xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c (revision a03a8dbe20eff6d57aae3147577bf84b52aba4e6)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/slab.h>
25 #include <linux/list.h>
26 #include <linux/types.h>
27 #include <linux/printk.h>
28 #include <linux/bitops.h>
29 #include <linux/sched.h>
30 #include "kfd_priv.h"
31 #include "kfd_device_queue_manager.h"
32 #include "kfd_mqd_manager.h"
33 #include "cik_regs.h"
34 #include "kfd_kernel_queue.h"
35 
36 /* Size of the per-pipe EOP queue */
37 #define CIK_HPD_EOP_BYTES_LOG2 11
38 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
39 
40 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
41 					unsigned int pasid, unsigned int vmid);
42 
43 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
44 					struct queue *q,
45 					struct qcm_process_device *qpd);
46 
47 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
48 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock);
49 
50 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
51 					struct queue *q,
52 					struct qcm_process_device *qpd);
53 
54 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
55 				unsigned int sdma_queue_id);
56 
57 static inline
58 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
59 {
60 	if (type == KFD_QUEUE_TYPE_SDMA)
61 		return KFD_MQD_TYPE_SDMA;
62 	return KFD_MQD_TYPE_CP;
63 }
64 
65 unsigned int get_first_pipe(struct device_queue_manager *dqm)
66 {
67 	BUG_ON(!dqm || !dqm->dev);
68 	return dqm->dev->shared_resources.first_compute_pipe;
69 }
70 
71 unsigned int get_pipes_num(struct device_queue_manager *dqm)
72 {
73 	BUG_ON(!dqm || !dqm->dev);
74 	return dqm->dev->shared_resources.compute_pipe_count;
75 }
76 
77 static inline unsigned int get_pipes_num_cpsch(void)
78 {
79 	return PIPE_PER_ME_CP_SCHEDULING;
80 }
81 
82 void program_sh_mem_settings(struct device_queue_manager *dqm,
83 					struct qcm_process_device *qpd)
84 {
85 	return kfd2kgd->program_sh_mem_settings(dqm->dev->kgd, qpd->vmid,
86 						qpd->sh_mem_config,
87 						qpd->sh_mem_ape1_base,
88 						qpd->sh_mem_ape1_limit,
89 						qpd->sh_mem_bases);
90 }
91 
92 static int allocate_vmid(struct device_queue_manager *dqm,
93 			struct qcm_process_device *qpd,
94 			struct queue *q)
95 {
96 	int bit, allocated_vmid;
97 
98 	if (dqm->vmid_bitmap == 0)
99 		return -ENOMEM;
100 
101 	bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
102 	clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
103 
104 	/* Kaveri kfd vmid's starts from vmid 8 */
105 	allocated_vmid = bit + KFD_VMID_START_OFFSET;
106 	pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
107 	qpd->vmid = allocated_vmid;
108 	q->properties.vmid = allocated_vmid;
109 
110 	set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
111 	program_sh_mem_settings(dqm, qpd);
112 
113 	return 0;
114 }
115 
116 static void deallocate_vmid(struct device_queue_manager *dqm,
117 				struct qcm_process_device *qpd,
118 				struct queue *q)
119 {
120 	int bit = qpd->vmid - KFD_VMID_START_OFFSET;
121 
122 	/* Release the vmid mapping */
123 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
124 
125 	set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
126 	qpd->vmid = 0;
127 	q->properties.vmid = 0;
128 }
129 
130 static int create_queue_nocpsch(struct device_queue_manager *dqm,
131 				struct queue *q,
132 				struct qcm_process_device *qpd,
133 				int *allocated_vmid)
134 {
135 	int retval;
136 
137 	BUG_ON(!dqm || !q || !qpd || !allocated_vmid);
138 
139 	pr_debug("kfd: In func %s\n", __func__);
140 	print_queue(q);
141 
142 	mutex_lock(&dqm->lock);
143 
144 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
145 		pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
146 				dqm->total_queue_count);
147 		mutex_unlock(&dqm->lock);
148 		return -EPERM;
149 	}
150 
151 	if (list_empty(&qpd->queues_list)) {
152 		retval = allocate_vmid(dqm, qpd, q);
153 		if (retval != 0) {
154 			mutex_unlock(&dqm->lock);
155 			return retval;
156 		}
157 	}
158 	*allocated_vmid = qpd->vmid;
159 	q->properties.vmid = qpd->vmid;
160 
161 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
162 		retval = create_compute_queue_nocpsch(dqm, q, qpd);
163 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
164 		retval = create_sdma_queue_nocpsch(dqm, q, qpd);
165 
166 	if (retval != 0) {
167 		if (list_empty(&qpd->queues_list)) {
168 			deallocate_vmid(dqm, qpd, q);
169 			*allocated_vmid = 0;
170 		}
171 		mutex_unlock(&dqm->lock);
172 		return retval;
173 	}
174 
175 	list_add(&q->list, &qpd->queues_list);
176 	if (q->properties.is_active)
177 		dqm->queue_count++;
178 
179 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
180 		dqm->sdma_queue_count++;
181 
182 	/*
183 	 * Unconditionally increment this counter, regardless of the queue's
184 	 * type or whether the queue is active.
