1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "mes_api_def.h"
39 #include "kfd_debug.h"
40 
41 /* Size of the per-pipe EOP queue */
42 #define CIK_HPD_EOP_BYTES_LOG2 11
43 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
44 
45 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
46 				  u32 pasid, unsigned int vmid);
47 
48 static int execute_queues_cpsch(struct device_queue_manager *dqm,
49 				enum kfd_unmap_queues_filter filter,
50 				uint32_t filter_param,
51 				uint32_t grace_period);
52 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
53 				enum kfd_unmap_queues_filter filter,
54 				uint32_t filter_param,
55 				uint32_t grace_period,
56 				bool reset);
57 
58 static int map_queues_cpsch(struct device_queue_manager *dqm);
59 
60 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
61 				struct queue *q);
62 
63 static inline void deallocate_hqd(struct device_queue_manager *dqm,
64 				struct queue *q);
65 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
66 static int allocate_sdma_queue(struct device_queue_manager *dqm,
67 				struct queue *q, const uint32_t *restore_sdma_id);
68 static void kfd_process_hw_exception(struct work_struct *work);
69 
70 static inline
71 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
72 {
73 	if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
74 		return KFD_MQD_TYPE_SDMA;
75 	return KFD_MQD_TYPE_CP;
76 }
77 
78 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
79 {
80 	int i;
81 	int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
82 		+ pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
83 
84 	/* queue is available for KFD usage if bit is 1 */
85 	for (i = 0; i <  dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
86 		if (test_bit(pipe_offset + i,
87 			      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
88 			return true;
89 	return false;
90 }
91 
92 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
93 {
94 	return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
95 				KGD_MAX_QUEUES);
96 }
97 
98 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
99 {
100 	return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
101 }
102 
103 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
104 {
105 	return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
106 }
107 
108 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
109 {
110 	return kfd_get_num_sdma_engines(dqm->dev) +
111 		kfd_get_num_xgmi_sdma_engines(dqm->dev);
112 }
113 
114 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
115 {
116 	return kfd_get_num_sdma_engines(dqm->dev) *
117 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
118 }
119 
120 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
121 {
122 	return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
123 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
124 }
125 
126 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
127 {
128 	bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
129 	bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
130 
131 	bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
132 	bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
133 
134 	/* Mask out the reserved queues */
135 	bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap,
136 		      dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap,
137 		      KFD_MAX_SDMA_QUEUES);
138 }
139 
140 void program_sh_mem_settings(struct device_queue_manager *dqm,
141 					struct qcm_process_device *qpd)
142 {
143 	uint32_t xcc_mask = dqm->dev->xcc_mask;
144 	int xcc_id;
145 
146 	for_each_inst(xcc_id, xcc_mask)
147 		dqm->dev->kfd2kgd->program_sh_mem_settings(
148 			dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
149 			qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
150 			qpd->sh_mem_bases, xcc_id);
151 }
152 
153 static void kfd_hws_hang(struct device_queue_manager *dqm)
154 {
155 	/*
156 	 * Issue a GPU reset if HWS is unresponsive
157 	 */
158 	dqm->is_hws_hang = true;
159 
160 	/* It's possible we're detecting a HWS hang in the
161 	 * middle of a GPU reset. No need to schedule another
162 	 * reset in this case.
163 	 */
164 	if (!dqm->is_resetting)
165 		schedule_work(&dqm->hw_exception_work);
166 }
167 
168 static int convert_to_mes_queue_type(int queue_type)
169 {
170 	int mes_queue_type;
171 
172 	switch (queue_type) {
173 	case KFD_QUEUE_TYPE_COMPUTE:
174 		mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
175 		break;
176 	case KFD_QUEUE_TYPE_SDMA:
177 		mes_queue_type = MES_QUEUE_TYPE_SDMA;
178 		break;
179 	default:
180 		WARN(1, "Invalid queue type %d", queue_type);
181 		mes_queue_type = -EINVAL;
182 		break;
183 	}
184 
185 	return mes_queue_type;
186 }
187 
188 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
189 			 struct qcm_process_device *qpd)
190 {
191 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
192 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
193 	struct mes_add_queue_input queue_input;
194 	int r, queue_type;
195 	uint64_t wptr_addr_off;
196 
197 	if (dqm->is_hws_hang)
198 		return -EIO;
199 
200 	memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
201 	queue_input.process_id = qpd->pqm->process->pasid;
202 	queue_input.page_table_base_addr =  qpd->page_table_base;
203 	queue_input.process_va_start = 0;
204 	queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
205 	/* MES unit for quantum is 100ns */
206 	queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM;  /* Equivalent to 10ms. */
207 	queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
208 	queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
209 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
210 	queue_input.inprocess_gang_priority = q->properties.priority;
211 	queue_input.gang_global_priority_level =
212 					AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
213 	queue_input.doorbell_offset = q->properties.doorbell_off;
214 	queue_input.mqd_addr = q->gart_mqd_addr;
215 	queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
216 
217 	if (q->wptr_bo) {
218 		wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
219 		queue_input.wptr_mc_addr = ((uint64_t)q->wptr_bo->tbo.resource->start << PAGE_SHIFT) + wptr_addr_off;
220 	}
221 
222 	queue_input.is_kfd_process = 1;
223 	queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
224 	queue_input.queue_size = q->properties.queue_size >> 2;
225 
226 	queue_input.paging = false;
227 	queue_input.tba_addr = qpd->tba_addr;
228 	queue_input.tma_addr = qpd->tma_addr;
229 	queue_input.trap_en = KFD_GC_VERSION(q->device) < IP_VERSION(11, 0, 0) ||
230 			      KFD_GC_VERSION(q->device) > IP_VERSION(11, 0, 3);
231 	queue_input.skip_process_ctx_clear = qpd->pqm->process->debug_trap_enabled;
232 
233 	queue_type = convert_to_mes_queue_type(q->properties.type);
234 	if (queue_type < 0) {
235 		pr_err("Queue type not supported with MES, queue:%d\n",
236 				q->properties.type);
237 		return -EINVAL;
238 	}
239 	queue_input.queue_type = (uint32_t)queue_type;
240 
241 	if (q->gws) {
242 		queue_input.gws_base = 0;
243 		queue_input.gws_size = qpd->num_gws;
244 	}
245 
246 	amdgpu_mes_lock(&adev->mes);
247 	r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
248 	amdgpu_mes_unlock(&adev->mes);
249 	if (r) {
250 		pr_err("failed to add hardware queue to MES, doorbell=0x%x\n",
251 			q->properties.doorbell_off);
252 		pr_err("MES might be in unrecoverable state, issue a GPU reset\n");
253 		kfd_hws_hang(dqm);
254 }
255 
256 	return r;
257 }
258 
259 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
260 			struct qcm_process_device *qpd)
261 {
262 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
263 	int r;
264 	struct mes_remove_queue_input queue_input;
265 
266 	if (dqm->is_hws_hang)
267 		return -EIO;
268 
269 	memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
270 	queue_input.doorbell_offset = q->properties.doorbell_off;
271 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
272 
273 	amdgpu_mes_lock(&adev->mes);
274 	r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
275 	amdgpu_mes_unlock(&adev->mes);
276 
277 	if (r) {
278 		pr_err("failed to remove hardware queue from MES, doorbell=0x%x\n",
279 			q->properties.doorbell_off);
280 		pr_err("MES might be in unrecoverable state, issue a GPU reset\n");
281 		kfd_hws_hang(dqm);
282 	}
283 
284 	return r;
285 }
286 
287 static int remove_all_queues_mes(struct device_queue_manager *dqm)
288 {
289 	struct device_process_node *cur;
290 	struct qcm_process_device *qpd;
291 	struct queue *q;
292 	int retval = 0;
293 
294 	list_for_each_entry(cur, &dqm->queues, list) {
295 		qpd = cur->qpd;
296 		list_for_each_entry(q, &qpd->queues_list, list) {
297 			if (q->properties.is_active) {
298 				retval = remove_queue_mes(dqm, q, qpd);
299 				if (retval) {
300 					pr_err("%s: Failed to remove queue %d for dev %d",
301 						__func__,
302 						q->properties.queue_id,
303 						dqm->dev->id);
304 					return retval;
305 				}
306 			}
307 		}
308 	}
309 
310 	return retval;
311 }
312 
313 static void increment_queue_count(struct device_queue_manager *dqm,
314 				  struct qcm_process_device *qpd,
315 				  struct queue *q)
316 {
317 	dqm->active_queue_count++;
318 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
319 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
320 		dqm->active_cp_queue_count++;
321 
322 	if (q->properties.is_gws) {
323 		dqm->gws_queue_count++;
324 		qpd->mapped_gws_queue = true;
325 	}
326 }
327 
328 static void decrement_queue_count(struct device_queue_manager *dqm,
329 				  struct qcm_process_device *qpd,
330 				  struct queue *q)
331 {
332 	dqm->active_queue_count--;
333 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
334 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
335 		dqm->active_cp_queue_count--;
336 
337 	if (q->properties.is_gws) {
338 		dqm->gws_queue_count--;
339 		qpd->mapped_gws_queue = false;
340 	}
341 }
342 
343 /*
344  * Allocate a doorbell ID to this queue.
345  * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
346  */
347 static int allocate_doorbell(struct qcm_process_device *qpd,
348 			     struct queue *q,
349 			     uint32_t const *restore_id)
350 {
351 	struct kfd_node *dev = qpd->dqm->dev;
352 
353 	if (!KFD_IS_SOC15(dev)) {
354 		/* On pre-SOC15 chips we need to use the queue ID to
355 		 * preserve the user mode ABI.
356 		 */
357 
358 		if (restore_id && *restore_id != q->properties.queue_id)
359 			return -EINVAL;
360 
361 		q->doorbell_id = q->properties.queue_id;
362 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
363 			q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
364 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
365 		 * doorbell assignments based on the engine and queue id.
366 		 * The doobell index distance between RLC (2*i) and (2*i+1)
367 		 * for a SDMA engine is 512.
368 		 */
369 
370 		uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
371 
372 		/*
373 		 * q->properties.sdma_engine_id corresponds to the virtual
374 		 * sdma engine number. However, for doorbell allocation,
375 		 * we need the physical sdma engine id in order to get the
376 		 * correct doorbell offset.
