIP_VEGA10: 1783 case CHIP_VEGA12: 1784 case CHIP_VEGA20: 1785 case CHIP_RAVEN: 1786 device_queue_manager_init_v9(&dqm->asic_ops); 1787 break; 1788 default: 1789 WARN(1, "Unexpected ASIC family %u", 1790 dev->device_info->asic_family); 1791 goto out_free; 1792 } 1793 1794 if (init_mqd_managers(dqm)) 1795 goto out_free; 1796 1797 if (allocate_hiq_sdma_mqd(dqm)) { 1798 pr_err("Failed to allocate hiq sdma mqd trunk buffer\n"); 1799 goto out_free; 1800 } 1801 1802 if (!dqm->ops.initialize(dqm)) 1803 return dqm; 1804 1805 out_free: 1806 kfree(dqm); 1807 return NULL; 1808 } 1809 1810 void deallocate_hiq_sdma_mqd(struct kfd_dev *dev, struct kfd_mem_obj *mqd) 1811 { 1812 WARN(!mqd, "No hiq sdma mqd trunk to free"); 1813 1814 amdgpu_amdkfd_free_gtt_mem(dev->kgd, mqd->gtt_mem); 1815 } 1816 1817 void device_queue_manager_uninit(struct device_queue_manager *dqm) 1818 { 1819 dqm->ops.uninitialize(dqm); 1820 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd); 1821 kfree(dqm); 1822 } 1823 1824 int kfd_process_vm_fault(struct device_queue_manager *dqm, 1825 unsigned int pasid) 1826 { 1827 struct kfd_process_device *pdd; 1828 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1829 int ret = 0; 1830 1831 if (!p) 1832 return -EINVAL; 1833 pdd = kfd_get_process_device_data(dqm->dev, p); 1834 if (pdd) 1835 ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd); 1836 kfd_unref_process(p); 1837 1838 return ret; 1839 } 1840 1841 static void kfd_process_hw_exception(struct work_struct *work) 1842 { 1843 struct device_queue_manager *dqm = container_of(work, 1844 struct device_queue_manager, hw_exception_work); 1845 amdgpu_amdkfd_gpu_reset(dqm->dev->kgd); 1846 } 1847 1848 #if defined(CONFIG_DEBUG_FS) 1849 1850 static void seq_reg_dump(struct seq_file *m, 1851 uint32_t (*dump)[2], uint32_t n_regs) 1852 { 1853 uint32_t i, count; 1854 1855 for (i = 0, count = 0; i < n_regs; i++) { 1856 if (count == 0 || 1857 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) { 1858 seq_printf(m, "%s %08x: %08x", 1859 i ? "\n" : "", 1860 dump[i][0], dump[i][1]); 1861 count = 7; 1862 } else { 1863 seq_printf(m, " %08x", dump[i][1]); 1864 count--; 1865 } 1866 } 1867 1868 seq_puts(m, "\n"); 1869 } 1870 1871 int dqm_debugfs_hqds(struct seq_file *m, void *data) 1872 { 1873 struct device_queue_manager *dqm = data; 1874 uint32_t (*dump)[2], n_regs; 1875 int pipe, queue; 1876 int r = 0; 1877 1878 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->kgd, 1879 KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE, &dump, &n_regs); 1880 if (!r) { 1881 seq_printf(m, " HIQ on MEC %d Pipe %d Queue %d\n", 1882 KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1, 1883 KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm), 1884 KFD_CIK_HIQ_QUEUE); 1885 seq_reg_dump(m, dump, n_regs); 1886 1887 kfree(dump); 1888 } 1889 1890 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 1891 int pipe_offset = pipe * get_queues_per_pipe(dqm); 1892 1893 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) { 1894 if (!test_bit(pipe_offset + queue, 1895 dqm->dev->shared_resources.queue_bitmap)) 1896 continue; 1897 1898 r = dqm->dev->kfd2kgd->hqd_dump( 1899 dqm->dev->kgd, pipe, queue, &dump, &n_regs); 1900 if (r) 1901 break; 1902 1903 seq_printf(m, " CP Pipe %d, Queue %d\n", 1904 pipe, queue); 1905 seq_reg_dump(m, dump, n_regs); 1906 1907 kfree(dump); 1908 } 1909 } 1910 1911 for (pipe = 0; pipe < get_num_sdma_engines(dqm); pipe++) { 1912 for (queue = 0; 1913 queue < dqm->dev->device_info->num_sdma_queues_per_engine; 1914 queue++) { 1915 r = dqm->dev->kfd2kgd->hqd_sdma_dump( 1916 dqm->dev->kgd, pipe, queue, &dump, &n_regs); 1917 if (r) 1918 break; 1919 1920 seq_printf(m, " SDMA Engine %d, RLC %d\n", 1921 pipe, queue); 1922 seq_reg_dump(m, dump, n_regs); 1923 1924 kfree(dump); 1925 } 1926 } 1927 1928 return r; 1929 } 1930 1931 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm) 1932 { 1933 int r = 0; 1934 1935 dqm_lock(dqm); 1936 dqm->active_runlist = true; 1937 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0); 1938 dqm_unlock(dqm); 1939 1940 return r; 1941 } 1942 1943 #endif 1944