185 	 */
186 	dqm->total_queue_count++;
187 	pr_debug("Total of %d queues are accountable so far\n",
188 			dqm->total_queue_count);
189 
190 	mutex_unlock(&dqm->lock);
191 	return 0;
192 }
193 
194 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
195 {
196 	bool set;
197 	int pipe, bit, i;
198 
199 	set = false;
200 
201 	for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_num(dqm);
202 			pipe = ((pipe + 1) % get_pipes_num(dqm)), ++i) {
203 		if (dqm->allocated_queues[pipe] != 0) {
204 			bit = find_first_bit(
205 				(unsigned long *)&dqm->allocated_queues[pipe],
206 				QUEUES_PER_PIPE);
207 
208 			clear_bit(bit,
209 				(unsigned long *)&dqm->allocated_queues[pipe]);
210 			q->pipe = pipe;
211 			q->queue = bit;
212 			set = true;
213 			break;
214 		}
215 	}
216 
217 	if (set == false)
218 		return -EBUSY;
219 
220 	pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
221 				__func__, q->pipe, q->queue);
222 	/* horizontal hqd allocation */
223 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);
224 
225 	return 0;
226 }
227 
228 static inline void deallocate_hqd(struct device_queue_manager *dqm,
229 				struct queue *q)
230 {
231 	set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
232 }
233 
234 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
235 					struct queue *q,
236 					struct qcm_process_device *qpd)
237 {
238 	int retval;
239 	struct mqd_manager *mqd;
240 
241 	BUG_ON(!dqm || !q || !qpd);
242 
243 	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
244 	if (mqd == NULL)
245 		return -ENOMEM;
246 
247 	retval = allocate_hqd(dqm, q);
248 	if (retval != 0)
249 		return retval;
250 
251 	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
252 				&q->gart_mqd_addr, &q->properties);
253 	if (retval != 0) {
254 		deallocate_hqd(dqm, q);
255 		return retval;
256 	}
257 
258 	pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
259 			q->pipe,
260 			q->queue);
261 
262 	retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
263 			q->queue, (uint32_t __user *) q->properties.write_ptr);
264 	if (retval != 0) {
265 		deallocate_hqd(dqm, q);
266 		mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
267 		return retval;
268 	}
269 
270 	return 0;
271 }
272 
273 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
274 				struct qcm_process_device *qpd,
275 				struct queue *q)
276 {
277 	int retval;
278 	struct mqd_manager *mqd;
279 
280 	BUG_ON(!dqm || !q || !q->mqd || !qpd);
281 
282 	retval = 0;
283 
284 	pr_debug("kfd: In Func %s\n", __func__);
285 
286 	mutex_lock(&dqm->lock);
287 
288 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
289 		mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
290 		if (mqd == NULL) {
291 			retval = -ENOMEM;
292 			goto out;
293 		}
294 		deallocate_hqd(dqm, q);
295 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
296 		mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
297 		if (mqd == NULL) {
298 			retval = -ENOMEM;
299 			goto out;
300 		}
301 		dqm->sdma_queue_count--;
302 		deallocate_sdma_queue(dqm, q->sdma_id);
303 	} else {
304 		pr_debug("q->properties.type is invalid (%d)\n",
305 				q->properties.type);
306 		retval = -EINVAL;
307 		goto out;
308 	}
309 
310 	retval = mqd->destroy_mqd(mqd, q->mqd,
311 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
312 				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
313 				q->pipe, q->queue);
314 
315 	if (retval != 0)
316 		goto out;
317 
318 	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
319 
320 	list_del(&q->list);
321 	if (list_empty(&qpd->queues_list))
322 		deallocate_vmid(dqm, qpd, q);
323 	if (q->properties.is_active)
324 		dqm->queue_count--;
325 
326 	/*
327 	 * Unconditionally decrement this counter, regardless of the queue's
328 	 * type
329 	 */
330 	dqm->total_queue_count--;
