1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/ratelimit.h> 25 #include <linux/printk.h> 26 #include <linux/slab.h> 27 #include <linux/list.h> 28 #include <linux/types.h> 29 #include <linux/bitops.h> 30 #include <linux/sched.h> 31 #include "kfd_priv.h" 32 #include "kfd_device_queue_manager.h" 33 #include "kfd_mqd_manager.h" 34 #include "cik_regs.h" 35 #include "kfd_kernel_queue.h" 36 #include "amdgpu_amdkfd.h" 37 38 /* Size of the per-pipe EOP queue */ 39 #define CIK_HPD_EOP_BYTES_LOG2 11 40 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2) 41 42 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, 43 unsigned int pasid, unsigned int vmid); 44 45 static int execute_queues_cpsch(struct device_queue_manager *dqm, 46 enum kfd_unmap_queues_filter filter, 47 uint32_t filter_param); 48 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 49 enum kfd_unmap_queues_filter filter, 50 uint32_t filter_param); 51 52 static int map_queues_cpsch(struct device_queue_manager *dqm); 53 54 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 55 struct queue *q); 56 57 static inline void deallocate_hqd(struct device_queue_manager *dqm, 58 struct queue *q); 59 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q); 60 static int allocate_sdma_queue(struct device_queue_manager *dqm, 61 struct queue *q); 62 static void kfd_process_hw_exception(struct work_struct *work); 63 64 static inline 65 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type) 66 { 67 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI) 68 return KFD_MQD_TYPE_SDMA; 69 return KFD_MQD_TYPE_CP; 70 } 71 72 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe) 73 { 74 int i; 75 int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec 76 + pipe * dqm->dev->shared_resources.num_queue_per_pipe; 77 78 /* queue is available for KFD usage if bit is 1 */ 79 for (i = 0; i < dqm->dev->shared_resources.num_queue_per_pipe; ++i) 80 if (test_bit(pipe_offset + i, 81 dqm->dev->shared_resources.cp_queue_bitmap)) 82 return true; 83 return false; 84 } 85 86 unsigned int get_cp_queues_num(struct device_queue_manager *dqm) 87 { 88 return bitmap_weight(dqm->dev->shared_resources.cp_queue_bitmap, 89 KGD_MAX_QUEUES); 90 } 91 92 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm) 93 { 94 return dqm->dev->shared_resources.num_queue_per_pipe; 95 } 96 97 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm) 98 { 99 return dqm->dev->shared_resources.num_pipe_per_mec; 100 } 101 102 static unsigned int get_num_sdma_engines(struct device_queue_manager *dqm) 103 { 104 return dqm->dev->device_info->num_sdma_engines; 105 } 106 107 static unsigned int get_num_xgmi_sdma_engines(struct device_queue_manager *dqm) 108 { 109 return dqm->dev->device_info->num_xgmi_sdma_engines; 110 } 111 112 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm) 113 { 114 return get_num_sdma_engines(dqm) + get_num_xgmi_sdma_engines(dqm); 115 } 116 117 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm) 118 { 119 return dqm->dev->device_info->num_sdma_engines 120 * dqm->dev->device_info->num_sdma_queues_per_engine; 121 } 122 123 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm) 124 { 125 return dqm->dev->device_info->num_xgmi_sdma_engines 126 * dqm->dev->device_info->num_sdma_queues_per_engine; 127 } 128 129 void program_sh_mem_settings(struct device_queue_manager *dqm, 130 struct qcm_process_device *qpd) 131 { 132 return dqm->dev->kfd2kgd->program_sh_mem_settings( 133 dqm->dev->kgd, qpd->vmid, 134 qpd->sh_mem_config, 135 qpd->sh_mem_ape1_base, 136 qpd->sh_mem_ape1_limit, 137 qpd->sh_mem_bases); 138 } 139 140 static void increment_queue_count(struct device_queue_manager *dqm, 141 enum kfd_queue_type type) 142 { 143 dqm->active_queue_count++; 144 if (type == KFD_QUEUE_TYPE_COMPUTE || type == KFD_QUEUE_TYPE_DIQ) 145 dqm->active_cp_queue_count++; 146 } 147 148 static void decrement_queue_count(struct device_queue_manager *dqm, 149 enum kfd_queue_type type) 150 { 151 dqm->active_queue_count--; 152 if (type == KFD_QUEUE_TYPE_COMPUTE || type == KFD_QUEUE_TYPE_DIQ) 153 dqm->active_cp_queue_count--; 154 } 155 156 int read_sdma_queue_counter(uint64_t q_rptr, uint64_t *val) 157 { 158 int ret; 159 uint64_t tmp = 0; 160 161 if (!val) 162 return -EINVAL; 163 /* 164 * SDMA activity counter is stored at queue's RPTR + 0x8 location. 165 */ 166 if (!access_ok((const void __user *)(q_rptr + 167 sizeof(uint64_t)), sizeof(uint64_t))) { 168 pr_err("Can't access sdma queue activity counter\n"); 169 return -EFAULT; 170 } 171 172 ret = get_user(tmp, (uint64_t *)(q_rptr + sizeof(uint64_t))); 173 if (!ret) { 174 *val = tmp; 175 } 176 177 return ret; 178 } 179 180 static int allocate_doorbell(struct qcm_process_device *qpd, struct queue *q) 181 { 182 struct kfd_dev *dev = qpd->dqm->dev; 183 184 if (!KFD_IS_SOC15(dev->device_info->asic_family)) { 185 /* On pre-SOC15 chips we need to use the queue ID to 186 * preserve the user mode ABI. 187 */ 188 q->doorbell_id = q->properties.queue_id; 189 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 190 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 191 /* For SDMA queues on SOC15 with 8-byte doorbell, use static 192 * doorbell assignments based on the engine and queue id. 193 * The doobell index distance between RLC (2*i) and (2*i+1) 194 * for a SDMA engine is 512. 195 */ 196 uint32_t *idx_offset = 197 dev->shared_resources.sdma_doorbell_idx; 198 199 q->doorbell_id = idx_offset[q->properties.sdma_engine_id] 200 + (q->properties.sdma_queue_id & 1) 201 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET 202 + (q->properties.sdma_queue_id >> 1); 203 } else { 204 /* For CP queues on SOC15 reserve a free doorbell ID */ 205 unsigned int found; 206 207 found = find_first_zero_bit(qpd->doorbell_bitmap, 208 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 209 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) { 210 pr_debug("No doorbells available"); 211 return -EBUSY; 212 } 213 set_bit(found, qpd->doorbell_bitmap); 214 q->doorbell_id = found; 215 } 216 217 q->properties.doorbell_off = 218 kfd_get_doorbell_dw_offset_in_bar(dev, q->process, 219 q->doorbell_id); 220 221 return 0; 222 } 223 224 static void deallocate_doorbell(struct qcm_process_device *qpd, 225 struct queue *q) 226 { 227 unsigned int old; 228 struct kfd_dev *dev = qpd->dqm->dev; 229 230 if (!KFD_IS_SOC15(dev->device_info->asic_family) || 231 q->properties.type == KFD_QUEUE_TYPE_SDMA || 232 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 233 return; 234 235 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap); 236 WARN_ON(!old); 237 } 238 239 static int allocate_vmid(struct device_queue_manager *dqm, 240 struct qcm_process_device *qpd, 241 struct queue *q) 242 { 243 int allocated_vmid = -1, i; 244 245 for (i = dqm->dev->vm_info.first_vmid_kfd; 246 i <= dqm->dev->vm_info.last_vmid_kfd; i++) { 247 if (!dqm->vmid_pasid[i]) { 248 allocated_vmid = i; 249 break; 250 } 251 } 252 253 if (allocated_vmid < 0) { 254 pr_err("no more vmid to allocate\n"); 255 return -ENOSPC; 256 } 257 258 pr_debug("vmid allocated: %d\n", allocated_vmid); 259 260 dqm->vmid_pasid[allocated_vmid] = q->process->pasid; 261 262 set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid); 263 264 qpd->vmid = allocated_vmid; 265 q->properties.vmid = allocated_vmid; 266 267 program_sh_mem_settings(dqm, qpd); 268 269 /* qpd->page_table_base is set earlier when register_process() 270 * is called, i.e. when the first queue is created. 