377 		 */
378 		uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
379 					       get_num_all_sdma_engines(qpd->dqm) +
380 					       q->properties.sdma_engine_id]
381 						+ (q->properties.sdma_queue_id & 1)
382 						* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
383 						+ (q->properties.sdma_queue_id >> 1);
384 
385 		if (restore_id && *restore_id != valid_id)
386 			return -EINVAL;
387 		q->doorbell_id = valid_id;
388 	} else {
389 		/* For CP queues on SOC15 */
390 		if (restore_id) {
391 			/* make sure that ID is free  */
392 			if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
393 				return -EINVAL;
394 
395 			q->doorbell_id = *restore_id;
396 		} else {
397 			/* or reserve a free doorbell ID */
398 			unsigned int found;
399 
400 			found = find_first_zero_bit(qpd->doorbell_bitmap,
401 						KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
402 			if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
403 				pr_debug("No doorbells available");
404 				return -EBUSY;
405 			}
406 			set_bit(found, qpd->doorbell_bitmap);
407 			q->doorbell_id = found;
408 		}
409 	}
410 
411 	q->properties.doorbell_off =
412 		kfd_get_doorbell_dw_offset_in_bar(dev->kfd, qpd_to_pdd(qpd),
413 					  q->doorbell_id);
414 	return 0;
415 }
416 
417 static void deallocate_doorbell(struct qcm_process_device *qpd,
418 				struct queue *q)
419 {
420 	unsigned int old;
421 	struct kfd_node *dev = qpd->dqm->dev;
422 
423 	if (!KFD_IS_SOC15(dev) ||
424 	    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
425 	    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
426 		return;
427 
428 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
429 	WARN_ON(!old);
430 }
431 
432 static void program_trap_handler_settings(struct device_queue_manager *dqm,
433 				struct qcm_process_device *qpd)
434 {
435 	uint32_t xcc_mask = dqm->dev->xcc_mask;
436 	int xcc_id;
437 
438 	if (dqm->dev->kfd2kgd->program_trap_handler_settings)
439 		for_each_inst(xcc_id, xcc_mask)
440 			dqm->dev->kfd2kgd->program_trap_handler_settings(
441 				dqm->dev->adev, qpd->vmid, qpd->tba_addr,
442 				qpd->tma_addr, xcc_id);
443 }
444 
445 static int allocate_vmid(struct device_queue_manager *dqm,
446 			struct qcm_process_device *qpd,
447 			struct queue *q)
448 {
449 	int allocated_vmid = -1, i;
450 
451 	for (i = dqm->dev->vm_info.first_vmid_kfd;
452 			i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
453 		if (!dqm->vmid_pasid[i]) {
454 			allocated_vmid = i;
455 			break;
456 		}
457 	}
458 
459 	if (allocated_vmid < 0) {
460 		pr_err("no more vmid to allocate\n");
461 		return -ENOSPC;
462 	}
463 
464 	pr_debug("vmid allocated: %d\n", allocated_vmid);
465 
466 	dqm->vmid_pasid[allocated_vmid] = q->process->pasid;
467 
468 	set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid);
469 
470 	qpd->vmid = allocated_vmid;
471 	q->properties.vmid = allocated_vmid;
472 
473 	program_sh_mem_settings(dqm, qpd);
474 
475 	if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
476 		program_trap_handler_settings(dqm, qpd);
477 
478 	/* qpd->page_table_base is set earlier when register_process()
479 	 * is called, i.e. when the first queue is created.
480 	 */
481 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
482 			qpd->vmid,
483 			qpd->page_table_base);
484 	/* invalidate the VM context after pasid and vmid mapping is set up */
485 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
486 
487 	if (dqm->dev->kfd2kgd->set_scratch_backing_va)
488 		dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
489 				qpd->sh_hidden_private_base, qpd->vmid);
490 
491 	return 0;
492 }
493 
494 static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
495 				struct qcm_process_device *qpd)
496 {
497 	const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
498 	int ret;
499 
500 	if (!qpd->ib_kaddr)
501 		return -ENOMEM;
502 
503 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
504 	if (ret)
505 		return ret;
506 
507 	return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
508 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
509 				pmf->release_mem_size / sizeof(uint32_t));
510 }
511 
512 static void deallocate_vmid(struct device_queue_manager *dqm,
513 				struct qcm_process_device *qpd,
514 				struct queue *q)
515 {
516 	/* On GFX v7, CP doesn't flush TC at dequeue */
517 	if (q->device->adev->asic_type == CHIP_HAWAII)
518 		if (flush_texture_cache_nocpsch(q->device, qpd))
519 			pr_err("Failed to flush TC\n");
520 
521 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
522 
523 	/* Release the vmid mapping */
524 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
525 	dqm->vmid_pasid[qpd->vmid] = 0;
526 
527 	qpd->vmid = 0;
528 	q->properties.vmid = 0;
529 }
530 
531 static int create_queue_nocpsch(struct device_queue_manager *dqm,
532 				struct queue *q,
533 				struct qcm_process_device *qpd,
534 				const struct kfd_criu_queue_priv_data *qd,
535 				const void *restore_mqd, const void *restore_ctl_stack)
536 {
537 	struct mqd_manager *mqd_mgr;
538 	int retval;
539 
540 	dqm_lock(dqm);
541 
542 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
543 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
544 				dqm->total_queue_count);
545 		retval = -EPERM;
546 		goto out_unlock;
547 	}
548 
549 	if (list_empty(&qpd->queues_list)) {
550 		retval = allocate_vmid(dqm, qpd, q);
551 		if (retval)
552 			goto out_unlock;
553 	}
554 	q->properties.vmid = qpd->vmid;
555 	/*
556 	 * Eviction state logic: mark all queues as evicted, even ones
557 	 * not currently active. Restoring inactive queues later only
558 	 * updates the is_evicted flag but is a no-op otherwise.
559 	 */
560 	q->properties.is_evicted = !!qpd->evicted;
561 
562 	q->properties.tba_addr = qpd->tba_addr;
563 	q->properties.tma_addr = qpd->tma_addr;
564 
565 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
566 			q->properties.type)];
567 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
568 		retval = allocate_hqd(dqm, q);
569 		if (retval)
570 			goto deallocate_vmid;
571 		pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
572 			q->pipe, q->queue);
573 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
574 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
575 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
576 		if (retval)
577 			goto deallocate_vmid;
578 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
579 	}
580 
581 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
582 	if (retval)
583 		goto out_deallocate_hqd;
584 
585 	/* Temporarily release dqm lock to avoid a circular lock dependency */
586 	dqm_unlock(dqm);
587 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
588 	dqm_lock(dqm);
589 
590 	if (!q->mqd_mem_obj) {
591 		retval = -ENOMEM;
592 		goto out_deallocate_doorbell;
593 	}
594 
595 	if (qd)
596 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
597 				     &q->properties, restore_mqd, restore_ctl_stack,
598 				     qd->ctl_stack_size);
599 	else
600 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
601 					&q->gart_mqd_addr, &q->properties);
602 
603 	if (q->properties.is_active) {
604 		if (!dqm->sched_running) {
605 			WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
606 			goto add_queue_to_list;
607 		}
608 
609 		if (WARN(q->process->mm != current->mm,
610 					"should only run in user thread"))
611 			retval = -EFAULT;
612 		else
613 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
614 					q->queue, &q->properties, current->mm);
615 		if (retval)
616 			goto out_free_mqd;
617 	}
618 
619 add_queue_to_list:
620 	list_add(&q->list, &qpd->queues_list);
621 	qpd->queue_count++;
622 	if (q->properties.is_active)
623 		increment_queue_count(dqm, qpd, q);
624 
625 	/*
626 	 * Unconditionally increment this counter, regardless of the queue's
627 	 * type or whether the queue is active.
628 	 */
629 	dqm->total_queue_count++;
630 	pr_debug("Total of %d queues are accountable so far\n",
631 			dqm->total_queue_count);
632 	goto out_unlock;
633 
634 out_free_mqd:
635 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
636 out_deallocate_doorbell:
637 	deallocate_doorbell(qpd, q);
638 out_deallocate_hqd:
639 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
640 		deallocate_hqd(dqm, q);
641 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
642 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
643 		deallocate_sdma_queue(dqm, q);
644 deallocate_vmid:
645 	if (list_empty(&qpd->queues_list))
646 		deallocate_vmid(dqm, qpd, q);
647 out_unlock:
648 	dqm_unlock(dqm);
649 	return retval;
650 }
651 
652 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
653 {
654 	bool set;
655 	int pipe, bit, i;
656 
657 	set = false;
658 
659 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
660 			i < get_pipes_per_mec(dqm);
661 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
662 
663 		if (!is_pipe_enabled(dqm, 0, pipe))
664 			continue;
665 
666 		if (dqm->allocated_queues[pipe] != 0) {
667 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
668 			dqm->allocated_queues[pipe] &= ~(1 << bit);
669 			q->pipe = pipe;
670 			q->queue = bit;
671 			set = true;
672 			break;
673 		}
674 	}
675 
676 	if (!set)
677 		return -EBUSY;
678 
679 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
680 	/* horizontal hqd allocation */
681 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
682 
683 	return 0;
684 }
685 
686 static inline void deallocate_hqd(struct device_queue_manager *dqm,
687 				struct queue *q)
688 {
689 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
690 }
691 
692 #define SQ_IND_CMD_CMD_KILL		0x00000003
693 #define SQ_IND_CMD_MODE_BROADCAST	0x00000001
694 
695 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
696 {
697 	int status = 0;
698 	unsigned int vmid;
699 	uint16_t queried_pasid;
700 	union SQ_CMD_BITS reg_sq_cmd;
701 	union GRBM_GFX_INDEX_BITS reg_gfx_index;
702 	struct kfd_process_device *pdd;
703 	int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
704 	int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
705 	uint32_t xcc_mask = dev->xcc_mask;
706 	int xcc_id;
707 
708 	reg_sq_cmd.u32All = 0;
709 	reg_gfx_index.u32All = 0;
710 
711 	pr_debug("Killing all process wavefronts\n");
712 
713 	if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
714 		pr_err("no vmid pasid mapping supported \n");
715 		return -EOPNOTSUPP;
716 	}
717 
718 	/* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
719 	 * ATC_VMID15_PASID_MAPPING
720 	 * to check which VMID the current process is mapped to.
721 	 */
722 
723 	for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
724 		status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
725 				(dev->adev, vmid, &queried_pasid);
726 
727 		if (status && queried_pasid == p->pasid) {
728 			pr_debug("Killing wave fronts of vmid %d and pasid 0x%x\n",
729 					vmid, p->pasid);
730 			break;
731 		}
732 	}
733 
734 	if (vmid > last_vmid_to_scan) {
735 		pr_err("Didn't find vmid for pasid 0x%x\n", p->pasid);
736 		return -EFAULT;
737 	}
738 
739 	/* taking the VMID for that process on the safe way using PDD */
740 	pdd = kfd_get_process_device_data(dev, p);
741 	if (!pdd)
742 		return -EFAULT;
743 
744 	reg_gfx_index.bits.sh_broadcast_writes = 1;
745 	reg_gfx_index.bits.se_broadcast_writes = 1;
746 	reg_gfx_index.bits.instance_broadcast_writes = 1;
747 	reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
748 	reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
749 	reg_sq_cmd.bits.vm_id = vmid;
750 
751 	for_each_inst(xcc_id, xcc_mask)
752 		dev->kfd2kgd->wave_control_execute(
753 			dev->adev, reg_gfx_index.u32All,
754 			reg_sq_cmd.u32All, xcc_id);
755 
756 	return 0;
757 }
758 
759 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
760  * to avoid asynchronized access
761  */
762 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
763 				struct qcm_process_device *qpd,
764 				struct queue *q)
765 {
766 	int retval;
767 	struct mqd_manager *mqd_mgr;
768 
769 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
770 			q->properties.type)];
771 
772 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
773 		deallocate_hqd(dqm, q);
774 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
775 		deallocate_sdma_queue(dqm, q);
776 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
777 		deallocate_sdma_queue(dqm, q);
778 	else {
779 		pr_debug("q->properties.type %d is invalid\n",
780 				q->properties.type);
781 		return -EINVAL;
782 	}
783 	dqm->total_queue_count--;
784 
785 	deallocate_doorbell(qpd, q);
786 
787 	if (!dqm->sched_running) {
788 		WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
789 		return 0;
790 	}
791 
792 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
793 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
794 				KFD_UNMAP_LATENCY_MS,
795 				q->pipe, q->queue);
796 	if (retval == -ETIME)
797 		qpd->reset_wavefronts = true;
798 
799 	list_del(&q->list);
800 	if (list_empty(&qpd->queues_list)) {
801 		if (qpd->reset_wavefronts) {
802 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
803 					dqm->dev);
804 			/* dbgdev_wave_reset_wavefronts has to be called before
805 			 * deallocate_vmid(), i.e. when vmid is still in use.