331 	pr_debug("Total of %d queues are accountable so far\n",
332 			dqm->total_queue_count);
333 
334 out:
335 	mutex_unlock(&dqm->lock);
336 	return retval;
337 }
338 
339 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
340 {
341 	int retval;
342 	struct mqd_manager *mqd;
343 	bool prev_active = false;
344 
345 	BUG_ON(!dqm || !q || !q->mqd);
346 
347 	mutex_lock(&dqm->lock);
348 	mqd = dqm->ops.get_mqd_manager(dqm,
349 			get_mqd_type_from_queue_type(q->properties.type));
350 	if (mqd == NULL) {
351 		mutex_unlock(&dqm->lock);
352 		return -ENOMEM;
353 	}
354 
355 	if (q->properties.is_active == true)
356 		prev_active = true;
357 
358 	/*
359 	 *
360 	 * check active state vs. the previous state
361 	 * and modify counter accordingly
362 	 */
363 	retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
364 	if ((q->properties.is_active == true) && (prev_active == false))
365 		dqm->queue_count++;
366 	else if ((q->properties.is_active == false) && (prev_active == true))
367 		dqm->queue_count--;
368 
369 	if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
370 		retval = execute_queues_cpsch(dqm, false);
371 
372 	mutex_unlock(&dqm->lock);
373 	return retval;
374 }
375 
376 static struct mqd_manager *get_mqd_manager_nocpsch(
377 		struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
378 {
379 	struct mqd_manager *mqd;
380 
381 	BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);
382 
383 	pr_debug("kfd: In func %s mqd type %d\n", __func__, type);
384 
385 	mqd = dqm->mqds[type];
386 	if (!mqd) {
387 		mqd = mqd_manager_init(type, dqm->dev);
388 		if (mqd == NULL)
389 			pr_err("kfd: mqd manager is NULL");
390 		dqm->mqds[type] = mqd;
391 	}
392 
393 	return mqd;
394 }
395 
396 static int register_process_nocpsch(struct device_queue_manager *dqm,
397 					struct qcm_process_device *qpd)
398 {
399 	struct device_process_node *n;
400 	int retval;
401 
402 	BUG_ON(!dqm || !qpd);
403 
404 	pr_debug("kfd: In func %s\n", __func__);
405 
406 	n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
407 	if (!n)
408 		return -ENOMEM;
409 
410 	n->qpd = qpd;
411 
412 	mutex_lock(&dqm->lock);
413 	list_add(&n->list, &dqm->queues);
414 
415 	retval = dqm->ops_asic_specific.register_process(dqm, qpd);
416 
417 	dqm->processes_count++;
418 
419 	mutex_unlock(&dqm->lock);
420 
421 	return retval;
422 }
423 
424 static int unregister_process_nocpsch(struct device_queue_manager *dqm,
425 					struct qcm_process_device *qpd)
426 {
427 	int retval;
428 	struct device_process_node *cur, *next;
429 
430 	BUG_ON(!dqm || !qpd);
431 
432 	BUG_ON(!list_empty(&qpd->queues_list));
433 
434 	pr_debug("kfd: In func %s\n", __func__);
435 
436 	retval = 0;
437 	mutex_lock(&dqm->lock);
438 
439 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
440 		if (qpd == cur->qpd) {
441 			list_del(&cur->list);
442 			kfree(cur);
443 			dqm->processes_count--;
444 			goto out;
445 		}
446 	}
447 	/* qpd not found in dqm list */
448 	retval = 1;
449 out:
450 	mutex_unlock(&dqm->lock);
451 	return retval;
452 }
453 
454 static int
455 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
456 			unsigned int vmid)
457 {
458 	uint32_t pasid_mapping;
459 
460 	pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
461 						ATC_VMID_PASID_MAPPING_VALID;
462 	return kfd2kgd->set_pasid_vmid_mapping(dqm->dev->kgd, pasid_mapping,
463 						vmid);
464 }
465 
466 int init_pipelines(struct device_queue_manager *dqm,
467 			unsigned int pipes_num, unsigned int first_pipe)
468 {
469 	void *hpdptr;
470 	struct mqd_manager *mqd;
471 	unsigned int i, err, inx;
472 	uint64_t pipe_hpd_addr;
473 
474 	BUG_ON(!dqm || !dqm->dev);
475 
476 	pr_debug("kfd: In func %s\n", __func__);
477 
478 	/*
479 	 * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
480 	 * The driver never accesses this memory after zeroing it.