271 */ 272 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->kgd, 273 qpd->vmid, 274 qpd->page_table_base); 275 /* invalidate the VM context after pasid and vmid mapping is set up */ 276 kfd_flush_tlb(qpd_to_pdd(qpd)); 277 278 if (dqm->dev->kfd2kgd->set_scratch_backing_va) 279 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->kgd, 280 qpd->sh_hidden_private_base, qpd->vmid); 281 282 return 0; 283 } 284 285 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev, 286 struct qcm_process_device *qpd) 287 { 288 const struct packet_manager_funcs *pmf = qpd->dqm->packets.pmf; 289 int ret; 290 291 if (!qpd->ib_kaddr) 292 return -ENOMEM; 293 294 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr); 295 if (ret) 296 return ret; 297 298 return amdgpu_amdkfd_submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid, 299 qpd->ib_base, (uint32_t *)qpd->ib_kaddr, 300 pmf->release_mem_size / sizeof(uint32_t)); 301 } 302 303 static void deallocate_vmid(struct device_queue_manager *dqm, 304 struct qcm_process_device *qpd, 305 struct queue *q) 306 { 307 /* On GFX v7, CP doesn't flush TC at dequeue */ 308 if (q->device->device_info->asic_family == CHIP_HAWAII) 309 if (flush_texture_cache_nocpsch(q->device, qpd)) 310 pr_err("Failed to flush TC\n"); 311 312 kfd_flush_tlb(qpd_to_pdd(qpd)); 313 314 /* Release the vmid mapping */ 315 set_pasid_vmid_mapping(dqm, 0, qpd->vmid); 316 dqm->vmid_pasid[qpd->vmid] = 0; 317 318 qpd->vmid = 0; 319 q->properties.vmid = 0; 320 } 321 322 static int create_queue_nocpsch(struct device_queue_manager *dqm, 323 struct queue *q, 324 struct qcm_process_device *qpd) 325 { 326 struct mqd_manager *mqd_mgr; 327 int retval; 328 329 dqm_lock(dqm); 330 331 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 332 pr_warn("Can't create new usermode queue because %d queues were already created\n", 333 dqm->total_queue_count); 334 retval = -EPERM; 335 goto out_unlock; 336 } 337 338 if (list_empty(&qpd->queues_list)) { 339 retval = allocate_vmid(dqm, qpd, q); 340 if (retval) 341 goto out_unlock; 342 } 343 q->properties.vmid = qpd->vmid; 344 /* 345 * Eviction state logic: mark all queues as evicted, even ones 346 * not currently active. Restoring inactive queues later only 347 * updates the is_evicted flag but is a no-op otherwise. 348 */ 349 q->properties.is_evicted = !!qpd->evicted; 350 351 q->properties.tba_addr = qpd->tba_addr; 352 q->properties.tma_addr = qpd->tma_addr; 353 354 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 355 q->properties.type)]; 356 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) { 357 retval = allocate_hqd(dqm, q); 358 if (retval) 359 goto deallocate_vmid; 360 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n", 361 q->pipe, q->queue); 362 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 363 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 364 retval = allocate_sdma_queue(dqm, q); 365 if (retval) 366 goto deallocate_vmid; 367 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 368 } 369 370 retval = allocate_doorbell(qpd, q); 371 if (retval) 372 goto out_deallocate_hqd; 373 374 /* Temporarily release dqm lock to avoid a circular lock dependency */ 375 dqm_unlock(dqm); 376 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 377 dqm_lock(dqm); 378 379 if (!q->mqd_mem_obj) { 380 retval = -ENOMEM; 381 goto out_deallocate_doorbell; 382 } 383 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 384 &q->gart_mqd_addr, &q->properties); 385 if (q->properties.is_active) { 386 if (!dqm->sched_running) { 387 WARN_ONCE(1, "Load non-HWS mqd while stopped\n"); 388 goto add_queue_to_list; 389 } 390 391 if (WARN(q->process->mm != current->mm, 392 "should only run in user thread")) 393 retval = -EFAULT; 394 else 395 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 396 q->queue, &q->properties, current->mm); 397 if (retval) 398 goto out_free_mqd; 399 } 400 401 add_queue_to_list: 402 list_add(&q->list, &qpd->queues_list); 403 qpd->queue_count++; 404 if (q->properties.is_active) 405 increment_queue_count(dqm, q->properties.type); 406 407 /* 408 * Unconditionally increment this counter, regardless of the queue's 409 * type or whether the queue is active. 410 */ 411 dqm->total_queue_count++; 412 pr_debug("Total of %d queues are accountable so far\n", 413 dqm->total_queue_count); 414 goto out_unlock; 415 416 out_free_mqd: 417 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 418 out_deallocate_doorbell: 419 deallocate_doorbell(qpd, q); 420 out_deallocate_hqd: 421 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 422 deallocate_hqd(dqm, q); 423 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 424 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 425 deallocate_sdma_queue(dqm, q); 426 deallocate_vmid: 427 if (list_empty(&qpd->queues_list)) 428 deallocate_vmid(dqm, qpd, q); 429 out_unlock: 430 dqm_unlock(dqm); 431 return retval; 432 } 433 434 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q) 435 { 436 bool set; 437 int pipe, bit, i; 438 439 set = false; 440 441 for (pipe = dqm->next_pipe_to_allocate, i = 0; 442 i < get_pipes_per_mec(dqm); 443 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) { 444 445 if (!is_pipe_enabled(dqm, 0, pipe)) 446 continue; 447 448 if (dqm->allocated_queues[pipe] != 0) { 449 bit = ffs(dqm->allocated_queues[pipe]) - 1; 450 dqm->allocated_queues[pipe] &= ~(1 << bit); 451 q->pipe = pipe; 452 q->queue = bit; 453 set = true; 454 break; 455 } 456 } 457 458 if (!set) 459 return -EBUSY; 460 461 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue); 462 /* horizontal hqd allocation */ 463 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm); 464 465 return 0; 466 } 467 468 static inline void deallocate_hqd(struct device_queue_manager *dqm, 469 struct queue *q) 470 { 471 dqm->allocated_queues[q->pipe] |= (1 << q->queue); 472 } 473 474 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked 475 * to avoid asynchronized access 476 */ 477 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm, 478 struct qcm_process_device *qpd, 479 struct queue *q) 480 { 481 int retval; 482 struct mqd_manager *mqd_mgr; 483 484 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 485 q->properties.type)]; 486 487 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 488 deallocate_hqd(dqm, q); 489 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 490 deallocate_sdma_queue(dqm, q); 491 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 492 deallocate_sdma_queue(dqm, q); 493 else { 494 pr_debug("q->properties.type %d is invalid\n", 495 q->properties.type); 496 return -EINVAL; 497 } 498 dqm->total_queue_count--; 499 500 deallocate_doorbell(qpd, q); 501 502 if (!dqm->sched_running) { 503 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n"); 504 return 0; 505 } 506 507 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 508 KFD_PREEMPT_TYPE_WAVEFRONT_RESET, 509 KFD_UNMAP_LATENCY_MS, 510 q->pipe, q->queue); 511 if (retval == -ETIME) 512 qpd->reset_wavefronts = true; 513 514 515 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 516 517 list_del(&q->list); 518 if (list_empty(&qpd->queues_list)) { 519 if (qpd->reset_wavefronts) { 520 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n", 521 dqm->dev); 522 /* dbgdev_wave_reset_wavefronts has to be called before 523 * deallocate_vmid(), i.e. when vmid is still in use. 524 */ 525 dbgdev_wave_reset_wavefronts(dqm->dev, 526 qpd->pqm->process); 527 qpd->reset_wavefronts = false; 528 } 529 530 deallocate_vmid(dqm, qpd, q); 531 } 532 qpd->queue_count--; 533 if (q->properties.is_active) { 534 decrement_queue_count(dqm, q->properties.type); 535 if (q->properties.is_gws) { 536 dqm->gws_queue_count--; 537 qpd->mapped_gws_queue = false; 538 } 539 } 540 541 return retval; 542 } 543 544 static int destroy_queue_nocpsch(struct device_queue_manager *dqm, 545 struct qcm_process_device *qpd, 546 struct queue *q) 547 { 548 int retval; 549 uint64_t sdma_val = 0; 550 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 551 552 /* Get the SDMA queue stats */ 553 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 554 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 555 retval = read_sdma_queue_counter((uint64_t)q->properties.read_ptr, 556 &sdma_val); 557 if (retval) 558 pr_err("Failed to read SDMA queue counter for queue: %d\n", 559 q->properties.queue_id); 560 } 561 562 dqm_lock(dqm); 563 retval = destroy_queue_nocpsch_locked(dqm, qpd, q); 564 if (!retval) 565 pdd->sdma_past_activity_counter += sdma_val; 566 dqm_unlock(dqm); 567 568 return retval; 569 } 570 571 static int update_queue(struct device_queue_manager *dqm, struct queue *q) 572 { 573 int retval = 0; 574 struct mqd_manager *mqd_mgr; 575 struct kfd_process_device *pdd; 576 bool prev_active = false; 577 578 dqm_lock(dqm); 579 pdd = kfd_get_process_device_data(q->device, q->process); 580 if (!pdd) { 581 retval = -ENODEV; 582 goto out_unlock; 583 } 584 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 585 q->properties.type)]; 586 587 /* Save previous activity state for counters */ 588 prev_active = q->properties.is_active; 589 590 /* Make sure the queue is unmapped before updating the MQD */ 591 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { 592 retval = unmap_queues_cpsch(dqm, 593 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 594 if (retval) { 595 pr_err("unmap queue failed\n"); 596 goto out_unlock; 597 } 598 } else if (prev_active && 599 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 600 q->properties.type == KFD_QUEUE_TYPE_SDMA || 601 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 602 603 if (!dqm->sched_running) { 604 WARN_ONCE(1, "Update non-HWS queue while stopped\n"); 605 goto out_unlock; 606 } 607 608 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 609 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN, 610 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 611 if (retval) { 612 pr_err("destroy mqd failed\n"); 613 goto out_unlock; 614 } 615 } 616 617 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties); 618 619 /* 620 * check active state vs. the previous state and modify 621 * counter accordingly. map_queues_cpsch uses the 622 * dqm->active_queue_count to determine whether a new runlist must be 623 * uploaded. 624 */ 625 if (q->properties.is_active && !prev_active) 626 increment_queue_count(dqm, q->properties.type); 627 else if (!q->properties.is_active && prev_active) 628 decrement_queue_count(dqm, q->properties.type); 629 630 if (q->gws && !q->properties.is_gws) { 631 if (q->properties.is_active) { 632 dqm->gws_queue_count++; 633 pdd->qpd.mapped_gws_queue = true; 634 } 635 q->properties.is_gws = true; 636 } else if (!q->gws && q->properties.is_gws) { 637 if (q->properties.is_active) { 638 dqm->gws_queue_count--; 639 pdd->qpd.mapped_gws_queue = false; 640 } 641 q->properties.is_gws = false; 642 } 643 644 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) 645 retval = map_queues_cpsch(dqm); 646 else if (q->properties.is_active && 647 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 648 q->properties.type == KFD_QUEUE_TYPE_SDMA || 649 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 650 if (WARN(q->process->mm != current->mm, 651 "should only run in user thread")) 652 retval = -EFAULT; 653 else 654 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, 655 q->pipe, q->queue, 656 &q->properties, current->mm); 657 } 658 659 out_unlock: 660 dqm_unlock(dqm); 661 return retval; 662 } 663 664 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm, 665 struct qcm_process_device *qpd) 666 { 667 struct queue *q; 668 struct mqd_manager *mqd_mgr; 669 struct kfd_process_device *pdd; 670 int retval, ret = 0; 671 672 dqm_lock(dqm); 673 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 674 goto out; 675 676 pdd = qpd_to_pdd(qpd); 677 pr_info_ratelimited("Evicting PASID 0x%x queues\n", 678 pdd->process->pasid); 679 680 /* Mark all queues as evicted. Deactivate all active queues on 681 * the qpd. 682 */ 683 list_for_each_entry(q, &qpd->queues_list, list) { 684 q->properties.is_evicted = true; 685 if (!q->properties.is_active) 686 continue; 687 688 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 689 q->properties.type)]; 690 q->properties.is_active = false; 691 decrement_queue_count(dqm, q->properties.type); 692 if (q->properties.is_gws) { 693 dqm->gws_queue_count--; 694 qpd->mapped_gws_queue = false; 695 } 696 697 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n")) 698 continue; 699 700 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 701 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN, 702 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 703 if (retval && !ret) 704 /* Return the first error, but keep going to 705 * maintain a consistent eviction state 706 */ 707 ret = retval; 708 } 709 710 out: 711 dqm_unlock(dqm); 712 return ret; 713 } 714 715 static int evict_process_queues_cpsch(struct device_queue_manager *dqm, 716 struct qcm_process_device *qpd) 717 { 718 struct queue *q; 719 struct kfd_process_device *pdd; 720 int retval = 0; 721 722 dqm_lock(dqm); 723 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 724 goto out; 725 726 pdd = qpd_to_pdd(qpd); 727 pr_info_ratelimited("Evicting PASID 0x%x queues\n", 728 pdd->process->pasid); 729 730 /* Mark all queues as evicted. Deactivate all active queues on 731 * the qpd. 732 */ 733 list_for_each_entry(q, &qpd->queues_list, list) { 734 q->properties.is_evicted = true; 735 if (!q->properties.is_active) 736 continue; 737 738 q->properties.is_active = false; 739 decrement_queue_count(dqm, q->properties.type); 740 } 741 retval = execute_queues_cpsch(dqm, 742 qpd->is_debug ? 743 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES : 744 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 745 746 out: 747 dqm_unlock(dqm); 748 return retval; 749 } 750 751 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm, 752 struct qcm_process_device *qpd) 753 { 754 struct mm_struct *mm = NULL; 755 struct queue *q; 756 struct mqd_manager *mqd_mgr; 757 struct kfd_process_device *pdd; 758 uint64_t pd_base; 759 int retval, ret = 0; 760 761 pdd = qpd_to_pdd(qpd); 762 /* Retrieve PD base */ 763 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm); 764 765 dqm_lock(dqm); 766 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 767 goto out; 768 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 769 qpd->evicted--; 770 goto out; 771 } 772 773 pr_info_ratelimited("Restoring PASID 0x%x queues\n", 774 pdd->process->pasid); 775 776 /* Update PD Base in QPD */ 777 qpd->page_table_base = pd_base; 778 pr_debug("Updated PD address to 0x%llx\n", pd_base); 779 780 if (!list_empty(&qpd->queues_list)) { 781 dqm->dev->kfd2kgd->set_vm_context_page_table_base( 782 dqm->dev->kgd, 783 qpd->vmid, 784 qpd->page_table_base); 785 kfd_flush_tlb(pdd); 786 } 787 788 /* Take a safe reference to the mm_struct, which may otherwise 789 * disappear even while the kfd_process is still referenced. 