806 			 */
807 			dbgdev_wave_reset_wavefronts(dqm->dev,
808 					qpd->pqm->process);
809 			qpd->reset_wavefronts = false;
810 		}
811 
812 		deallocate_vmid(dqm, qpd, q);
813 	}
814 	qpd->queue_count--;
815 	if (q->properties.is_active)
816 		decrement_queue_count(dqm, qpd, q);
817 
818 	return retval;
819 }
820 
821 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
822 				struct qcm_process_device *qpd,
823 				struct queue *q)
824 {
825 	int retval;
826 	uint64_t sdma_val = 0;
827 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
828 	struct mqd_manager *mqd_mgr =
829 		dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
830 
831 	/* Get the SDMA queue stats */
832 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
833 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
834 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
835 							&sdma_val);
836 		if (retval)
837 			pr_err("Failed to read SDMA queue counter for queue: %d\n",
838 				q->properties.queue_id);
839 	}
840 
841 	dqm_lock(dqm);
842 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
843 	if (!retval)
844 		pdd->sdma_past_activity_counter += sdma_val;
845 	dqm_unlock(dqm);
846 
847 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
848 
849 	return retval;
850 }
851 
852 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
853 			struct mqd_update_info *minfo)
854 {
855 	int retval = 0;
856 	struct mqd_manager *mqd_mgr;
857 	struct kfd_process_device *pdd;
858 	bool prev_active = false;
859 
860 	dqm_lock(dqm);
861 	pdd = kfd_get_process_device_data(q->device, q->process);
862 	if (!pdd) {
863 		retval = -ENODEV;
864 		goto out_unlock;
865 	}
866 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
867 			q->properties.type)];
868 
869 	/* Save previous activity state for counters */
870 	prev_active = q->properties.is_active;
871 
872 	/* Make sure the queue is unmapped before updating the MQD */
873 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
874 		if (!dqm->dev->kfd->shared_resources.enable_mes)
875 			retval = unmap_queues_cpsch(dqm,
876 						    KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
877 		else if (prev_active)
878 			retval = remove_queue_mes(dqm, q, &pdd->qpd);
879 
880 		if (retval) {
881 			pr_err("unmap queue failed\n");
882 			goto out_unlock;
883 		}
884 	} else if (prev_active &&
885 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
886 		    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
887 		    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
888 
889 		if (!dqm->sched_running) {
890 			WARN_ONCE(1, "Update non-HWS queue while stopped\n");
891 			goto out_unlock;
892 		}
893 
894 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
895 				(dqm->dev->kfd->cwsr_enabled ?
896 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
897 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
898 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
899 		if (retval) {
900 			pr_err("destroy mqd failed\n");
901 			goto out_unlock;
902 		}
903 	}
904 
905 	mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
906 
907 	/*
908 	 * check active state vs. the previous state and modify
909 	 * counter accordingly. map_queues_cpsch uses the
910 	 * dqm->active_queue_count to determine whether a new runlist must be
911 	 * uploaded.
912 	 */
913 	if (q->properties.is_active && !prev_active) {
914 		increment_queue_count(dqm, &pdd->qpd, q);
915 	} else if (!q->properties.is_active && prev_active) {
916 		decrement_queue_count(dqm, &pdd->qpd, q);
917 	} else if (q->gws && !q->properties.is_gws) {
918 		if (q->properties.is_active) {
919 			dqm->gws_queue_count++;
920 			pdd->qpd.mapped_gws_queue = true;
921 		}
922 		q->properties.is_gws = true;
923 	} else if (!q->gws && q->properties.is_gws) {
924 		if (q->properties.is_active) {
925 			dqm->gws_queue_count--;
926 			pdd->qpd.mapped_gws_queue = false;
927 		}
928 		q->properties.is_gws = false;
929 	}
930 
931 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
932 		if (!dqm->dev->kfd->shared_resources.enable_mes)
933 			retval = map_queues_cpsch(dqm);
934 		else if (q->properties.is_active)
935 			retval = add_queue_mes(dqm, q, &pdd->qpd);
936 	} else if (q->properties.is_active &&
937 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
938 		  q->properties.type == KFD_QUEUE_TYPE_SDMA ||
939 		  q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
940 		if (WARN(q->process->mm != current->mm,
941 			 "should only run in user thread"))
942 			retval = -EFAULT;
943 		else
944 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
945 						   q->pipe, q->queue,
946 						   &q->properties, current->mm);
947 	}
948 
949 out_unlock:
950 	dqm_unlock(dqm);
951 	return retval;
952 }
953 
954 /* suspend_single_queue does not lock the dqm like the
955  * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
956  * lock the dqm before calling, and unlock after calling.
957  *
958  * The reason we don't lock the dqm is because this function may be
959  * called on multiple queues in a loop, so rather than locking/unlocking
960  * multiple times, we will just keep the dqm locked for all of the calls.
961  */
962 static int suspend_single_queue(struct device_queue_manager *dqm,
963 				      struct kfd_process_device *pdd,
964 				      struct queue *q)
965 {
966 	bool is_new;
967 
968 	if (q->properties.is_suspended)
969 		return 0;
970 
971 	pr_debug("Suspending PASID %u queue [%i]\n",
972 			pdd->process->pasid,
973 			q->properties.queue_id);
974 
975 	is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
976 
977 	if (is_new || q->properties.is_being_destroyed) {
978 		pr_debug("Suspend: skip %s queue id %i\n",
979 				is_new ? "new" : "destroyed",
980 				q->properties.queue_id);
981 		return -EBUSY;
982 	}
983 
984 	q->properties.is_suspended = true;
985 	if (q->properties.is_active) {
986 		if (dqm->dev->kfd->shared_resources.enable_mes) {
987 			int r = remove_queue_mes(dqm, q, &pdd->qpd);
988 
989 			if (r)
990 				return r;
991 		}
992 
993 		decrement_queue_count(dqm, &pdd->qpd, q);
994 		q->properties.is_active = false;
995 	}
996 
997 	return 0;
998 }
999 
1000 /* resume_single_queue does not lock the dqm like the functions
1001  * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
1002  * lock the dqm before calling, and unlock after calling.
1003  *
1004  * The reason we don't lock the dqm is because this function may be
1005  * called on multiple queues in a loop, so rather than locking/unlocking
1006  * multiple times, we will just keep the dqm locked for all of the calls.
1007  */
1008 static int resume_single_queue(struct device_queue_manager *dqm,
1009 				      struct qcm_process_device *qpd,
1010 				      struct queue *q)
1011 {
1012 	struct kfd_process_device *pdd;
1013 
1014 	if (!q->properties.is_suspended)
1015 		return 0;
1016 
1017 	pdd = qpd_to_pdd(qpd);
1018 
1019 	pr_debug("Restoring from suspend PASID %u queue [%i]\n",
1020 			    pdd->process->pasid,
1021 			    q->properties.queue_id);
1022 
1023 	q->properties.is_suspended = false;
1024 
1025 	if (QUEUE_IS_ACTIVE(q->properties)) {
1026 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1027 			int r = add_queue_mes(dqm, q, &pdd->qpd);
1028 
1029 			if (r)
1030 				return r;
1031 		}
1032 
1033 		q->properties.is_active = true;
1034 		increment_queue_count(dqm, qpd, q);
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
1041 					struct qcm_process_device *qpd)
1042 {
1043 	struct queue *q;
1044 	struct mqd_manager *mqd_mgr;
1045 	struct kfd_process_device *pdd;
1046 	int retval, ret = 0;
1047 
1048 	dqm_lock(dqm);
1049 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1050 		goto out;
1051 
1052 	pdd = qpd_to_pdd(qpd);
1053 	pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
1054 			    pdd->process->pasid);
1055 
1056 	pdd->last_evict_timestamp = get_jiffies_64();
1057 	/* Mark all queues as evicted. Deactivate all active queues on
1058 	 * the qpd.
1059 	 */
1060 	list_for_each_entry(q, &qpd->queues_list, list) {
1061 		q->properties.is_evicted = true;
1062 		if (!q->properties.is_active)
1063 			continue;
1064 
1065 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1066 				q->properties.type)];
1067 		q->properties.is_active = false;
1068 		decrement_queue_count(dqm, qpd, q);
1069 
1070 		if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
1071 			continue;
1072 
1073 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1074 				(dqm->dev->kfd->cwsr_enabled ?
1075 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1076 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1077 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1078 		if (retval && !ret)
1079 			/* Return the first error, but keep going to
1080 			 * maintain a consistent eviction state
1081 			 */
1082 			ret = retval;
1083 	}
1084 
1085 out:
1086 	dqm_unlock(dqm);
1087 	return ret;
1088 }
1089 
1090 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
1091 				      struct qcm_process_device *qpd)
1092 {
1093 	struct queue *q;
1094 	struct kfd_process_device *pdd;
1095 	int retval = 0;
1096 
1097 	dqm_lock(dqm);
1098 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1099 		goto out;
1100 
1101 	pdd = qpd_to_pdd(qpd);
1102 
1103 	/* The debugger creates processes that temporarily have not acquired
1104 	 * all VMs for all devices and has no VMs itself.
1105 	 * Skip queue eviction on process eviction.
1106 	 */
1107 	if (!pdd->drm_priv)
1108 		goto out;
1109 
1110 	pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
1111 			    pdd->process->pasid);
1112 
1113 	/* Mark all queues as evicted. Deactivate all active queues on
1114 	 * the qpd.
1115 	 */
1116 	list_for_each_entry(q, &qpd->queues_list, list) {
1117 		q->properties.is_evicted = true;
1118 		if (!q->properties.is_active)
1119 			continue;
1120 
1121 		q->properties.is_active = false;
1122 		decrement_queue_count(dqm, qpd, q);
1123 
1124 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1125 			retval = remove_queue_mes(dqm, q, qpd);
1126 			if (retval) {
1127 				pr_err("Failed to evict queue %d\n",
1128 					q->properties.queue_id);
1129 				goto out;
1130 			}
1131 		}
1132 	}
1133 	pdd->last_evict_timestamp = get_jiffies_64();
1134 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1135 		retval = execute_queues_cpsch(dqm,
1136 					      qpd->is_debug ?