481 	 * It doesn't even have to be saved/restored on suspend/resume
482 	 * because it contains no data when there are no active queues.
483 	 */
484 
485 	err = kfd_gtt_sa_allocate(dqm->dev, CIK_HPD_EOP_BYTES * pipes_num,
486 					&dqm->pipeline_mem);
487 
488 	if (err) {
489 		pr_err("kfd: error allocate vidmem num pipes: %d\n",
490 			pipes_num);
491 		return -ENOMEM;
492 	}
493 
494 	hpdptr = dqm->pipeline_mem->cpu_ptr;
495 	dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;
496 
497 	memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);
498 
499 	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
500 	if (mqd == NULL) {
501 		kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
502 		return -ENOMEM;
503 	}
504 
505 	for (i = 0; i < pipes_num; i++) {
506 		inx = i + first_pipe;
507 		/*
508 		 * HPD buffer on GTT is allocated by amdkfd, no need to waste
509 		 * space in GTT for pipelines we don't initialize
510 		 */
511 		pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
512 		pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
513 		/* = log2(bytes/4)-1 */
514 		kfd2kgd->init_pipeline(dqm->dev->kgd, inx,
515 				CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
516 	}
517 
518 	return 0;
519 }
520 
521 static int init_scheduler(struct device_queue_manager *dqm)
522 {
523 	int retval;
524 
525 	BUG_ON(!dqm);
526 
527 	pr_debug("kfd: In %s\n", __func__);
528 
529 	retval = init_pipelines(dqm, get_pipes_num(dqm), get_first_pipe(dqm));
530 	return retval;
531 }
532 
533 static int initialize_nocpsch(struct device_queue_manager *dqm)
534 {
535 	int i;
536 
537 	BUG_ON(!dqm);
538 
539 	pr_debug("kfd: In func %s num of pipes: %d\n",
540 			__func__, get_pipes_num(dqm));
541 
542 	mutex_init(&dqm->lock);
543 	INIT_LIST_HEAD(&dqm->queues);
544 	dqm->queue_count = dqm->next_pipe_to_allocate = 0;
545 	dqm->sdma_queue_count = 0;
546 	dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
547 					sizeof(unsigned int), GFP_KERNEL);
548 	if (!dqm->allocated_queues) {
549 		mutex_destroy(&dqm->lock);
550 		return -ENOMEM;
551 	}
552 
553 	for (i = 0; i < get_pipes_num(dqm); i++)
554 		dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;
555 
556 	dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
557 	dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
558 
559 	init_scheduler(dqm);
560 	return 0;
561 }
562 
563 static void uninitialize_nocpsch(struct device_queue_manager *dqm)
564 {
565 	int i;
566 
567 	BUG_ON(!dqm);
568 
569 	BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
570 
571 	kfree(dqm->allocated_queues);
572 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
573 		kfree(dqm->mqds[i]);
574 	mutex_destroy(&dqm->lock);
575 	kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
576 }
577 
578 static int start_nocpsch(struct device_queue_manager *dqm)
579 {
580 	return 0;
581 }
582 
583 static int stop_nocpsch(struct device_queue_manager *dqm)
584 {
585 	return 0;
586 }
587 
588 static int allocate_sdma_queue(struct device_queue_manager *dqm,
589 				unsigned int *sdma_queue_id)
590 {
591 	int bit;
592 
593 	if (dqm->sdma_bitmap == 0)
594 		return -ENOMEM;
595 
596 	bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap,
597 				CIK_SDMA_QUEUES);
598 
599 	clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap);
600 	*sdma_queue_id = bit;
601 
602 	return 0;
603 }
604 
605 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
606 				unsigned int sdma_queue_id)
607 {
608 	if (sdma_queue_id >= CIK_SDMA_QUEUES)
609 		return;
610 	set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap);
611 }
612 
613 static void init_sdma_vm(struct device_queue_manager *dqm, struct queue *q,
614 				struct qcm_process_device *qpd)
615 {
616 	uint32_t value = SDMA_ATC;
617 
618 	if (q->process->is_32bit_user_mode)
619 		value |= SDMA_VA_PTR32 | get_sh_mem_bases_32(qpd_to_pdd(qpd));
620 	else
621 		value |= SDMA_VA_SHARED_BASE(get_sh_mem_bases_nybble_64(
622 							qpd_to_pdd(qpd)));
623 	q->properties.sdma_vm_addr = value;
624 }
625 
626 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
627 					struct queue *q,
628 					struct qcm_process_device *qpd)
629 {
630 	struct mqd_manager *mqd;
631 	int retval;
632 
633 	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
634 	if (!mqd)
635 		return -ENOMEM;
636 
637 	retval = allocate_sdma_queue(dqm, &q->sdma_id);