790 */ 791 mm = get_task_mm(pdd->process->lead_thread); 792 if (!mm) { 793 ret = -EFAULT; 794 goto out; 795 } 796 797 /* Remove the eviction flags. Activate queues that are not 798 * inactive for other reasons. 799 */ 800 list_for_each_entry(q, &qpd->queues_list, list) { 801 q->properties.is_evicted = false; 802 if (!QUEUE_IS_ACTIVE(q->properties)) 803 continue; 804 805 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 806 q->properties.type)]; 807 q->properties.is_active = true; 808 increment_queue_count(dqm, q->properties.type); 809 if (q->properties.is_gws) { 810 dqm->gws_queue_count++; 811 qpd->mapped_gws_queue = true; 812 } 813 814 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n")) 815 continue; 816 817 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 818 q->queue, &q->properties, mm); 819 if (retval && !ret) 820 /* Return the first error, but keep going to 821 * maintain a consistent eviction state 822 */ 823 ret = retval; 824 } 825 qpd->evicted = 0; 826 out: 827 if (mm) 828 mmput(mm); 829 dqm_unlock(dqm); 830 return ret; 831 } 832 833 static int restore_process_queues_cpsch(struct device_queue_manager *dqm, 834 struct qcm_process_device *qpd) 835 { 836 struct queue *q; 837 struct kfd_process_device *pdd; 838 uint64_t pd_base; 839 int retval = 0; 840 841 pdd = qpd_to_pdd(qpd); 842 /* Retrieve PD base */ 843 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm); 844 845 dqm_lock(dqm); 846 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 847 goto out; 848 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 849 qpd->evicted--; 850 goto out; 851 } 852 853 pr_info_ratelimited("Restoring PASID 0x%x queues\n", 854 pdd->process->pasid); 855 856 /* Update PD Base in QPD */ 857 qpd->page_table_base = pd_base; 858 pr_debug("Updated PD address to 0x%llx\n", pd_base); 859 860 /* activate all active queues on the qpd */ 861 list_for_each_entry(q, &qpd->queues_list, list) { 862 q->properties.is_evicted = false; 863 if (!QUEUE_IS_ACTIVE(q->properties)) 864 continue; 865 866 q->properties.is_active = true; 867 increment_queue_count(dqm, q->properties.type); 868 } 869 retval = execute_queues_cpsch(dqm, 870 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 871 qpd->evicted = 0; 872 out: 873 dqm_unlock(dqm); 874 return retval; 875 } 876 877 static int register_process(struct device_queue_manager *dqm, 878 struct qcm_process_device *qpd) 879 { 880 struct device_process_node *n; 881 struct kfd_process_device *pdd; 882 uint64_t pd_base; 883 int retval; 884 885 n = kzalloc(sizeof(*n), GFP_KERNEL); 886 if (!n) 887 return -ENOMEM; 888 889 n->qpd = qpd; 890 891 pdd = qpd_to_pdd(qpd); 892 /* Retrieve PD base */ 893 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm); 894 895 dqm_lock(dqm); 896 list_add(&n->list, &dqm->queues); 897 898 /* Update PD Base in QPD */ 899 qpd->page_table_base = pd_base; 900 pr_debug("Updated PD address to 0x%llx\n", pd_base); 901 902 retval = dqm->asic_ops.update_qpd(dqm, qpd); 903 904 dqm->processes_count++; 905 906 dqm_unlock(dqm); 907 908 /* Outside the DQM lock because under the DQM lock we can't do 909 * reclaim or take other locks that others hold while reclaiming. 910 */ 911 kfd_inc_compute_active(dqm->dev); 912 913 return retval; 914 } 915 916 static int unregister_process(struct device_queue_manager *dqm, 917 struct qcm_process_device *qpd) 918 { 919 int retval; 920 struct device_process_node *cur, *next; 921 922 pr_debug("qpd->queues_list is %s\n", 923 list_empty(&qpd->queues_list) ? "empty" : "not empty"); 924 925 retval = 0; 926 dqm_lock(dqm); 927 928 list_for_each_entry_safe(cur, next, &dqm->queues, list) { 929 if (qpd == cur->qpd) { 930 list_del(&cur->list); 931 kfree(cur); 932 dqm->processes_count--; 933 goto out; 934 } 935 } 936 /* qpd not found in dqm list */ 937 retval = 1; 938 out: 939 dqm_unlock(dqm); 940 941 /* Outside the DQM lock because under the DQM lock we can't do 942 * reclaim or take other locks that others hold while reclaiming. 943 */ 944 if (!retval) 945 kfd_dec_compute_active(dqm->dev); 946 947 return retval; 948 } 949 950 static int 951 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid, 952 unsigned int vmid) 953 { 954 return dqm->dev->kfd2kgd->set_pasid_vmid_mapping( 955 dqm->dev->kgd, pasid, vmid); 956 } 957 958 static void init_interrupts(struct device_queue_manager *dqm) 959 { 960 unsigned int i; 961 962 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) 963 if (is_pipe_enabled(dqm, 0, i)) 964 dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i); 965 } 966 967 static int initialize_nocpsch(struct device_queue_manager *dqm) 968 { 969 int pipe, queue; 970 971 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 972 973 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm), 974 sizeof(unsigned int), GFP_KERNEL); 975 if (!dqm->allocated_queues) 976 return -ENOMEM; 977 978 mutex_init(&dqm->lock_hidden); 979 INIT_LIST_HEAD(&dqm->queues); 980 dqm->active_queue_count = dqm->next_pipe_to_allocate = 0; 981 dqm->active_cp_queue_count = 0; 982 dqm->gws_queue_count = 0; 983 984 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 985 int pipe_offset = pipe * get_queues_per_pipe(dqm); 986 987 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) 988 if (test_bit(pipe_offset + queue, 989 dqm->dev->shared_resources.cp_queue_bitmap)) 990 dqm->allocated_queues[pipe] |= 1 << queue; 991 } 992 993 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid)); 994 995 dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm)); 996 dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm)); 997 998 return 0; 999 } 1000 1001 static void uninitialize(struct device_queue_manager *dqm) 1002 { 1003 int i; 1004 1005 WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0); 1006 1007 kfree(dqm->allocated_queues); 1008 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++) 1009 kfree(dqm->mqd_mgrs[i]); 1010 mutex_destroy(&dqm->lock_hidden); 1011 } 1012 1013 static int start_nocpsch(struct device_queue_manager *dqm) 1014 { 1015 pr_info("SW scheduler is used"); 1016 init_interrupts(dqm); 1017 1018 if (dqm->dev->device_info->asic_family == CHIP_HAWAII) 1019 return pm_init(&dqm->packets, dqm); 1020 dqm->sched_running = true; 1021 1022 return 0; 1023 } 1024 1025 static int stop_nocpsch(struct device_queue_manager *dqm) 1026 { 1027 if (dqm->dev->device_info->asic_family == CHIP_HAWAII) 1028 pm_uninit(&dqm->packets, false); 1029 dqm->sched_running = false; 1030 1031 return 0; 1032 } 1033 1034 static void pre_reset(struct device_queue_manager *dqm) 1035 { 1036 dqm_lock(dqm); 1037 dqm->is_resetting = true; 1038 dqm_unlock(dqm); 1039 } 1040 1041 static int allocate_sdma_queue(struct device_queue_manager *dqm, 1042 struct queue *q) 1043 { 1044 int bit; 1045 1046 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1047 if (dqm->sdma_bitmap == 0) { 1048 pr_err("No more SDMA queue to allocate\n"); 1049 return -ENOMEM; 1050 } 1051 1052 bit = __ffs64(dqm->sdma_bitmap); 1053 dqm->sdma_bitmap &= ~(1ULL << bit); 1054 q->sdma_id = bit; 1055 q->properties.sdma_engine_id = q->sdma_id % 1056 get_num_sdma_engines(dqm); 1057 q->properties.sdma_queue_id = q->sdma_id / 1058 get_num_sdma_engines(dqm); 1059 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1060 if (dqm->xgmi_sdma_bitmap == 0) { 1061 pr_err("No more XGMI SDMA queue to allocate\n"); 1062 return -ENOMEM; 1063 } 1064 bit = __ffs64(dqm->xgmi_sdma_bitmap); 1065 dqm->xgmi_sdma_bitmap &= ~(1ULL << bit); 1066 q->sdma_id = bit; 1067 /* sdma_engine_id is sdma id including 