1137 					      KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1138 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1139 					      USE_DEFAULT_GRACE_PERIOD);
1140 
1141 out:
1142 	dqm_unlock(dqm);
1143 	return retval;
1144 }
1145 
1146 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1147 					  struct qcm_process_device *qpd)
1148 {
1149 	struct mm_struct *mm = NULL;
1150 	struct queue *q;
1151 	struct mqd_manager *mqd_mgr;
1152 	struct kfd_process_device *pdd;
1153 	uint64_t pd_base;
1154 	uint64_t eviction_duration;
1155 	int retval, ret = 0;
1156 
1157 	pdd = qpd_to_pdd(qpd);
1158 	/* Retrieve PD base */
1159 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1160 
1161 	dqm_lock(dqm);
1162 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1163 		goto out;
1164 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1165 		qpd->evicted--;
1166 		goto out;
1167 	}
1168 
1169 	pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1170 			    pdd->process->pasid);
1171 
1172 	/* Update PD Base in QPD */
1173 	qpd->page_table_base = pd_base;
1174 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1175 
1176 	if (!list_empty(&qpd->queues_list)) {
1177 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1178 				dqm->dev->adev,
1179 				qpd->vmid,
1180 				qpd->page_table_base);
1181 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1182 	}
1183 
1184 	/* Take a safe reference to the mm_struct, which may otherwise
1185 	 * disappear even while the kfd_process is still referenced.
1186 	 */
1187 	mm = get_task_mm(pdd->process->lead_thread);
1188 	if (!mm) {
1189 		ret = -EFAULT;
1190 		goto out;
1191 	}
1192 
1193 	/* Remove the eviction flags. Activate queues that are not
1194 	 * inactive for other reasons.
1195 	 */
1196 	list_for_each_entry(q, &qpd->queues_list, list) {
1197 		q->properties.is_evicted = false;
1198 		if (!QUEUE_IS_ACTIVE(q->properties))
1199 			continue;
1200 
1201 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1202 				q->properties.type)];
1203 		q->properties.is_active = true;
1204 		increment_queue_count(dqm, qpd, q);
1205 
1206 		if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1207 			continue;
1208 
1209 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1210 				       q->queue, &q->properties, mm);
1211 		if (retval && !ret)
1212 			/* Return the first error, but keep going to
1213 			 * maintain a consistent eviction state
1214 			 */
1215 			ret = retval;
1216 	}
1217 	qpd->evicted = 0;
1218 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1219 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1220 out:
1221 	if (mm)
1222 		mmput(mm);
1223 	dqm_unlock(dqm);
1224 	return ret;
1225 }
1226 
1227 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1228 					struct qcm_process_device *qpd)
1229 {
1230 	struct queue *q;
1231 	struct kfd_process_device *pdd;
1232 	uint64_t eviction_duration;
1233 	int retval = 0;
1234 
1235 	pdd = qpd_to_pdd(qpd);
1236 
1237 	dqm_lock(dqm);
1238 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1239 		goto out;
1240 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1241 		qpd->evicted--;
1242 		goto out;
1243 	}
1244 
1245 	/* The debugger creates processes that temporarily have not acquired
1246 	 * all VMs for all devices and has no VMs itself.
1247 	 * Skip queue restore on process restore.
1248 	 */
1249 	if (!pdd->drm_priv)
1250 		goto vm_not_acquired;
1251 
1252 	pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
1253 			    pdd->process->pasid);
1254 
1255 	/* Update PD Base in QPD */
1256 	qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1257 	pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
1258 
1259 	/* activate all active queues on the qpd */
1260 	list_for_each_entry(q, &qpd->queues_list, list) {
1261 		q->properties.is_evicted = false;
1262 		if (!QUEUE_IS_ACTIVE(q->properties))
1263 			continue;
1264 
1265 		q->properties.is_active = true;
1266 		increment_queue_count(dqm, &pdd->qpd, q);
1267 
1268 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1269 			retval = add_queue_mes(dqm, q, qpd);
1270 			if (retval) {
1271 				pr_err("Failed to restore queue %d\n",
1272 					q->properties.queue_id);
1273 				goto out;
1274 			}
1275 		}
1276 	}
1277 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1278 		retval = execute_queues_cpsch(dqm,
1279 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1280 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1281 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1282 vm_not_acquired:
1283 	qpd->evicted = 0;
1284 out:
1285 	dqm_unlock(dqm);
1286 	return retval;
1287 }
1288 
1289 static int register_process(struct device_queue_manager *dqm,
1290 					struct qcm_process_device *qpd)
1291 {
1292 	struct device_process_node *n;
1293 	struct kfd_process_device *pdd;
1294 	uint64_t pd_base;
1295 	int retval;
1296 
1297 	n = kzalloc(sizeof(*n), GFP_KERNEL);
1298 	if (!n)
1299 		return -ENOMEM;
1300 
1301 	n->qpd = qpd;
1302 
1303 	pdd = qpd_to_pdd(qpd);
1304 	/* Retrieve PD base */
1305 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1306 
1307 	dqm_lock(dqm);
1308 	list_add(&n->list, &dqm->queues);
1309 
1310 	/* Update PD Base in QPD */
1311 	qpd->page_table_base = pd_base;
1312 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1313 
1314 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
1315 
1316 	dqm->processes_count++;
1317 
1318 	dqm_unlock(dqm);
1319 
1320 	/* Outside the DQM lock because under the DQM lock we can't do
1321 	 * reclaim or take other locks that others hold while reclaiming.
1322 	 */
1323 	kfd_inc_compute_active(dqm->dev);
1324 
1325 	return retval;
1326 }
1327 
1328 static int unregister_process(struct device_queue_manager *dqm,
1329 					struct qcm_process_device *qpd)
1330 {
1331 	int retval;
1332 	struct device_process_node *cur, *next;
1333 
1334 	pr_debug("qpd->queues_list is %s\n",
1335 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
1336 
1337 	retval = 0;
1338 	dqm_lock(dqm);
1339 
1340 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1341 		if (qpd == cur->qpd) {
1342 			list_del(&cur->list);
1343 			kfree(cur);
1344 			dqm->processes_count--;
1345 			goto out;
1346 		}
1347 	}
1348 	/* qpd not found in dqm list */
1349 	retval = 1;
1350 out:
1351 	dqm_unlock(dqm);
1352 
1353 	/* Outside the DQM lock because under the DQM lock we can't do
1354 	 * reclaim or take other locks that others hold while reclaiming.
1355 	 */
1356 	if (!retval)
1357 		kfd_dec_compute_active(dqm->dev);
1358 
1359 	return retval;
1360 }
1361 
1362 static int
1363 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1364 			unsigned int vmid)
1365 {
1366 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1367 	int xcc_id, ret;
1368 
1369 	for_each_inst(xcc_id, xcc_mask) {
1370 		ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1371 			dqm->dev->adev, pasid, vmid, xcc_id);
1372 		if (ret)
1373 			break;
1374 	}
1375 
1376 	return ret;
1377 }
1378 
1379 static void init_interrupts(struct device_queue_manager *dqm)
1380 {
1381 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1382 	unsigned int i, xcc_id;
1383 
1384 	for_each_inst(xcc_id, xcc_mask) {
1385 		for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
1386 			if (is_pipe_enabled(dqm, 0, i)) {
1387 				dqm->dev->kfd2kgd->init_interrupts(
1388 					dqm->dev->adev, i, xcc_id);
1389 			}
1390 		}
1391 	}
1392 }
1393 
1394 static int initialize_nocpsch(struct device_queue_manager *dqm)
1395 {
1396 	int pipe, queue;
1397 
1398 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1399 
1400 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1401 					sizeof(unsigned int), GFP_KERNEL);
1402 	if (!dqm->allocated_queues)
1403 		return -ENOMEM;
1404 
1405 	mutex_init(&dqm->lock_hidden);
1406 	INIT_LIST_HEAD(&dqm->queues);
1407 	dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1408 	dqm->active_cp_queue_count = 0;
1409 	dqm->gws_queue_count = 0;
1410 
1411 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1412 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1413 
1414 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1415 			if (test_bit(pipe_offset + queue,
1416 				     dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1417 				dqm->allocated_queues[pipe] |= 1 << queue;
1418 	}
1419 
1420 	memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1421 
1422 	init_sdma_bitmaps(dqm);
1423 
1424 	return 0;
1425 }
1426 
1427 static void uninitialize(struct device_queue_manager *dqm)
1428 {
1429 	int i;
1430 
1431 	WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1432 
1433 	kfree(dqm->allocated_queues);
1434 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1435 		kfree(dqm->mqd_mgrs[i]);
1436 	mutex_destroy(&dqm->lock_hidden);
1437 }
1438 
1439 static int start_nocpsch(struct device_queue_manager *dqm)
1440 {
1441 	int r = 0;
1442 
1443 	pr_info("SW scheduler is used");
1444 	init_interrupts(dqm);
1445 
1446 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1447 		r = pm_init(&dqm->packet_mgr, dqm);
1448 	if (!r)
1449 		dqm->sched_running = true;
1450 
1451 	return r;
1452 }
1453 
1454 static int stop_nocpsch(struct device_queue_manager *dqm)
1455 {
1456 	dqm_lock(dqm);
1457 	if (!dqm->sched_running) {
1458 		dqm_unlock(dqm);
1459 		return 0;
1460 	}
1461 
1462 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1463 		pm_uninit(&dqm->packet_mgr, false);
1464 	dqm->sched_running = false;
1465 	dqm_unlock(dqm);
1466 
1467 	return 0;
1468 }
1469 
1470 static void pre_reset(struct device_queue_manager *dqm)
1471 {
1472 	dqm_lock(dqm);
1473 	dqm->is_resetting = true;
1474 	dqm_unlock(dqm);
1475 }
1476 
1477 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1478 				struct queue *q, const uint32_t *restore_sdma_id)
1479 {
1480 	int bit;
1481 
1482 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1483 		if (bitmap_empty(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1484 			pr_err("No more SDMA queue to allocate\n");
1485 			return -ENOMEM;
1486 		}
1487 
1488 		if (restore_sdma_id) {
1489 			/* Re-use existing sdma_id */
1490 			if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
1491 				pr_err("SDMA queue already in use\n");
1492 				return -EBUSY;
1493 			}
1494 			clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
1495 			q->sdma_id = *restore_sdma_id;
1496 		} else {
1497 			/* Find first available sdma_id */
1498 			bit = find_first_bit(dqm->sdma_bitmap,
1499 					     get_num_sdma_queues(dqm));
1500 			clear_bit(bit, dqm->sdma_bitmap);
1501 			q->sdma_id = bit;
1502 		}
1503 
1504 		q->properties.sdma_engine_id =
1505 			q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
1506 		q->properties.sdma_queue_id = q->sdma_id /
1507 				kfd_get_num_sdma_engines(dqm->dev);
1508 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1509 		if (bitmap_empty(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES)) {
1510 			pr_err("No more XGMI SDMA queue to allocate\n");
1511 			return -ENOMEM;
1512 		}
1513 		if (restore_sdma_id) {
1514 			/* Re-use existing sdma_id */
1515 			if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
1516 				pr_err("SDMA queue already in use\n");
1517 				return -EBUSY;
1518 			}
1519 			clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