638 	if (retval != 0)
639 		return retval;
640 
641 	q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
642 	q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM;
643 
644 	pr_debug("kfd: sdma id is:    %d\n", q->sdma_id);
645 	pr_debug("     sdma queue id: %d\n", q->properties.sdma_queue_id);
646 	pr_debug("     sdma engine id: %d\n", q->properties.sdma_engine_id);
647 
648 	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
649 				&q->gart_mqd_addr, &q->properties);
650 	if (retval != 0) {
651 		deallocate_sdma_queue(dqm, q->sdma_id);
652 		return retval;
653 	}
654 
655 	init_sdma_vm(dqm, q, qpd);
656 	return 0;
657 }
658 
659 /*
660  * Device Queue Manager implementation for cp scheduler
661  */
662 
663 static int set_sched_resources(struct device_queue_manager *dqm)
664 {
665 	struct scheduling_resources res;
666 	unsigned int queue_num, queue_mask;
667 
668 	BUG_ON(!dqm);
669 
670 	pr_debug("kfd: In func %s\n", __func__);
671 
672 	queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
673 	queue_mask = (1 << queue_num) - 1;
674 	res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
675 	res.vmid_mask <<= KFD_VMID_START_OFFSET;
676 	res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
677 	res.gws_mask = res.oac_mask = res.gds_heap_base =
678 						res.gds_heap_size = 0;
679 
680 	pr_debug("kfd: scheduling resources:\n"
681 			"      vmid mask: 0x%8X\n"
682 			"      queue mask: 0x%8llX\n",
683 			res.vmid_mask, res.queue_mask);
684 
685 	return pm_send_set_resources(&dqm->packets, &res);
686 }
687 
688 static int initialize_cpsch(struct device_queue_manager *dqm)
689 {
690 	int retval;
691 
692 	BUG_ON(!dqm);
693 
694 	pr_debug("kfd: In func %s num of pipes: %d\n",
695 			__func__, get_pipes_num_cpsch());
696 
697 	mutex_init(&dqm->lock);
698 	INIT_LIST_HEAD(&dqm->queues);
699 	dqm->queue_count = dqm->processes_count = 0;
700 	dqm->sdma_queue_count = 0;
701 	dqm->active_runlist = false;
702 	retval = dqm->ops_asic_specific.initialize(dqm);
703 	if (retval != 0)
704 		goto fail_init_pipelines;
705 
706 	return 0;
707 
708 fail_init_pipelines:
709 	mutex_destroy(&dqm->lock);
710 	return retval;
711 }
712 
713 static int start_cpsch(struct device_queue_manager *dqm)
714 {
715 	struct device_process_node *node;
716 	int retval;
717 
718 	BUG_ON(!dqm);
719 
720 	retval = 0;
721 
722 	retval = pm_init(&dqm->packets, dqm);
723 	if (retval != 0)
724 		goto fail_packet_manager_init;
725 
726 	retval = set_sched_resources(dqm);
727 	if (retval != 0)
728 		goto fail_set_sched_resources;
729 
730 	pr_debug("kfd: allocating fence memory\n");
731 
732 	/* allocate fence memory on the gart */
733 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
734 					&dqm->fence_mem);
735 
736 	if (retval != 0)
737 		goto fail_allocate_vidmem;
738 
739 	dqm->fence_addr = dqm->fence_mem->cpu_ptr;
740 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
741 	list_for_each_entry(node, &dqm->queues, list)
742 		if (node->qpd->pqm->process && dqm->dev)
743 			kfd_bind_process_to_device(dqm->dev,
744 						node->qpd->pqm->process);
745 
746 	execute_queues_cpsch(dqm, true);
747 
748 	return 0;
749 fail_allocate_vidmem:
750 fail_set_sched_resources:
751 	pm_uninit(&dqm->packets);
752 fail_packet_manager_init:
753 	return retval;
754 }
755 
756 static int stop_cpsch(struct device_queue_manager *dqm)
757 {
758 	struct device_process_node *node;
759 	struct kfd_process_device *pdd;
760 
761 	BUG_ON(!dqm);
762 
763 	destroy_queues_cpsch(dqm, true);
764 
765 	list_for_each_entry(node, &dqm->queues, list) {
766 		pdd = qpd_to_pdd(node->qpd);
767 		pdd->bound = false;
768 	}
769 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
770 	pm_uninit(&dqm->packets);
771 
772 	return 0;
773 }
774 
775 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
776 					struct kernel_queue *kq,
777 					struct qcm_process_device *qpd)
778 {
779 	BUG_ON(!dqm || !kq || !qpd);
780 
781 	pr_debug("kfd: In func %s\n", __func__);
782 
783 	mutex_lock(&dqm->lock);
784 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
785 		pr_warn("amdkfd: Can't create new kernel queue because %d queues were already created\n",
786 				dqm->total_queue_count);
787 		mutex_unlock(&dqm->lock);
788 		return -EPERM;
789 	}
790 
791 	/*
792 	 * Unconditionally increment this counter, regardless of the queue's
793 	 * type or whether the queue is active.