1068 * both PCIe-optimized SDMAs and XGMI- 1069 * optimized SDMAs. The calculation below 1070 * assumes the first N engines are always 1071 * PCIe-optimized ones 1072 */ 1073 q->properties.sdma_engine_id = get_num_sdma_engines(dqm) + 1074 q->sdma_id % get_num_xgmi_sdma_engines(dqm); 1075 q->properties.sdma_queue_id = q->sdma_id / 1076 get_num_xgmi_sdma_engines(dqm); 1077 } 1078 1079 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id); 1080 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id); 1081 1082 return 0; 1083 } 1084 1085 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 1086 struct queue *q) 1087 { 1088 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1089 if (q->sdma_id >= get_num_sdma_queues(dqm)) 1090 return; 1091 dqm->sdma_bitmap |= (1ULL << q->sdma_id); 1092 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1093 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm)) 1094 return; 1095 dqm->xgmi_sdma_bitmap |= (1ULL << q->sdma_id); 1096 } 1097 } 1098 1099 /* 1100 * Device Queue Manager implementation for cp scheduler 1101 */ 1102 1103 static int set_sched_resources(struct device_queue_manager *dqm) 1104 { 1105 int i, mec; 1106 struct scheduling_resources res; 1107 1108 res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap; 1109 1110 res.queue_mask = 0; 1111 for (i = 0; i < KGD_MAX_QUEUES; ++i) { 1112 mec = (i / dqm->dev->shared_resources.num_queue_per_pipe) 1113 / dqm->dev->shared_resources.num_pipe_per_mec; 1114 1115 if (!test_bit(i, dqm->dev->shared_resources.cp_queue_bitmap)) 1116 continue; 1117 1118 /* only acquire queues from the first MEC */ 1119 if (mec > 0) 1120 continue; 1121 1122 /* This situation may be hit in the future if a new HW 1123 * generation exposes more than 64 queues. If so, the 1124 * definition of res.queue_mask needs updating 1125 */ 1126 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) { 1127 pr_err("Invalid queue enabled by amdgpu: %d\n", i); 1128 break; 1129 } 1130 1131 res.queue_mask |= 1ull 1132 << amdgpu_queue_mask_bit_to_set_resource_bit( 1133 (struct amdgpu_device *)dqm->dev->kgd, i); 1134 } 1135 res.gws_mask = ~0ull; 1136 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0; 1137 1138 pr_debug("Scheduling resources:\n" 1139 "vmid mask: 0x%8X\n" 1140 "queue mask: 0x%8llX\n", 1141 res.vmid_mask, res.queue_mask); 1142 1143 return pm_send_set_resources(&dqm->packets, &res); 1144 } 1145 1146 static int initialize_cpsch(struct device_queue_manager *dqm) 1147 { 1148 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 1149 1150 mutex_init(&dqm->lock_hidden); 1151 INIT_LIST_HEAD(&dqm->queues); 1152 dqm->active_queue_count = dqm->processes_count = 0; 1153 dqm->active_cp_queue_count = 0; 1154 dqm->gws_queue_count = 0; 1155 dqm->active_runlist = false; 1156 dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm)); 1157 dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm)); 1158 1159 INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception); 1160 1161 return 0; 1162 } 1163 1164 static int start_cpsch(struct device_queue_manager *dqm) 1165 { 1166 int retval; 1167 1168 retval = 0; 1169 1170 retval = pm_init(&dqm->packets, dqm); 1171 if (retval) 1172 goto fail_packet_manager_init; 1173 1174 retval = set_sched_resources(dqm); 1175 if (retval) 1176 goto fail_set_sched_resources; 1177 1178 pr_debug("Allocating fence memory\n"); 1179 1180 /* allocate fence memory on the gart */ 1181 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr), 1182 &dqm->fence_mem); 1183 1184 if (retval) 1185 goto fail_allocate_vidmem; 1186 1187 dqm->fence_addr = dqm->fence_mem->cpu_ptr; 1188 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr; 1189 1190 init_interrupts(dqm); 1191 1192 dqm_lock(dqm); 1193 /* clear hang status when driver try to start the hw scheduler */ 1194 dqm->is_hws_hang = false; 1195 dqm->is_resetting = false; 1196 dqm->sched_running = true; 1197 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1198 dqm_unlock(dqm); 1199 1200 return 0; 1201 fail_allocate_vidmem: 1202 fail_set_sched_resources: 1203 pm_uninit(&dqm->packets, false); 1204 fail_packet_manager_init: 1205 return retval; 1206 } 1207 1208 static int stop_cpsch(struct device_queue_manager *dqm) 1209 { 1210 bool hanging; 1211 1212 dqm_lock(dqm); 1213 if (!dqm->is_hws_hang) 1214 unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0); 1215 hanging = dqm->is_hws_hang || dqm->is_resetting; 1216 dqm->sched_running = false; 1217 dqm_unlock(dqm); 1218 1219 pm_release_ib(&dqm->packets); 1220 1221 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); 1222 pm_uninit(&dqm->packets, hanging); 1223 1224 return 0; 1225 } 1226 1227 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm, 1228 struct kernel_queue *kq, 1229 struct qcm_process_device *qpd) 1230 { 1231 dqm_lock(dqm); 1232 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1233 pr_warn("Can't create new kernel queue because %d queues were already created\n", 1234 dqm->total_queue_count); 1235 dqm_unlock(dqm); 1236 return -EPERM; 1237 } 1238 1239 /* 1240 * Unconditionally increment this counter, regardless of the queue's 1241 * type or whether the queue is active. 1242 */ 1243 dqm->total_queue_count++; 1244 pr_debug("Total of %d queues are accountable so far\n", 1245 dqm->total_queue_count); 1246 1247 list_add(&kq->list, &qpd->priv_queue_list); 1248 increment_queue_count(dqm, kq->queue->properties.type); 1249 qpd->is_debug = true; 1250 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1251 dqm_unlock(dqm); 1252 1253 return 0; 1254 } 1255 1256 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm, 1257 struct kernel_queue *kq, 1258 struct qcm_process_device *qpd) 1259 { 1260 dqm_lock(dqm); 1261 list_del(&kq->list); 1262 decrement_queue_count(dqm, kq->queue->properties.type); 1263 qpd->is_debug = false; 1264 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0); 1265 /* 1266 * Unconditionally decrement this counter, regardless of the queue's 1267 * type. 1268 */ 1269 dqm->total_queue_count--; 1270 pr_debug("Total of %d queues are accountable so far\n", 1271 dqm->total_queue_count); 1272 dqm_unlock(dqm); 1273 } 1274 1275 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q, 1276 struct qcm_process_device *qpd) 1277 { 1278 int retval; 1279 struct mqd_manager *mqd_mgr; 1280 1281 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1282 pr_warn("Can't create new usermode queue because %d queues were already created\n", 1283 dqm->total_queue_count); 1284 retval = -EPERM; 1285 goto out; 1286 } 1287 1288 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1289 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1290 dqm_lock(dqm); 1291 retval = allocate_sdma_queue(dqm, q); 1292 dqm_unlock(dqm); 1293 if (retval) 1294 goto out; 1295 } 1296 1297 retval = allocate_doorbell(qpd, q); 1298 if (retval) 1299 goto out_deallocate_sdma_queue; 1300 1301 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1302 q->properties.type)]; 1303 1304 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1305 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 1306 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 1307 q->properties.tba_addr = qpd->tba_addr; 1308 q->properties.tma_addr = qpd->tma_addr; 1309 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 1310 if (!q->mqd_mem_obj) { 1311 retval = -ENOMEM; 1312 goto out_deallocate_doorbell; 1313 } 1314 1315 dqm_lock(dqm); 1316 /* 1317 * Eviction state logic: mark all queues as evicted, even ones 1318 * not currently active. Restoring inactive queues later only 1319 * updates the is_evicted flag but is a no-op otherwise. 