1520 			q->sdma_id = *restore_sdma_id;
1521 		} else {
1522 			bit = find_first_bit(dqm->xgmi_sdma_bitmap,
1523 					     get_num_xgmi_sdma_queues(dqm));
1524 			clear_bit(bit, dqm->xgmi_sdma_bitmap);
1525 			q->sdma_id = bit;
1526 		}
1527 		/* sdma_engine_id is sdma id including
1528 		 * both PCIe-optimized SDMAs and XGMI-
1529 		 * optimized SDMAs. The calculation below
1530 		 * assumes the first N engines are always
1531 		 * PCIe-optimized ones
1532 		 */
1533 		q->properties.sdma_engine_id =
1534 			kfd_get_num_sdma_engines(dqm->dev) +
1535 			q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1536 		q->properties.sdma_queue_id = q->sdma_id /
1537 			kfd_get_num_xgmi_sdma_engines(dqm->dev);
1538 	}
1539 
1540 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1541 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1542 
1543 	return 0;
1544 }
1545 
1546 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1547 				struct queue *q)
1548 {
1549 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1550 		if (q->sdma_id >= get_num_sdma_queues(dqm))
1551 			return;
1552 		set_bit(q->sdma_id, dqm->sdma_bitmap);
1553 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1554 		if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1555 			return;
1556 		set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
1557 	}
1558 }
1559 
1560 /*
1561  * Device Queue Manager implementation for cp scheduler
1562  */
1563 
1564 static int set_sched_resources(struct device_queue_manager *dqm)
1565 {
1566 	int i, mec;
1567 	struct scheduling_resources res;
1568 
1569 	res.vmid_mask = dqm->dev->compute_vmid_bitmap;
1570 
1571 	res.queue_mask = 0;
1572 	for (i = 0; i < KGD_MAX_QUEUES; ++i) {
1573 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
1574 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
1575 
1576 		if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1577 			continue;
1578 
1579 		/* only acquire queues from the first MEC */
1580 		if (mec > 0)
1581 			continue;
1582 
1583 		/* This situation may be hit in the future if a new HW
1584 		 * generation exposes more than 64 queues. If so, the
1585 		 * definition of res.queue_mask needs updating
1586 		 */
1587 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1588 			pr_err("Invalid queue enabled by amdgpu: %d\n", i);
1589 			break;
1590 		}
1591 
1592 		res.queue_mask |= 1ull
1593 			<< amdgpu_queue_mask_bit_to_set_resource_bit(
1594 				dqm->dev->adev, i);
1595 	}
1596 	res.gws_mask = ~0ull;
1597 	res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1598 
1599 	pr_debug("Scheduling resources:\n"
1600 			"vmid mask: 0x%8X\n"
1601 			"queue mask: 0x%8llX\n",
1602 			res.vmid_mask, res.queue_mask);
1603 
1604 	return pm_send_set_resources(&dqm->packet_mgr, &res);
1605 }
1606 
1607 static int initialize_cpsch(struct device_queue_manager *dqm)
1608 {
1609 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1610 
1611 	mutex_init(&dqm->lock_hidden);
1612 	INIT_LIST_HEAD(&dqm->queues);
1613 	dqm->active_queue_count = dqm->processes_count = 0;
1614 	dqm->active_cp_queue_count = 0;
1615 	dqm->gws_queue_count = 0;
1616 	dqm->active_runlist = false;
1617 	INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1618 	dqm->trap_debug_vmid = 0;
1619 
1620 	init_sdma_bitmaps(dqm);
1621 
1622 	if (dqm->dev->kfd2kgd->get_iq_wait_times)
1623 		dqm->dev->kfd2kgd->get_iq_wait_times(dqm->dev->adev,
1624 					&dqm->wait_times);
1625 	return 0;
1626 }
1627 
1628 static int start_cpsch(struct device_queue_manager *dqm)
1629 {
1630 	int retval;
1631 
1632 	retval = 0;
1633 
1634 	dqm_lock(dqm);
1635 
1636 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1637 		retval = pm_init(&dqm->packet_mgr, dqm);
1638 		if (retval)
1639 			goto fail_packet_manager_init;
1640 
1641 		retval = set_sched_resources(dqm);
1642 		if (retval)
1643 			goto fail_set_sched_resources;
1644 	}
1645 	pr_debug("Allocating fence memory\n");
1646 
1647 	/* allocate fence memory on the gart */
1648 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1649 					&dqm->fence_mem);
1650 
1651 	if (retval)
1652 		goto fail_allocate_vidmem;
1653 
1654 	dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1655 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1656 
1657 	init_interrupts(dqm);
1658 
1659 	/* clear hang status when driver try to start the hw scheduler */
1660 	dqm->is_hws_hang = false;
1661 	dqm->is_resetting = false;
1662 	dqm->sched_running = true;
1663 
1664 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1665 		execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1666 	dqm_unlock(dqm);
1667 
1668 	return 0;
1669 fail_allocate_vidmem:
1670 fail_set_sched_resources:
1671 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1672 		pm_uninit(&dqm->packet_mgr, false);
1673 fail_packet_manager_init:
1674 	dqm_unlock(dqm);
1675 	return retval;
1676 }
1677 
1678 static int stop_cpsch(struct device_queue_manager *dqm)
1679 {
1680 	bool hanging;
1681 
1682 	dqm_lock(dqm);
1683 	if (!dqm->sched_running) {
1684 		dqm_unlock(dqm);
1685 		return 0;
1686 	}
1687 
1688 	if (!dqm->is_hws_hang) {
1689 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1690 			unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
1691 		else
1692 			remove_all_queues_mes(dqm);
1693 	}
1694 
1695 	hanging = dqm->is_hws_hang || dqm->is_resetting;
1696 	dqm->sched_running = false;
1697 
1698 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1699 		pm_release_ib(&dqm->packet_mgr);
1700 
1701 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1702 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1703 		pm_uninit(&dqm->packet_mgr, hanging);
1704 	dqm_unlock(dqm);
1705 
1706 	return 0;
1707 }
1708 
1709 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1710 					struct kernel_queue *kq,
1711 					struct qcm_process_device *qpd)
1712 {
1713 	dqm_lock(dqm);
1714 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1715 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1716 				dqm->total_queue_count);
1717 		dqm_unlock(dqm);
1718 		return -EPERM;
1719 	}
1720 
1721 	/*
1722 	 * Unconditionally increment this counter, regardless of the queue's
1723 	 * type or whether the queue is active.
1724 	 */
1725 	dqm->total_queue_count++;
1726 	pr_debug("Total of %d queues are accountable so far\n",
1727 			dqm->total_queue_count);
1728 
1729 	list_add(&kq->list, &qpd->priv_queue_list);
1730 	increment_queue_count(dqm, qpd, kq->queue);
1731 	qpd->is_debug = true;
1732 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1733 			USE_DEFAULT_GRACE_PERIOD);
1734 	dqm_unlock(dqm);
1735 
1736 	return 0;
1737 }
1738 
1739 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1740 					struct kernel_queue *kq,
1741 					struct qcm_process_device *qpd)
1742 {
1743 	dqm_lock(dqm);
1744 	list_del(&kq->list);
1745 	decrement_queue_count(dqm, qpd, kq->queue);
1746 	qpd->is_debug = false;
1747 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1748 			USE_DEFAULT_GRACE_PERIOD);
1749 	/*
1750 	 * Unconditionally decrement this counter, regardless of the queue's
1751 	 * type.
1752 	 */
1753 	dqm->total_queue_count--;
1754 	pr_debug("Total of %d queues are accountable so far\n",
1755 			dqm->total_queue_count);
1756 	dqm_unlock(dqm);
1757 }
1758 
1759 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1760 			struct qcm_process_device *qpd,
1761 			const struct kfd_criu_queue_priv_data *qd,
1762 			const void *restore_mqd, const void *restore_ctl_stack)
1763 {
1764 	int retval;
1765 	struct mqd_manager *mqd_mgr;
1766 
1767 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1768 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1769 				dqm->total_queue_count);
1770 		retval = -EPERM;
1771 		goto out;
1772 	}
1773 
1774 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1775 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1776 		dqm_lock(dqm);
1777 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
1778 		dqm_unlock(dqm);
1779 		if (retval)
1780 			goto out;
1781 	}
1782 
1783 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
1784 	if (retval)
1785 		goto out_deallocate_sdma_queue;
1786 
1787 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1788 			q->properties.type)];
1789 
1790 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1791 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1792 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1793 	q->properties.tba_addr = qpd->tba_addr;
1794 	q->properties.tma_addr = qpd->tma_addr;
1795 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
1796 	if (!q->mqd_mem_obj) {
1797 		retval = -ENOMEM;
1798 		goto out_deallocate_doorbell;
1799 	}
1800 
1801 	dqm_lock(dqm);
1802 	/*
1803 	 * Eviction state logic: mark all queues as evicted, even ones
1804 	 * not currently active. Restoring inactive queues later only
1805 	 * updates the is_evicted flag but is a no-op otherwise.
1806 	 */
1807 	q->properties.is_evicted = !!qpd->evicted;
1808 	q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
1809 			KFD_GC_VERSION(q->device) >= IP_VERSION(11, 0, 0) &&
1810 			KFD_GC_VERSION(q->device) <= IP_VERSION(11, 0, 3);
1811 
1812 	if (qd)
1813 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
1814 				     &q->properties, restore_mqd, restore_ctl_stack,
1815 				     qd->ctl_stack_size);
1816 	else
1817 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
1818 					&q->gart_mqd_addr, &q->properties);
1819 
1820 	list_add(&q->list, &qpd->queues_list);
1821 	qpd->queue_count++;
1822 
1823 	if (q->properties.is_active) {
1824 		increment_queue_count(dqm, qpd, q);
1825 
1826 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1827 			retval = execute_queues_cpsch(dqm,
1828 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1829 		else
1830 			retval = add_queue_mes(dqm, q, qpd);
1831 		if (retval)
1832 			goto cleanup_queue;
1833 	}
1834 
1835 	/*
1836 	 * Unconditionally increment this counter, regardless of the queue's
1837 	 * type or whether the queue is active.
1838 	 */
1839 	dqm->total_queue_count++;
1840 
1841 	pr_debug("Total of %d queues are accountable so far\n",
1842 			dqm->total_queue_count);
1843 
1844 	dqm_unlock(dqm);
1845 	return retval;
1846 
1847 cleanup_queue:
1848 	qpd->queue_count--;
1849 	list_del(&q->list);
1850 	if (q->properties.is_active)
1851 		decrement_queue_count(dqm, qpd, q);
1852 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1853 	dqm_unlock(dqm);
1854 out_deallocate_doorbell:
1855 	deallocate_doorbell(qpd, q);
1856 out_deallocate_sdma_queue:
1857 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1858 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1859 		dqm_lock(dqm);
1860 		deallocate_sdma_queue(dqm, q);
1861 		dqm_unlock(dqm);
1862 	}
1863 out:
1864 	return retval;
1865 }
1866 
1867 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1868 				uint64_t fence_value,
1869 				unsigned int timeout_ms)
1870 {
1871 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1872 
1873 	while (*fence_addr != fence_value) {
1874 		if (time_after(jiffies, end_jiffies)) {
1875 			pr_err("qcm fence wait loop timeout expired\n");
1876 			/* In HWS case, this is used to halt the driver thread
1877 			 * in order not to mess up CP states before doing
1878 			 * scandumps for FW debugging.