794 	 */
795 	dqm->total_queue_count++;
796 	pr_debug("Total of %d queues are accountable so far\n",
797 			dqm->total_queue_count);
798 
799 	list_add(&kq->list, &qpd->priv_queue_list);
800 	dqm->queue_count++;
801 	qpd->is_debug = true;
802 	execute_queues_cpsch(dqm, false);
803 	mutex_unlock(&dqm->lock);
804 
805 	return 0;
806 }
807 
808 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
809 					struct kernel_queue *kq,
810 					struct qcm_process_device *qpd)
811 {
812 	BUG_ON(!dqm || !kq);
813 
814 	pr_debug("kfd: In %s\n", __func__);
815 
816 	mutex_lock(&dqm->lock);
817 	destroy_queues_cpsch(dqm, false);
818 	list_del(&kq->list);
819 	dqm->queue_count--;
820 	qpd->is_debug = false;
821 	execute_queues_cpsch(dqm, false);
822 	/*
823 	 * Unconditionally decrement this counter, regardless of the queue's
824 	 * type.
825 	 */
826 	dqm->total_queue_count--;
827 	pr_debug("Total of %d queues are accountable so far\n",
828 			dqm->total_queue_count);
829 	mutex_unlock(&dqm->lock);
830 }
831 
832 static void select_sdma_engine_id(struct queue *q)
833 {
834 	static int sdma_id;
835 
836 	q->sdma_id = sdma_id;
837 	sdma_id = (sdma_id + 1) % 2;
838 }
839 
840 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
841 			struct qcm_process_device *qpd, int *allocate_vmid)
842 {
843 	int retval;
844 	struct mqd_manager *mqd;
845 
846 	BUG_ON(!dqm || !q || !qpd);
847 
848 	retval = 0;
849 
850 	if (allocate_vmid)
851 		*allocate_vmid = 0;
852 
853 	mutex_lock(&dqm->lock);
854 
855 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
856 		pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
857 				dqm->total_queue_count);
858 		retval = -EPERM;
859 		goto out;
860 	}
861 
862 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
863 		select_sdma_engine_id(q);
864 
865 	mqd = dqm->ops.get_mqd_manager(dqm,
866 			get_mqd_type_from_queue_type(q->properties.type));
867 
868 	if (mqd == NULL) {
869 		mutex_unlock(&dqm->lock);
870 		return -ENOMEM;
871 	}
872 
873 	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
874 				&q->gart_mqd_addr, &q->properties);
875 	if (retval != 0)
876 		goto out;
877 
878 	list_add(&q->list, &qpd->queues_list);
879 	if (q->properties.is_active) {
880 		dqm->queue_count++;
881 		retval = execute_queues_cpsch(dqm, false);
882 	}
883 
884 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
885 			dqm->sdma_queue_count++;
886 	/*
887 	 * Unconditionally increment this counter, regardless of the queue's
888 	 * type or whether the queue is active.