1320 */ 1321 q->properties.is_evicted = !!qpd->evicted; 1322 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 1323 &q->gart_mqd_addr, &q->properties); 1324 1325 list_add(&q->list, &qpd->queues_list); 1326 qpd->queue_count++; 1327 1328 if (q->properties.is_active) { 1329 increment_queue_count(dqm, q->properties.type); 1330 1331 execute_queues_cpsch(dqm, 1332 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1333 } 1334 1335 /* 1336 * Unconditionally increment this counter, regardless of the queue's 1337 * type or whether the queue is active. 1338 */ 1339 dqm->total_queue_count++; 1340 1341 pr_debug("Total of %d queues are accountable so far\n", 1342 dqm->total_queue_count); 1343 1344 dqm_unlock(dqm); 1345 return retval; 1346 1347 out_deallocate_doorbell: 1348 deallocate_doorbell(qpd, q); 1349 out_deallocate_sdma_queue: 1350 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1351 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1352 dqm_lock(dqm); 1353 deallocate_sdma_queue(dqm, q); 1354 dqm_unlock(dqm); 1355 } 1356 out: 1357 return retval; 1358 } 1359 1360 int amdkfd_fence_wait_timeout(unsigned int *fence_addr, 1361 unsigned int fence_value, 1362 unsigned int timeout_ms) 1363 { 1364 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies; 1365 1366 while (*fence_addr != fence_value) { 1367 if (time_after(jiffies, end_jiffies)) { 1368 pr_err("qcm fence wait loop timeout expired\n"); 1369 /* In HWS case, this is used to halt the driver thread 1370 * in order not to mess up CP states before doing 1371 * scandumps for FW debugging. 1372 */ 1373 while (halt_if_hws_hang) 1374 schedule(); 1375 1376 return -ETIME; 1377 } 1378 schedule(); 1379 } 1380 1381 return 0; 1382 } 1383 1384 /* dqm->lock mutex has to be locked before calling this function */ 1385 static int map_queues_cpsch(struct device_queue_manager *dqm) 1386 { 1387 int retval; 1388 1389 if (!dqm->sched_running) 1390 return 0; 1391 if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0) 1392 return 0; 1393 if (dqm->active_runlist) 1394 return 0; 1395 1396 retval = pm_send_runlist(&dqm->packets, &dqm->queues); 1397 pr_debug("%s sent runlist\n", __func__); 1398 if (retval) { 1399 pr_err("failed to execute runlist\n"); 1400 return retval; 1401 } 1402 dqm->active_runlist = true; 1403 1404 return retval; 1405 } 1406 1407 /* dqm->lock mutex has to be locked before calling this function */ 1408 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 1409 enum kfd_unmap_queues_filter filter, 1410 uint32_t filter_param) 1411 { 1412 int retval = 0; 1413 1414 if (!dqm->sched_running) 1415 return 0; 1416 if (dqm->is_hws_hang) 1417 return -EIO; 1418 if (!dqm->active_runlist) 1419 return retval; 1420 1421 retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE, 1422 filter, filter_param, false, 0); 1423 if (retval) 1424 return retval; 1425 1426 *dqm->fence_addr = KFD_FENCE_INIT; 1427 pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr, 1428 KFD_FENCE_COMPLETED); 1429 /* should be timed out */ 1430 retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED, 1431 queue_preemption_timeout_ms); 1432 if (retval) { 1433 pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n"); 1434 dqm->is_hws_hang = true; 1435 /* It's possible we're detecting a HWS hang in the 1436 * middle of a GPU reset. No need to schedule another 1437 * reset in this case. 1438 */ 1439 if (!dqm->is_resetting) 1440 schedule_work(&dqm->hw_exception_work); 1441 return retval; 1442 } 1443 1444 pm_release_ib(&dqm->packets); 1445 dqm->active_runlist = false; 1446 1447 return retval; 1448 } 1449 1450 /* dqm->lock mutex has to be locked before calling this function */ 1451 static int execute_queues_cpsch(struct device_queue_manager *dqm, 1452 enum kfd_unmap_queues_filter filter, 1453 uint32_t filter_param) 1454 { 1455 int retval; 1456 1457 if (dqm->is_hws_hang) 1458 return -EIO; 1459 retval = unmap_queues_cpsch(dqm, filter, filter_param); 1460 if (retval) 1461 return retval; 1462 1463 return map_queues_cpsch(dqm); 1464 } 1465 1466 static int destroy_queue_cpsch(struct device_queue_manager *dqm, 1467 struct qcm_process_device *qpd, 1468 struct queue *q) 1469 { 1470 int retval; 1471 struct mqd_manager *mqd_mgr; 1472 uint64_t sdma_val = 0; 1473 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 1474 1475 /* Get the SDMA queue stats */ 1476 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 1477 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 1478 retval = read_sdma_queue_counter((uint64_t)q->properties.read_ptr, 1479 &sdma_val); 1480 if (retval) 1481 pr_err("Failed to read SDMA queue counter for queue: %d\n", 1482 q->properties.queue_id); 1483 } 1484 1485 retval = 0; 1486 1487 /* remove queue from list to prevent rescheduling after preemption */ 1488 dqm_lock(dqm); 1489 1490 if (qpd->is_debug) { 1491 /* 1492 * error, currently we do not allow to destroy a queue 1493 * of a currently debugged process 1494 */ 1495 retval = -EBUSY; 1496 goto failed_try_destroy_debugged_queue; 1497 1498 } 1499 1500 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1501 q->properties.type)]; 1502 1503 deallocate_doorbell(qpd, q); 1504 1505 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 1506 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 1507 deallocate_sdma_queue(dqm, q); 1508 pdd->sdma_past_activity_counter += sdma_val; 1509 } 1510 1511 list_del(&q->list); 1512 qpd->queue_count--; 1513 if (q->properties.is_active) { 1514 decrement_queue_count(dqm, q->properties.type); 1515 retval = execute_queues_cpsch(dqm, 1516 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1517 if (retval == -ETIME) 1518 qpd->reset_wavefronts = true; 1519 if (q->properties.is_gws) { 1520 dqm->gws_queue_count--; 1521 qpd->mapped_gws_queue = false; 1522 } 1523 } 1524 1525 /* 1526 * Unconditionally decrement this counter, regardless of the queue's 1527 * type 1528 */ 1529 dqm->total_queue_count--; 1530 pr_debug("Total of %d queues are accountable so far\n", 1531 dqm->total_queue_count); 1532 1533 dqm_unlock(dqm); 1534 1535 /* Do free_mqd after dqm_unlock(dqm) to avoid circular locking */ 1536 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 1537 1538 return retval; 1539 1540 failed_try_destroy_debugged_queue: 1541 1542 dqm_unlock(dqm); 1543 return retval; 1544 } 1545 1546 /* 1547 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to 1548 * stay in user mode. 1549 */ 1550 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL 1551 /* APE1 limit is inclusive and 64K aligned. */ 1552 #define APE1_LIMIT_ALIGNMENT 0xFFFF 1553 1554 static bool set_cache_memory_policy(struct device_queue_manager *dqm, 1555 struct qcm_process_device *qpd, 1556 enum cache_policy default_policy, 1557 enum cache_policy alternate_policy, 1558 void __user *alternate_aperture_base, 1559 uint64_t alternate_aperture_size) 1560 { 1561 bool retval = true; 1562 1563 if (!dqm->asic_ops.set_cache_memory_policy) 1564 return retval; 1565 1566 dqm_lock(dqm); 1567 1568 if (alternate_aperture_size == 0) { 1569 /* base > limit disables APE1 */ 1570 qpd->sh_mem_ape1_base = 1; 1571 qpd->sh_mem_ape1_limit = 0; 1572 } else { 1573 /* 1574 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]}, 1575 * SH_MEM_APE1_BASE[31:0], 0x0000 } 1576 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]}, 1577 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF } 1578 * Verify that the base and size parameters can be 1579 * represented in this format and convert them. 1580 * Additionally restrict APE1 to user-mode addresses. 