1879 			 */
1880 			while (halt_if_hws_hang)
1881 				schedule();
1882 
1883 			return -ETIME;
1884 		}
1885 		schedule();
1886 	}
1887 
1888 	return 0;
1889 }
1890 
1891 /* dqm->lock mutex has to be locked before calling this function */
1892 static int map_queues_cpsch(struct device_queue_manager *dqm)
1893 {
1894 	int retval;
1895 
1896 	if (!dqm->sched_running)
1897 		return 0;
1898 	if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
1899 		return 0;
1900 	if (dqm->active_runlist)
1901 		return 0;
1902 
1903 	retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
1904 	pr_debug("%s sent runlist\n", __func__);
1905 	if (retval) {
1906 		pr_err("failed to execute runlist\n");
1907 		return retval;
1908 	}
1909 	dqm->active_runlist = true;
1910 
1911 	return retval;
1912 }
1913 
1914 /* dqm->lock mutex has to be locked before calling this function */
1915 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1916 				enum kfd_unmap_queues_filter filter,
1917 				uint32_t filter_param,
1918 				uint32_t grace_period,
1919 				bool reset)
1920 {
1921 	int retval = 0;
1922 	struct mqd_manager *mqd_mgr;
1923 
1924 	if (!dqm->sched_running)
1925 		return 0;
1926 	if (dqm->is_hws_hang || dqm->is_resetting)
1927 		return -EIO;
1928 	if (!dqm->active_runlist)
1929 		return retval;
1930 
1931 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
1932 		retval = pm_update_grace_period(&dqm->packet_mgr, grace_period);
1933 		if (retval)
1934 			return retval;
1935 	}
1936 
1937 	retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
1938 	if (retval)
1939 		return retval;
1940 
1941 	*dqm->fence_addr = KFD_FENCE_INIT;
1942 	pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
1943 				KFD_FENCE_COMPLETED);
1944 	/* should be timed out */
1945 	retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
1946 				queue_preemption_timeout_ms);
1947 	if (retval) {
1948 		pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1949 		kfd_hws_hang(dqm);
1950 		return retval;
1951 	}
1952 
1953 	/* In the current MEC firmware implementation, if compute queue
1954 	 * doesn't response to the preemption request in time, HIQ will
1955 	 * abandon the unmap request without returning any timeout error
1956 	 * to driver. Instead, MEC firmware will log the doorbell of the
1957 	 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
1958 	 * To make sure the queue unmap was successful, driver need to
1959 	 * check those fields
1960 	 */
1961 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
1962 	if (mqd_mgr->read_doorbell_id(dqm->packet_mgr.priv_queue->queue->mqd)) {
1963 		pr_err("HIQ MQD's queue_doorbell_id0 is not 0, Queue preemption time out\n");
1964 		while (halt_if_hws_hang)
1965 			schedule();
1966 		return -ETIME;
1967 	}
1968 
1969 	/* We need to reset the grace period value for this device */
1970 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
1971 		if (pm_update_grace_period(&dqm->packet_mgr,
1972 					USE_DEFAULT_GRACE_PERIOD))
1973 			pr_err("Failed to reset grace period\n");
1974 	}
1975 
1976 	pm_release_ib(&dqm->packet_mgr);
1977 	dqm->active_runlist = false;
1978 
1979 	return retval;
1980 }
1981 
1982 /* only for compute queue */
1983 static int reset_queues_cpsch(struct device_queue_manager *dqm,
1984 			uint16_t pasid)
1985 {
1986 	int retval;
1987 
1988 	dqm_lock(dqm);
1989 
1990 	retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
1991 			pasid, USE_DEFAULT_GRACE_PERIOD, true);
1992 
1993 	dqm_unlock(dqm);
1994 	return retval;
1995 }
1996 
1997 /* dqm->lock mutex has to be locked before calling this function */
1998 static int execute_queues_cpsch(struct device_queue_manager *dqm,
1999 				enum kfd_unmap_queues_filter filter,
2000 				uint32_t filter_param,
2001 				uint32_t grace_period)
2002 {
2003 	int retval;
2004 
2005 	if (dqm->is_hws_hang)
2006 		return -EIO;
2007 	retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
2008 	if (retval)
2009 		return retval;
2010 
2011 	return map_queues_cpsch(dqm);
2012 }
2013 
2014 static int wait_on_destroy_queue(struct device_queue_manager *dqm,
2015 				 struct queue *q)
2016 {
2017 	struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
2018 								q->process);
2019 	int ret = 0;
2020 
2021 	if (pdd->qpd.is_debug)
2022 		return ret;
2023 
2024 	q->properties.is_being_destroyed = true;
2025 
2026 	if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
2027 		dqm_unlock(dqm);
2028 		mutex_unlock(&q->process->mutex);
2029 		ret = wait_event_interruptible(dqm->destroy_wait,
2030 						!q->properties.is_suspended);
2031 
2032 		mutex_lock(&q->process->mutex);
2033 		dqm_lock(dqm);
2034 	}
2035 
2036 	return ret;
2037 }
2038 
2039 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
2040 				struct qcm_process_device *qpd,
2041 				struct queue *q)
2042 {
2043 	int retval;
2044 	struct mqd_manager *mqd_mgr;
2045 	uint64_t sdma_val = 0;
2046 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2047 
2048 	/* Get the SDMA queue stats */
2049 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2050 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2051 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
2052 							&sdma_val);
2053 		if (retval)
2054 			pr_err("Failed to read SDMA queue counter for queue: %d\n",
2055 				q->properties.queue_id);
2056 	}
2057 
2058 	/* remove queue from list to prevent rescheduling after preemption */
2059 	dqm_lock(dqm);
2060 
2061 	retval = wait_on_destroy_queue(dqm, q);
2062 
2063 	if (retval) {
2064 		dqm_unlock(dqm);
2065 		return retval;
2066 	}
2067 
2068 	if (qpd->is_debug) {
2069 		/*
2070 		 * error, currently we do not allow to destroy a queue
2071 		 * of a currently debugged process
2072 		 */
2073 		retval = -EBUSY;
2074 		goto failed_try_destroy_debugged_queue;
2075 
2076 	}
2077 
2078 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2079 			q->properties.type)];
2080 
2081 	deallocate_doorbell(qpd, q);
2082 
2083 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2084 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2085 		deallocate_sdma_queue(dqm, q);
2086 		pdd->sdma_past_activity_counter += sdma_val;
2087 	}
2088 
2089 	list_del(&q->list);
2090 	qpd->queue_count--;
2091 	if (q->properties.is_active) {
2092 		decrement_queue_count(dqm, qpd, q);
2093 		if (!dqm->dev->kfd->shared_resources.enable_mes) {
2094 			retval = execute_queues_cpsch(dqm,
2095 						      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2096 						      USE_DEFAULT_GRACE_PERIOD);
2097 			if (retval == -ETIME)
2098 				qpd->reset_wavefronts = true;
2099 		} else {
2100 			retval = remove_queue_mes(dqm, q, qpd);
2101 		}
2102 	}
2103 
2104 	/*
2105 	 * Unconditionally decrement this counter, regardless of the queue's
2106 	 * type
2107 	 */
2108 	dqm->total_queue_count--;
2109 	pr_debug("Total of %d queues are accountable so far\n",
2110 			dqm->total_queue_count);
2111 
2112 	dqm_unlock(dqm);
2113 
2114 	/*
2115 	 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
2116 	 * circular locking
2117 	 */
2118 	kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
2119 				qpd->pqm->process, q->device,
2120 				-1, false, NULL, 0);
2121 
2122 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2123 
2124 	return retval;
2125 
2126 failed_try_destroy_debugged_queue:
2127 
2128 	dqm_unlock(dqm);
2129 	return retval;
2130 }
2131 
2132 /*
2133  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
2134  * stay in user mode.
2135  */
2136 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
2137 /* APE1 limit is inclusive and 64K aligned. */
2138 #define APE1_LIMIT_ALIGNMENT 0xFFFF
2139 
2140 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
2141 				   struct qcm_process_device *qpd,
2142 				   enum cache_policy default_policy,
2143 				   enum cache_policy alternate_policy,
2144 				   void __user *alternate_aperture_base,
2145 				   uint64_t alternate_aperture_size)
2146 {
2147 	bool retval = true;
2148 
2149 	if (!dqm->asic_ops.set_cache_memory_policy)
2150 		return retval;
2151 
2152 	dqm_lock(dqm);
2153 
2154 	if (alternate_aperture_size == 0) {
2155 		/* base > limit disables APE1 */
2156 		qpd->sh_mem_ape1_base = 1;
2157 		qpd->sh_mem_ape1_limit = 0;
2158 	} else {
2159 		/*
2160 		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
2161 		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
2162 		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
2163 		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
2164 		 * Verify that the base and size parameters can be
2165 		 * represented in this format and convert them.
2166 		 * Additionally restrict APE1 to user-mode addresses.
2167 		 */
2168 
2169 		uint64_t base = (uintptr_t)alternate_aperture_base;
2170 		uint64_t limit = base + alternate_aperture_size - 1;
2171 
2172 		if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
2173 		   (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
2174 			retval = false;
2175 			goto out;
2176 		}
2177 
2178 		qpd->sh_mem_ape1_base = base >> 16;
2179 		qpd->sh_mem_ape1_limit = limit >> 16;
2180 	}
2181 
2182 	retval = dqm->asic_ops.set_cache_memory_policy(
2183 			dqm,
2184 			qpd,
2185 			default_policy,
2186 			alternate_policy,
2187 			alternate_aperture_base,
2188 			alternate_aperture_size);
2189 
2190 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
2191 		program_sh_mem_settings(dqm, qpd);
2192 
2193 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
2194 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
2195 		qpd->sh_mem_ape1_limit);
2196 
2197 out:
2198 	dqm_unlock(dqm);
2199 	return retval;
2200 }
2201 
2202 static int process_termination_nocpsch(struct device_queue_manager *dqm,
2203 		struct qcm_process_device *qpd)
2204 {
2205 	struct queue *q;
2206 	struct device_process_node *cur, *next_dpn;
2207 	int retval = 0;
2208 	bool found = false;
2209 
2210 	dqm_lock(dqm);
2211 
2212 	/* Clear all user mode queues */
2213 	while (!list_empty(&qpd->queues_list)) {
2214 		struct mqd_manager *mqd_mgr;
2215 		int ret;
2216 
2217 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2218 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2219 				q->properties.type)];
2220 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2221 		if (ret)
2222 			retval = ret;
2223 		dqm_unlock(dqm);
2224 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2225 		dqm_lock(dqm);
2226 	}
2227 
2228 	/* Unregister process */
2229 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2230 		if (qpd == cur->qpd) {
2231 			list_del(&cur->list);
2232 			kfree(cur);
2233 			dqm->processes_count--;
2234 			found = true;
2235 			break;
2236 		}
2237 	}
2238 
2239 	dqm_unlock(dqm);
2240 
2241 	/* Outside the DQM lock because under the DQM lock we can't do
2242 	 * reclaim or take other locks that others hold while reclaiming.