889 	 */
890 	dqm->total_queue_count++;
891 
892 	pr_debug("Total of %d queues are accountable so far\n",
893 			dqm->total_queue_count);
894 
895 out:
896 	mutex_unlock(&dqm->lock);
897 	return retval;
898 }
899 
900 static int fence_wait_timeout(unsigned int *fence_addr,
901 				unsigned int fence_value,
902 				unsigned long timeout)
903 {
904 	BUG_ON(!fence_addr);
905 	timeout += jiffies;
906 
907 	while (*fence_addr != fence_value) {
908 		if (time_after(jiffies, timeout)) {
909 			pr_err("kfd: qcm fence wait loop timeout expired\n");
910 			return -ETIME;
911 		}
912 		schedule();
913 	}
914 
915 	return 0;
916 }
917 
918 static int destroy_sdma_queues(struct device_queue_manager *dqm,
919 				unsigned int sdma_engine)
920 {
921 	return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
922 			KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false,
923 			sdma_engine);
924 }
925 
926 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock)
927 {
928 	int retval;
929 
930 	BUG_ON(!dqm);
931 
932 	retval = 0;
933 
934 	if (lock)
935 		mutex_lock(&dqm->lock);
936 	if (dqm->active_runlist == false)
937 		goto out;
938 
939 	pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n",
940 		dqm->sdma_queue_count);
941 
942 	if (dqm->sdma_queue_count > 0) {
943 		destroy_sdma_queues(dqm, 0);
944 		destroy_sdma_queues(dqm, 1);
945 	}
946 
947 	retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
948 			KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false, 0);
949 	if (retval != 0)
950 		goto out;
951 
952 	*dqm->fence_addr = KFD_FENCE_INIT;
953 	pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
954 				KFD_FENCE_COMPLETED);
955 	/* should be timed out */
956 	fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
957 				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
958 	pm_release_ib(&dqm->packets);
959 	dqm->active_runlist = false;
960 
961 out:
962 	if (lock)
963 		mutex_unlock(&dqm->lock);
964 	return retval;
965 }
966 
967 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
968 {
969 	int retval;
970 
971 	BUG_ON(!dqm);
972 
973 	if (lock)
974 		mutex_lock(&dqm->lock);
975 
976 	retval = destroy_queues_cpsch(dqm, false);
977 	if (retval != 0) {
978 		pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
979 		goto out;
980 	}
981 
982 	if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
983 		retval = 0;
984 		goto out;
985 	}
986 
987 	if (dqm->active_runlist) {
988 		retval = 0;
989 		goto out;
990 	}
991 
992 	retval = pm_send_runlist(&dqm->packets, &dqm->queues);
993 	if (retval != 0) {
994 		pr_err("kfd: failed to execute runlist");
995 		goto out;
996 	}
997 	dqm->active_runlist = true;
998 
999 out:
1000 	if (lock)
1001 		mutex_unlock(&dqm->lock);
1002 	return retval;
1003 }
1004 
1005 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1006 				struct qcm_process_device *qpd,
1007 				struct queue *q)
1008 {
1009 	int retval;
1010 	struct mqd_manager *mqd;
1011 
1012 	BUG_ON(!dqm || !qpd || !q);
1013 
1014 	retval = 0;
1015 
1016 	/* remove queue from list to prevent rescheduling after preemption */
1017 	mutex_lock(&dqm->lock);
1018 	mqd = dqm->ops.get_mqd_manager(dqm,
1019 			get_mqd_type_from_queue_type(q->properties.type));
1020 	if (!mqd) {
1021 		retval = -ENOMEM;
1022 		goto failed;
1023 	}
1024 
1025 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1026 		dqm->sdma_queue_count--;
1027 
1028 	list_del(&q->list);
1029 	if (q->properties.is_active)
1030 		dqm->queue_count--;
1031 
1032 	execute_queues_cpsch(dqm, false);
1033 
1034 	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
1035 
1036 	/*
1037 	 * Unconditionally decrement this counter, regardless of the queue's
1038 	 * type
1039 	 */
1040 	dqm->total_queue_count--;
1041 	pr_debug("Total of %d queues are accountable so far\n",
1042 			dqm->total_queue_count);
1043 
1044 	mutex_unlock(&dqm->lock);
1045 
1046 	return 0;
1047 
1048 failed:
1049 	mutex_unlock(&dqm->lock);
1050 	return retval;
1051 }
1052 
1053 /*
1054  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1055  * stay in user mode.