1581 */ 1582 1583 uint64_t base = (uintptr_t)alternate_aperture_base; 1584 uint64_t limit = base + alternate_aperture_size - 1; 1585 1586 if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 || 1587 (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) { 1588 retval = false; 1589 goto out; 1590 } 1591 1592 qpd->sh_mem_ape1_base = base >> 16; 1593 qpd->sh_mem_ape1_limit = limit >> 16; 1594 } 1595 1596 retval = dqm->asic_ops.set_cache_memory_policy( 1597 dqm, 1598 qpd, 1599 default_policy, 1600 alternate_policy, 1601 alternate_aperture_base, 1602 alternate_aperture_size); 1603 1604 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0)) 1605 program_sh_mem_settings(dqm, qpd); 1606 1607 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n", 1608 qpd->sh_mem_config, qpd->sh_mem_ape1_base, 1609 qpd->sh_mem_ape1_limit); 1610 1611 out: 1612 dqm_unlock(dqm); 1613 return retval; 1614 } 1615 1616 static int set_trap_handler(struct device_queue_manager *dqm, 1617 struct qcm_process_device *qpd, 1618 uint64_t tba_addr, 1619 uint64_t tma_addr) 1620 { 1621 uint64_t *tma; 1622 1623 if (dqm->dev->cwsr_enabled) { 1624 /* Jump from CWSR trap handler to user trap */ 1625 tma = (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1626 tma[0] = tba_addr; 1627 tma[1] = tma_addr; 1628 } else { 1629 qpd->tba_addr = tba_addr; 1630 qpd->tma_addr = tma_addr; 1631 } 1632 1633 return 0; 1634 } 1635 1636 static int process_termination_nocpsch(struct device_queue_manager *dqm, 1637 struct qcm_process_device *qpd) 1638 { 1639 struct queue *q, *next; 1640 struct device_process_node *cur, *next_dpn; 1641 int retval = 0; 1642 bool found = false; 1643 1644 dqm_lock(dqm); 1645 1646 /* Clear all user mode queues */ 1647 list_for_each_entry_safe(q, next, &qpd->queues_list, list) { 1648 int ret; 1649 1650 ret = destroy_queue_nocpsch_locked(dqm, qpd, q); 1651 if (ret) 1652 retval = ret; 1653 } 1654 1655 /* Unregister process */ 1656 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 1657 if (qpd == cur->qpd) { 1658 list_del(&cur->list); 1659 kfree(cur); 1660 dqm->processes_count--; 1661 found = true; 1662 break; 1663 } 1664 } 1665 1666 dqm_unlock(dqm); 1667 1668 /* Outside the DQM lock because under the DQM lock we can't do 1669 * reclaim or take other locks that others hold while reclaiming. 1670 */ 1671 if (found) 1672 kfd_dec_compute_active(dqm->dev); 1673 1674 return retval; 1675 } 1676 1677 static int get_wave_state(struct device_queue_manager *dqm, 1678 struct queue *q, 1679 void __user *ctl_stack, 1680 u32 *ctl_stack_used_size, 1681 u32 *save_area_used_size) 1682 { 1683 struct mqd_manager *mqd_mgr; 1684 int r; 1685 1686 dqm_lock(dqm); 1687 1688 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE || 1689 q->properties.is_active || !q->device->cwsr_enabled) { 1690 r = -EINVAL; 1691 goto dqm_unlock; 1692 } 1693 1694 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP]; 1695 1696 if (!mqd_mgr->get_wave_state) { 1697 r = -EINVAL; 1698 goto dqm_unlock; 1699 } 1700 1701 r = mqd_mgr->get_wave_state(mqd_mgr, q->mqd, ctl_stack, 1702 ctl_stack_used_size, save_area_used_size); 1703 1704 dqm_unlock: 1705 dqm_unlock(dqm); 1706 return r; 1707 } 1708 1709 static int process_termination_cpsch(struct device_queue_manager *dqm, 1710 struct qcm_process_device *qpd) 1711 { 1712 int retval; 1713 struct queue *q, *next; 1714 struct kernel_queue *kq, *kq_next; 1715 struct mqd_manager *mqd_mgr; 1716 struct device_process_node *cur, *next_dpn; 1717 enum kfd_unmap_queues_filter filter = 1718 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES; 1719 bool found = false; 1720 1721 retval = 0; 1722 1723 dqm_lock(dqm); 1724 1725 /* Clean all kernel queues */ 1726 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) { 1727 list_del(&kq->list); 1728 decrement_queue_count(dqm, kq->queue->properties.type); 1729 qpd->is_debug = false; 1730 dqm->total_queue_count--; 1731 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES; 1732 } 1733 1734 /* Clear all user mode queues */ 1735 list_for_each_entry(q, &qpd->queues_list, list) { 1736 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 1737 deallocate_sdma_queue(dqm, q); 1738 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 1739 deallocate_sdma_queue(dqm, q); 1740 1741 if (q->properties.is_active) { 1742 decrement_queue_count(dqm, q->properties.type); 1743 if (q->properties.is_gws) { 1744 dqm->gws_queue_count--; 1745 qpd->mapped_gws_queue = false; 1746 } 1747 } 1748 1749 dqm->total_queue_count--; 1750 } 1751 1752 /* Unregister process */ 1753 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 1754 if (qpd == cur->qpd) { 1755 list_del(&cur->list); 1756 kfree(cur); 1757 dqm->processes_count--; 1758 found = true; 1759 break; 1760 } 1761 } 1762 1763 retval = execute_queues_cpsch(dqm, filter, 0); 1764 if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) { 1765 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev); 1766 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process); 1767 qpd->reset_wavefronts = false; 1768 } 1769 1770 dqm_unlock(dqm); 1771 1772 /* Outside the DQM lock because under the DQM lock we can't do 1773 * reclaim or take other locks that others hold while reclaiming. 1774 */ 1775 if (found) 1776 kfd_dec_compute_active(dqm->dev); 1777 1778 /* Lastly, free mqd resources. 1779 * Do free_mqd() after dqm_unlock to avoid circular locking. 1780 */ 1781 list_for_each_entry_safe(q, next, &qpd->queues_list, list) { 1782 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1783 q->properties.type)]; 1784 list_del(&q->list); 1785 qpd->queue_count--; 1786 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 1787 } 1788 1789 return retval; 1790 } 1791 1792 static int init_mqd_managers(struct device_queue_manager *dqm) 1793 { 1794 int i, j; 1795 struct mqd_manager *mqd_mgr; 1796 1797 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) { 1798 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev); 1799 if (!mqd_mgr) { 1800 pr_err("mqd manager [%d] initialization failed\n", i); 1801 goto out_free; 1802 } 1803 dqm->mqd_mgrs[i] = mqd_mgr; 1804 } 1805 1806 return 0; 1807 1808 out_free: 1809 for (j = 0; j < i; j++) { 1810 kfree(dqm->mqd_mgrs[j]); 1811 dqm->mqd_mgrs[j] = NULL; 1812 } 1813 1814 return -ENOMEM; 1815 } 1816 1817 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/ 1818 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm) 1819 { 1820 int retval; 1821 struct kfd_dev *dev = dqm->dev; 1822 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd; 1823 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size * 1824 get_num_all_sdma_engines(dqm) * 1825 dev->device_info->num_sdma_queues_per_engine + 1826 dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size; 1827 1828 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->kgd, size, 1829 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr), 1830 (void *)&(mem_obj->cpu_ptr), false); 1831 1832 return retval; 1833 } 1834 1835 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev) 1836 { 1837 struct device_queue_manager *dqm; 1838 1839 pr_debug("Loading device queue manager\n"); 1840 1841 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL); 1842 if (!dqm) 1843 return NULL; 1844 1845 switch (dev->device_info->asic_family) { 1846 /* HWS is not available on Hawaii. */ 1847 case CHIP_HAWAII: 1848 /* HWS depends on CWSR for timely dequeue. CWSR is not 1849 * available on Tonga. 