2243 	 */
2244 	if (found)
2245 		kfd_dec_compute_active(dqm->dev);
2246 
2247 	return retval;
2248 }
2249 
2250 static int get_wave_state(struct device_queue_manager *dqm,
2251 			  struct queue *q,
2252 			  void __user *ctl_stack,
2253 			  u32 *ctl_stack_used_size,
2254 			  u32 *save_area_used_size)
2255 {
2256 	struct mqd_manager *mqd_mgr;
2257 
2258 	dqm_lock(dqm);
2259 
2260 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2261 
2262 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2263 	    q->properties.is_active || !q->device->kfd->cwsr_enabled ||
2264 	    !mqd_mgr->get_wave_state) {
2265 		dqm_unlock(dqm);
2266 		return -EINVAL;
2267 	}
2268 
2269 	dqm_unlock(dqm);
2270 
2271 	/*
2272 	 * get_wave_state is outside the dqm lock to prevent circular locking
2273 	 * and the queue should be protected against destruction by the process
2274 	 * lock.
2275 	 */
2276 	return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
2277 			ctl_stack, ctl_stack_used_size, save_area_used_size);
2278 }
2279 
2280 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2281 			const struct queue *q,
2282 			u32 *mqd_size,
2283 			u32 *ctl_stack_size)
2284 {
2285 	struct mqd_manager *mqd_mgr;
2286 	enum KFD_MQD_TYPE mqd_type =
2287 			get_mqd_type_from_queue_type(q->properties.type);
2288 
2289 	dqm_lock(dqm);
2290 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2291 	*mqd_size = mqd_mgr->mqd_size;
2292 	*ctl_stack_size = 0;
2293 
2294 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2295 		mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2296 
2297 	dqm_unlock(dqm);
2298 }
2299 
2300 static int checkpoint_mqd(struct device_queue_manager *dqm,
2301 			  const struct queue *q,
2302 			  void *mqd,
2303 			  void *ctl_stack)
2304 {
2305 	struct mqd_manager *mqd_mgr;
2306 	int r = 0;
2307 	enum KFD_MQD_TYPE mqd_type =
2308 			get_mqd_type_from_queue_type(q->properties.type);
2309 
2310 	dqm_lock(dqm);
2311 
2312 	if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
2313 		r = -EINVAL;
2314 		goto dqm_unlock;
2315 	}
2316 
2317 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2318 	if (!mqd_mgr->checkpoint_mqd) {
2319 		r = -EOPNOTSUPP;
2320 		goto dqm_unlock;
2321 	}
2322 
2323 	mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2324 
2325 dqm_unlock:
2326 	dqm_unlock(dqm);
2327 	return r;
2328 }
2329 
2330 static int process_termination_cpsch(struct device_queue_manager *dqm,
2331 		struct qcm_process_device *qpd)
2332 {
2333 	int retval;
2334 	struct queue *q;
2335 	struct kernel_queue *kq, *kq_next;
2336 	struct mqd_manager *mqd_mgr;
2337 	struct device_process_node *cur, *next_dpn;
2338 	enum kfd_unmap_queues_filter filter =
2339 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2340 	bool found = false;
2341 
2342 	retval = 0;
2343 
2344 	dqm_lock(dqm);
2345 
2346 	/* Clean all kernel queues */
2347 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2348 		list_del(&kq->list);
2349 		decrement_queue_count(dqm, qpd, kq->queue);
2350 		qpd->is_debug = false;
2351 		dqm->total_queue_count--;
2352 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2353 	}
2354 
2355 	/* Clear all user mode queues */
2356 	list_for_each_entry(q, &qpd->queues_list, list) {
2357 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2358 			deallocate_sdma_queue(dqm, q);
2359 		else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2360 			deallocate_sdma_queue(dqm, q);
2361 
2362 		if (q->properties.is_active) {
2363 			decrement_queue_count(dqm, qpd, q);
2364 
2365 			if (dqm->dev->kfd->shared_resources.enable_mes) {
2366 				retval = remove_queue_mes(dqm, q, qpd);
2367 				if (retval)
2368 					pr_err("Failed to remove queue %d\n",
2369 						q->properties.queue_id);
2370 			}
2371 		}
2372 
2373 		dqm->total_queue_count--;
2374 	}
2375 
2376 	/* Unregister process */
2377 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2378 		if (qpd == cur->qpd) {
2379 			list_del(&cur->list);
2380 			kfree(cur);
2381 			dqm->processes_count--;
2382 			found = true;
2383 			break;
2384 		}
2385 	}
2386 
2387 	if (!dqm->dev->kfd->shared_resources.enable_mes)
2388 		retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
2389 
2390 	if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
2391 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2392 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2393 		qpd->reset_wavefronts = false;
2394 	}
2395 
2396 	/* Lastly, free mqd resources.
2397 	 * Do free_mqd() after dqm_unlock to avoid circular locking.
2398 	 */
2399 	while (!list_empty(&qpd->queues_list)) {
2400 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2401 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2402 				q->properties.type)];
2403 		list_del(&q->list);
2404 		qpd->queue_count--;
2405 		dqm_unlock(dqm);
2406 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2407 		dqm_lock(dqm);
2408 	}
2409 	dqm_unlock(dqm);
2410 
2411 	/* Outside the DQM lock because under the DQM lock we can't do
2412 	 * reclaim or take other locks that others hold while reclaiming.
2413 	 */
2414 	if (found)
2415 		kfd_dec_compute_active(dqm->dev);
2416 
2417 	return retval;
2418 }
2419 
2420 static int init_mqd_managers(struct device_queue_manager *dqm)
2421 {
2422 	int i, j;
2423 	struct mqd_manager *mqd_mgr;
2424 
2425 	for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2426 		mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2427 		if (!mqd_mgr) {
2428 			pr_err("mqd manager [%d] initialization failed\n", i);
2429 			goto out_free;
2430 		}
2431 		dqm->mqd_mgrs[i] = mqd_mgr;
2432 	}
2433 
2434 	return 0;
2435 
2436 out_free:
2437 	for (j = 0; j < i; j++) {
2438 		kfree(dqm->mqd_mgrs[j]);
2439 		dqm->mqd_mgrs[j] = NULL;
2440 	}
2441 
2442 	return -ENOMEM;
2443 }
2444 
2445 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
2446 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2447 {
2448 	int retval;
2449 	struct kfd_node *dev = dqm->dev;
2450 	struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2451 	uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2452 		get_num_all_sdma_engines(dqm) *
2453 		dev->kfd->device_info.num_sdma_queues_per_engine +
2454 		(dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
2455 		NUM_XCC(dqm->dev->xcc_mask));
2456 
2457 	retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2458 		&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2459 		(void *)&(mem_obj->cpu_ptr), false);
2460 
2461 	return retval;
2462 }
2463 
2464 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
2465 {
2466 	struct device_queue_manager *dqm;
2467 
2468 	pr_debug("Loading device queue manager\n");
2469 
2470 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2471 	if (!dqm)
2472 		return NULL;
2473 
2474 	switch (dev->adev->asic_type) {
2475 	/* HWS is not available on Hawaii. */
2476 	case CHIP_HAWAII:
2477 	/* HWS depends on CWSR for timely dequeue. CWSR is not
2478 	 * available on Tonga.
2479 	 *
2480 	 * FIXME: This argument also applies to Kaveri.
2481 	 */
2482 	case CHIP_TONGA:
2483 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2484 		break;
2485 	default:
2486 		dqm->sched_policy = sched_policy;
2487 		break;
2488 	}
2489 
2490 	dqm->dev = dev;
2491 	switch (dqm->sched_policy) {
2492 	case KFD_SCHED_POLICY_HWS:
2493 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2494 		/* initialize dqm for cp scheduling */
2495 		dqm->ops.create_queue = create_queue_cpsch;
2496 		dqm->ops.initialize = initialize_cpsch;
2497 		dqm->ops.start = start_cpsch;
2498 		dqm->ops.stop = stop_cpsch;
2499 		dqm->ops.pre_reset = pre_reset;
2500 		dqm->ops.destroy_queue = destroy_queue_cpsch;
2501 		dqm->ops.update_queue = update_queue;
2502 		dqm->ops.register_process = register_process;
2503 		dqm->ops.unregister_process = unregister_process;
2504 		dqm->ops.uninitialize = uninitialize;
2505 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2506 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2507 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2508 		dqm->ops.process_termination = process_termination_cpsch;
2509 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2510 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2511 		dqm->ops.get_wave_state = get_wave_state;
2512 		dqm->ops.reset_queues = reset_queues_cpsch;
2513 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2514 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2515 		break;
2516 	case KFD_SCHED_POLICY_NO_HWS:
2517 		/* initialize dqm for no cp scheduling */
2518 		dqm->ops.start = start_nocpsch;
2519 		dqm->ops.stop = stop_nocpsch;
2520 		dqm->ops.pre_reset = pre_reset;
2521 		dqm->ops.create_queue = create_queue_nocpsch;
2522 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
2523 		dqm->ops.update_queue = update_queue;
2524 		dqm->ops.register_process = register_process;
2525 		dqm->ops.unregister_process = unregister_process;
2526 		dqm->ops.initialize = initialize_nocpsch;
2527 		dqm->ops.uninitialize = uninitialize;
2528 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2529 		dqm->ops.process_termination = process_termination_nocpsch;
2530 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2531 		dqm->ops.restore_process_queues =
2532 			restore_process_queues_nocpsch;
2533 		dqm->ops.get_wave_state = get_wave_state;
2534 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2535 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2536 		break;
2537 	default:
2538 		pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
2539 		goto out_free;
2540 	}
2541 
2542 	switch (dev->adev->asic_type) {
2543 	case CHIP_CARRIZO:
2544 		device_queue_manager_init_vi(&dqm->asic_ops);
2545 		break;
2546 
2547 	case CHIP_KAVERI:
2548 		device_queue_manager_init_cik(&dqm->asic_ops);
2549 		break;
2550 
2551 	case CHIP_HAWAII:
2552 		device_queue_manager_init_cik_hawaii(&dqm->asic_ops);
2553 		break;
2554 
2555 	case CHIP_TONGA:
2556 	case CHIP_FIJI:
2557 	case CHIP_POLARIS10:
2558 	case CHIP_POLARIS11:
2559 	case CHIP_POLARIS12:
2560 	case CHIP_VEGAM:
2561 		device_queue_manager_init_vi_tonga(&dqm->asic_ops);
2562 		break;
2563 
2564 	default:
2565 		if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
2566 			device_queue_manager_init_v11(&dqm->asic_ops);
2567 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
2568 			device_queue_manager_init_v10_navi10(&dqm->asic_ops);
2569 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
2570 			device_queue_manager_init_v9(&dqm->asic_ops);