1056  */
1057 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1058 /* APE1 limit is inclusive and 64K aligned. */
1059 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1060 
1061 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1062 				   struct qcm_process_device *qpd,
1063 				   enum cache_policy default_policy,
1064 				   enum cache_policy alternate_policy,
1065 				   void __user *alternate_aperture_base,
1066 				   uint64_t alternate_aperture_size)
1067 {
1068 	bool retval;
1069 
1070 	pr_debug("kfd: In func %s\n", __func__);
1071 
1072 	mutex_lock(&dqm->lock);
1073 
1074 	if (alternate_aperture_size == 0) {
1075 		/* base > limit disables APE1 */
1076 		qpd->sh_mem_ape1_base = 1;
1077 		qpd->sh_mem_ape1_limit = 0;
1078 	} else {
1079 		/*
1080 		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1081 		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
1082 		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1083 		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1084 		 * Verify that the base and size parameters can be
1085 		 * represented in this format and convert them.
1086 		 * Additionally restrict APE1 to user-mode addresses.
1087 		 */
1088 
1089 		uint64_t base = (uintptr_t)alternate_aperture_base;
1090 		uint64_t limit = base + alternate_aperture_size - 1;
1091 
1092 		if (limit <= base)
1093 			goto out;
1094 
1095 		if ((base & APE1_FIXED_BITS_MASK) != 0)
1096 			goto out;
1097 
1098 		if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
1099 			goto out;
1100 
1101 		qpd->sh_mem_ape1_base = base >> 16;
1102 		qpd->sh_mem_ape1_limit = limit >> 16;
1103 	}
1104 
1105 	retval = dqm->ops_asic_specific.set_cache_memory_policy(
1106 			dqm,
1107 			qpd,
1108 			default_policy,
1109 			alternate_policy,
1110 			alternate_aperture_base,
1111 			alternate_aperture_size);
1112 
1113 	if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1114 		program_sh_mem_settings(dqm, qpd);
1115 
1116 	pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1117 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1118 		qpd->sh_mem_ape1_limit);
1119 
1120 	mutex_unlock(&dqm->lock);
1121 	return retval;
1122 
1123 out:
1124 	mutex_unlock(&dqm->lock);
1125 	return false;
1126 }
1127 
1128 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1129 {
1130 	struct device_queue_manager *dqm;
1131 
1132 	BUG_ON(!dev);
1133 
1134 	pr_debug("kfd: loading device queue manager\n");
1135 
1136 	dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
1137 	if (!dqm)
1138 		return NULL;
1139 
1140 	dqm->dev = dev;
1141 	switch (sched_policy) {
1142 	case KFD_SCHED_POLICY_HWS:
1143 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1144 		/* initialize dqm for cp scheduling */
1145 		dqm->ops.create_queue = create_queue_cpsch;
1146 		dqm->ops.initialize = initialize_cpsch;
1147 		dqm->ops.start = start_cpsch;
1148 		dqm->ops.stop = stop_cpsch;
1149 		dqm->ops.destroy_queue = destroy_queue_cpsch;
1150 		dqm->ops.update_queue = update_queue;
1151 		dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1152 		dqm->ops.register_process = register_process_nocpsch;
1153 		dqm->ops.unregister_process = unregister_process_nocpsch;
1154 		dqm->ops.uninitialize = uninitialize_nocpsch;
1155 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1156 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1157 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1158 		break;
1159 	case KFD_SCHED_POLICY_NO_HWS:
1160 		/* initialize dqm for no cp scheduling */
1161 		dqm->ops.start = start_nocpsch;
1162 		dqm->ops.stop = stop_nocpsch;
1163 		dqm->ops.create_queue = create_queue_nocpsch;
1164 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
1165 		dqm->ops.update_queue = update_queue;
1166 		dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1167 		dqm->ops.register_process = register_process_nocpsch;
1168 		dqm->ops.unregister_process = unregister_process_nocpsch;
1169 		dqm->ops.initialize = initialize_nocpsch;
1170 		dqm->ops.uninitialize = uninitialize_nocpsch;
1171 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1172 		break;
1173 	default:
1174 		BUG();
1175 		break;
1176 	}
1177 
1178 	switch (dev->device_info->asic_family) {
1179 	case CHIP_CARRIZO:
1180 		device_queue_manager_init_vi(&dqm->ops_asic_specific);
1181 		break;
1182 
1183 	case CHIP_KAVERI:
1184 		device_queue_manager_init_cik(&dqm->ops_asic_specific);
1185 		break;
1186 	}
1187 
1188 	if (dqm->ops.initialize(dqm) != 0) {
1189 		kfree(dqm);
1190 		return NULL;
1191 	}
1192 
1193 	return dqm;
1194 }
1195 
1196 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1197 {
1198 	BUG_ON(!dqm);
1199 
1200 	dqm->ops.uninitialize(dqm);
1201 	kfree(dqm);
1202 }
1203