1850 * 1851 * FIXME: This argument also applies to Kaveri. 1852 */ 1853 case CHIP_TONGA: 1854 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS; 1855 break; 1856 default: 1857 dqm->sched_policy = sched_policy; 1858 break; 1859 } 1860 1861 dqm->dev = dev; 1862 switch (dqm->sched_policy) { 1863 case KFD_SCHED_POLICY_HWS: 1864 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: 1865 /* initialize dqm for cp scheduling */ 1866 dqm->ops.create_queue = create_queue_cpsch; 1867 dqm->ops.initialize = initialize_cpsch; 1868 dqm->ops.start = start_cpsch; 1869 dqm->ops.stop = stop_cpsch; 1870 dqm->ops.pre_reset = pre_reset; 1871 dqm->ops.destroy_queue = destroy_queue_cpsch; 1872 dqm->ops.update_queue = update_queue; 1873 dqm->ops.register_process = register_process; 1874 dqm->ops.unregister_process = unregister_process; 1875 dqm->ops.uninitialize = uninitialize; 1876 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch; 1877 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch; 1878 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 1879 dqm->ops.set_trap_handler = set_trap_handler; 1880 dqm->ops.process_termination = process_termination_cpsch; 1881 dqm->ops.evict_process_queues = evict_process_queues_cpsch; 1882 dqm->ops.restore_process_queues = restore_process_queues_cpsch; 1883 dqm->ops.get_wave_state = get_wave_state; 1884 break; 1885 case KFD_SCHED_POLICY_NO_HWS: 1886 /* initialize dqm for no cp scheduling */ 1887 dqm->ops.start = start_nocpsch; 1888 dqm->ops.stop = stop_nocpsch; 1889 dqm->ops.pre_reset = pre_reset; 1890 dqm->ops.create_queue = create_queue_nocpsch; 1891 dqm->ops.destroy_queue = destroy_queue_nocpsch; 1892 dqm->ops.update_queue = update_queue; 1893 dqm->ops.register_process = register_process; 1894 dqm->ops.unregister_process = unregister_process; 1895 dqm->ops.initialize = initialize_nocpsch; 1896 dqm->ops.uninitialize = uninitialize; 1897 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 1898 dqm->ops.set_trap_handler = set_trap_handler; 1899 dqm->ops.process_termination = process_termination_nocpsch; 1900 dqm->ops.evict_process_queues = evict_process_queues_nocpsch; 1901 dqm->ops.restore_process_queues = 1902 restore_process_queues_nocpsch; 1903 dqm->ops.get_wave_state = get_wave_state; 1904 break; 1905 default: 1906 pr_err("Invalid scheduling policy %d\n", dqm->sched_policy); 1907 goto out_free; 1908 } 1909 1910 switch (dev->device_info->asic_family) { 1911 case CHIP_CARRIZO: 1912 device_queue_manager_init_vi(&dqm->asic_ops); 1913 break; 1914 1915 case CHIP_KAVERI: 1916 device_queue_manager_init_cik(&dqm->asic_ops); 1917 break; 1918 1919 case CHIP_HAWAII: 1920 device_queue_manager_init_cik_hawaii(&dqm->asic_ops); 1921 break; 1922 1923 case CHIP_TONGA: 1924 case CHIP_FIJI: 1925 case CHIP_POLARIS10: 1926 case CHIP_POLARIS11: 1927 case CHIP_POLARIS12: 1928 case CHIP_VEGAM: 1929 device_queue_manager_init_vi_tonga(&dqm->asic_ops); 1930 break; 1931 1932 case CHIP_VEGA10: 1933 case CHIP_VEGA12: 1934 case CHIP_VEGA20: 1935 case CHIP_RAVEN: 1936 case CHIP_RENOIR: 1937 case CHIP_ARCTURUS: 1938 device_queue_manager_init_v9(&dqm->asic_ops); 1939 break; 1940 case CHIP_NAVI10: 1941 case CHIP_NAVI12: 1942 case CHIP_NAVI14: 1943 case CHIP_SIENNA_CICHLID: 1944 case CHIP_NAVY_FLOUNDER: 1945 device_queue_manager_init_v10_navi10(&dqm->asic_ops); 1946 break; 1947 default: 1948 WARN(1, "Unexpected ASIC family %u", 1949 dev->device_info->asic_family); 1950 goto out_free; 1951 } 1952 1953 if (init_mqd_managers(dqm)) 1954 goto out_free; 1955 1956 if (allocate_hiq_sdma_mqd(dqm)) { 1957 pr_err("Failed to allocate hiq sdma mqd trunk buffer\n"); 1958 goto out_free; 1959 } 1960 1961 if (!dqm->ops.initialize(dqm)) 1962 return dqm; 1963 1964 out_free: 1965 kfree(dqm); 1966 return NULL; 1967 } 1968 1969 static void deallocate_hiq_sdma_mqd(struct kfd_dev *dev, 1970 struct kfd_mem_obj *mqd) 1971 { 1972 WARN(!mqd, "No hiq sdma mqd trunk to free"); 1973 1974 amdgpu_amdkfd_free_gtt_mem(dev->kgd, mqd->gtt_mem); 1975 } 1976 1977 void device_queue_manager_uninit(struct device_queue_manager *dqm) 1978 { 1979 dqm->ops.uninitialize(dqm); 1980 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd); 1981 kfree(dqm); 1982 } 1983 1984 int kfd_process_vm_fault(struct device_queue_manager *dqm, 1985 unsigned int pasid) 1986 { 1987 struct kfd_process_device *pdd; 1988 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1989 int ret = 0; 1990 1991 if (!p) 1992 return -EINVAL; 1993 pdd = kfd_get_process_device_data(dqm->dev, p); 1994 if (pdd) 1995 ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd); 1996 kfd_unref_process(p); 1997 1998 return ret; 1999 } 2000 2001 static void kfd_process_hw_exception(struct work_struct *work) 2002 { 2003 struct device_queue_manager *dqm = container_of(work, 2004 struct device_queue_manager, hw_exception_work); 2005 amdgpu_amdkfd_gpu_reset(dqm->dev->kgd); 2006 } 2007 2008 #if defined(CONFIG_DEBUG_FS) 2009 2010 static void seq_reg_dump(struct seq_file *m, 2011 uint32_t (*dump)[2], uint32_t n_regs) 2012 { 2013 uint32_t i, count; 2014 2015 for (i = 0, count = 0; i < n_regs; i++) { 2016 if (count == 0 || 2017 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) { 2018 seq_printf(m, "%s %08x: %08x", 2019 i ? "\n" : "", 2020 dump[i][0], dump[i][1]); 2021 count = 7; 2022 } else { 2023 seq_printf(m, " %08x", dump[i][1]); 2024 count--; 2025 } 2026 } 2027 2028 seq_puts(m, "\n"); 2029 } 2030 2031 int dqm_debugfs_hqds(struct seq_file *m, void *data) 2032 { 2033 struct device_queue_manager *dqm = data; 2034 uint32_t (*dump)[2], n_regs; 2035 int pipe, queue; 2036 int r = 0; 2037 2038 if (!dqm->sched_running) { 2039 seq_printf(m, " Device is stopped\n"); 2040 2041 return 0; 2042 } 2043 2044 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->kgd, 2045 KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE, 2046 &dump, &n_regs); 2047 if (!r) { 2048 seq_printf(m, " HIQ on MEC %d Pipe %d Queue %d\n", 2049 KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1, 2050 KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm), 2051 KFD_CIK_HIQ_QUEUE); 2052 seq_reg_dump(m, dump, n_regs); 2053 2054 kfree(dump); 2055 } 2056 2057 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 2058 int pipe_offset = pipe * get_queues_per_pipe(dqm); 2059 2060 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) { 2061 if (!test_bit(pipe_offset + queue, 2062 dqm->dev->shared_resources.cp_queue_bitmap)) 2063 continue; 2064 2065 r = dqm->dev->kfd2kgd->hqd_dump( 2066 dqm->dev->kgd, pipe, queue, &dump, &n_regs); 2067 if (r) 2068 break; 2069 2070 seq_printf(m, " CP Pipe %d, Queue %d\n", 2071 pipe, queue); 2072 seq_reg_dump(m, dump, n_regs); 2073 2074 kfree(dump); 2075 } 2076 } 2077 2078 for (pipe = 0; pipe < get_num_all_sdma_engines(dqm); pipe++) { 2079 for (queue = 0; 2080 queue < dqm->dev->device_info->num_sdma_queues_per_engine; 2081 queue++) { 2082 r = dqm->dev->kfd2kgd->hqd_sdma_dump( 2083 dqm->dev->kgd, pipe, queue, &dump, &n_regs); 2084 if (r) 2085 break; 2086 2087 seq_printf(m, " SDMA Engine %d, RLC %d\n", 2088 pipe, queue); 2089 seq_reg_dump(m, dump, n_regs); 2090 2091 kfree(dump); 2092 } 2093 } 2094 2095 return r; 2096 } 2097 2098 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm) 2099 { 2100 int r = 0; 2101 2102 dqm_lock(dqm); 2103 dqm->active_runlist = true; 2104 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0); 2105 dqm_unlock(dqm); 2106 2107 return r; 2108 } 2109 2110 #endif 2111