2571 		else {
2572 			WARN(1, "Unexpected ASIC family %u",
2573 			     dev->adev->asic_type);
2574 			goto out_free;
2575 		}
2576 	}
2577 
2578 	if (init_mqd_managers(dqm))
2579 		goto out_free;
2580 
2581 	if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
2582 		pr_err("Failed to allocate hiq sdma mqd trunk buffer\n");
2583 		goto out_free;
2584 	}
2585 
2586 	if (!dqm->ops.initialize(dqm)) {
2587 		init_waitqueue_head(&dqm->destroy_wait);
2588 		return dqm;
2589 	}
2590 
2591 out_free:
2592 	kfree(dqm);
2593 	return NULL;
2594 }
2595 
2596 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
2597 				    struct kfd_mem_obj *mqd)
2598 {
2599 	WARN(!mqd, "No hiq sdma mqd trunk to free");
2600 
2601 	amdgpu_amdkfd_free_gtt_mem(dev->adev, mqd->gtt_mem);
2602 }
2603 
2604 void device_queue_manager_uninit(struct device_queue_manager *dqm)
2605 {
2606 	dqm->ops.stop(dqm);
2607 	dqm->ops.uninitialize(dqm);
2608 	if (!dqm->dev->kfd->shared_resources.enable_mes)
2609 		deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
2610 	kfree(dqm);
2611 }
2612 
2613 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid)
2614 {
2615 	struct kfd_process_device *pdd;
2616 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
2617 	int ret = 0;
2618 
2619 	if (!p)
2620 		return -EINVAL;
2621 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
2622 	pdd = kfd_get_process_device_data(dqm->dev, p);
2623 	if (pdd)
2624 		ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
2625 	kfd_unref_process(p);
2626 
2627 	return ret;
2628 }
2629 
2630 static void kfd_process_hw_exception(struct work_struct *work)
2631 {
2632 	struct device_queue_manager *dqm = container_of(work,
2633 			struct device_queue_manager, hw_exception_work);
2634 	amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
2635 }
2636 
2637 int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
2638 				struct qcm_process_device *qpd)
2639 {
2640 	int r;
2641 	int updated_vmid_mask;
2642 
2643 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2644 		pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy);
2645 		return -EINVAL;
2646 	}
2647 
2648 	dqm_lock(dqm);
2649 
2650 	if (dqm->trap_debug_vmid != 0) {
2651 		pr_err("Trap debug id already reserved\n");
2652 		r = -EBUSY;
2653 		goto out_unlock;
2654 	}
2655 
2656 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
2657 			USE_DEFAULT_GRACE_PERIOD, false);
2658 	if (r)
2659 		goto out_unlock;
2660 
2661 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
2662 	updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
2663 
2664 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
2665 	dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
2666 	r = set_sched_resources(dqm);
2667 	if (r)
2668 		goto out_unlock;
2669 
2670 	r = map_queues_cpsch(dqm);
2671 	if (r)
2672 		goto out_unlock;
2673 
2674 	pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
2675 
2676 out_unlock:
2677 	dqm_unlock(dqm);
2678 	return r;
2679 }
2680 
2681 /*
2682  * Releases vmid for the trap debugger
2683  */
2684 int release_debug_trap_vmid(struct device_queue_manager *dqm,
2685 			struct qcm_process_device *qpd)
2686 {
2687 	int r;
2688 	int updated_vmid_mask;
2689 	uint32_t trap_debug_vmid;
2690 
2691 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2692 		pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy);
2693 		return -EINVAL;
2694 	}
2695 
2696 	dqm_lock(dqm);
2697 	trap_debug_vmid = dqm->trap_debug_vmid;
2698 	if (dqm->trap_debug_vmid == 0) {
2699 		pr_err("Trap debug id is not reserved\n");
2700 		r = -EINVAL;
2701 		goto out_unlock;
2702 	}
2703 
2704 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
2705 			USE_DEFAULT_GRACE_PERIOD, false);
2706 	if (r)
2707 		goto out_unlock;
2708 
2709 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
2710 	updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
2711 
2712 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
2713 	dqm->trap_debug_vmid = 0;
2714 	r = set_sched_resources(dqm);
2715 	if (r)
2716 		goto out_unlock;
2717 
2718 	r = map_queues_cpsch(dqm);
2719 	if (r)
2720 		goto out_unlock;
2721 
2722 	pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
2723 
2724 out_unlock:
2725 	dqm_unlock(dqm);
2726 	return r;
2727 }
2728 
2729 #define QUEUE_NOT_FOUND		-1
2730 /* invalidate queue operation in array */
2731 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
2732 {
2733 	int i;
2734 
2735 	for (i = 0; i < num_queues; i++)
2736 		queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
2737 }
2738 
2739 /* find queue index in array */
2740 static int q_array_get_index(unsigned int queue_id,
2741 		uint32_t num_queues,
2742 		uint32_t *queue_ids)
2743 {
2744 	int i;
2745 
2746 	for (i = 0; i < num_queues; i++)
2747 		if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
2748 			return i;
2749 
2750 	return QUEUE_NOT_FOUND;
2751 }
2752 
2753 struct copy_context_work_handler_workarea {
2754 	struct work_struct copy_context_work;
2755 	struct kfd_process *p;
2756 };
2757 
2758 static void copy_context_work_handler (struct work_struct *work)
2759 {
2760 	struct copy_context_work_handler_workarea *workarea;
2761 	struct mqd_manager *mqd_mgr;
2762 	struct queue *q;
2763 	struct mm_struct *mm;
2764 	struct kfd_process *p;
2765 	uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
2766 	int i;
2767 
2768 	workarea = container_of(work,
2769 			struct copy_context_work_handler_workarea,
2770 			copy_context_work);
2771 
2772 	p = workarea->p;
2773 	mm = get_task_mm(p->lead_thread);
2774 
2775 	if (!mm)
2776 		return;
2777 
2778 	kthread_use_mm(mm);
2779 	for (i = 0; i < p->n_pdds; i++) {
2780 		struct kfd_process_device *pdd = p->pdds[i];
2781 		struct device_queue_manager *dqm = pdd->dev->dqm;
2782 		struct qcm_process_device *qpd = &pdd->qpd;
2783 
2784 		list_for_each_entry(q, &qpd->queues_list, list) {
2785 			mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2786 
2787 			/* We ignore the return value from get_wave_state
2788 			 * because
2789 			 * i) right now, it always returns 0, and
2790 			 * ii) if we hit an error, we would continue to the
2791 			 *      next queue anyway.
2792 			 */
2793 			mqd_mgr->get_wave_state(mqd_mgr,
2794 					q->mqd,
2795 					&q->properties,
2796 					(void __user *)	q->properties.ctx_save_restore_area_address,
2797 					&tmp_ctl_stack_used_size,
2798 					&tmp_save_area_used_size);
2799 		}
2800 	}
2801 	kthread_unuse_mm(mm);
2802 	mmput(mm);
2803 }
2804 
2805 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
2806 {
2807 	size_t array_size = num_queues * sizeof(uint32_t);
2808 	uint32_t *queue_ids = NULL;
2809 
2810 	if (!usr_queue_id_array)
2811 		return NULL;
2812 
2813 	queue_ids = kzalloc(array_size, GFP_KERNEL);
2814 	if (!queue_ids)
2815 		return ERR_PTR(-ENOMEM);
2816 
2817 	if (copy_from_user(queue_ids, usr_queue_id_array, array_size))
2818 		return ERR_PTR(-EFAULT);
2819 
2820 	return queue_ids;
2821 }
2822 
2823 int resume_queues(struct kfd_process *p,
2824 		uint32_t num_queues,
2825 		uint32_t *usr_queue_id_array)
2826 {
2827 	uint32_t *queue_ids = NULL;
2828 	int total_resumed = 0;
2829 	int i;
2830 
2831 	if (usr_queue_id_array) {
2832 		queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
2833 
2834 		if (IS_ERR(queue_ids))
2835 			return PTR_ERR(queue_ids);
2836 
2837 		/* mask all queues as invalid.  unmask per successful request */
2838 		q_array_invalidate(num_queues, queue_ids);
2839 	}
2840 
2841 	for (i = 0; i < p->n_pdds; i++) {
2842 		struct kfd_process_device *pdd = p->pdds[i];
2843 		struct device_queue_manager *dqm = pdd->dev->dqm;
2844 		struct qcm_process_device *qpd = &pdd->qpd;
2845 		struct queue *q;
2846 		int r, per_device_resumed = 0;
2847 
2848 		dqm_lock(dqm);
2849 
2850 		/* unmask queues that resume or already resumed as valid */
2851 		list_for_each_entry(q, &qpd->queues_list, list) {
2852 			int q_idx = QUEUE_NOT_FOUND;
2853 
2854 			if (queue_ids)
2855 				q_idx = q_array_get_index(
2856 						q->properties.queue_id,
2857 						num_queues,
2858 						queue_ids);
2859 
2860 			if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
2861 				int err = resume_single_queue(dqm, &pdd->qpd, q);
2862 
2863 				if (queue_ids) {
2864 					if (!err) {
2865 						queue_ids[q_idx] &=
2866 							~KFD_DBG_QUEUE_INVALID_MASK;
2867 					} else {
2868 						queue_ids[q_idx] |=
2869 							KFD_DBG_QUEUE_ERROR_MASK;
2870 						break;
2871 					}
2872 				}
2873 
2874 				if (dqm->dev->kfd->shared_resources.enable_mes) {
2875 					wake_up_all(&dqm->destroy_wait);
2876 					if (!err)
2877 						total_resumed++;
2878 				} else {
2879 					per_device_resumed++;
2880 				}
2881 			}
2882 		}
2883 
2884 		if (!per_device_resumed) {
2885 			dqm_unlock(dqm);
2886 			continue;
2887 		}
2888 
2889 		r = execute_queues_cpsch(dqm,
2890 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
2891 					0,
2892 					USE_DEFAULT_GRACE_PERIOD);
2893 		if (r) {
2894 			pr_err("Failed to resume process queues\n");
2895 			if (queue_ids) {
2896 				list_for_each_entry(q, &qpd->queues_list, list) {
2897 					int q_idx = q_array_get_index(
2898 							q->properties.queue_id,
2899 							num_queues,
2900 							queue_ids);
2901 
2902 					/* mask queue as error on resume fail */
2903 					if (q_idx != QUEUE_NOT_FOUND)
2904 						queue_ids[q_idx] |=
2905 							KFD_DBG_QUEUE_ERROR_MASK;
2906 				}
2907 			}
2908 		} else {
2909 			wake_up_all(&dqm->destroy_wait);
2910 			total_resumed += per_device_resumed;
2911 		}
2912 
2913 		dqm_unlock(dqm);
2914 	}
2915 
2916 	if (queue_ids) {
2917 		if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
2918 				num_queues * sizeof(uint32_t)))
2919 			pr_err("copy_to_user failed on queue resume\n");
2920 
2921 		kfree(queue_ids);
2922 	}
2923 
2924 	return total_resumed;
2925 }
2926 
2927 int suspend_queues(struct kfd_process *p,
2928 			uint32_t num_queues,
2929 			uint32_t grace_period,
2930 			uint64_t exception_clear_mask,
2931 			uint32_t *usr_queue_id_array)
2932 {
2933 	uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
2934 	int total_suspended = 0;
2935 	int i;
2936 
2937 	if (IS_ERR(queue_ids))
2938 		return PTR_ERR(queue_ids);
2939 
2940 	/* mask all queues as invalid.  umask on successful request */
2941 	q_array_invalidate(num_queues, queue_ids);
2942 
2943 	for (i = 0; i < p->n_pdds; i++) {
2944 		struct kfd_process_device *pdd = p->pdds[i];
2945 		struct device_queue_manager *dqm = pdd->dev->dqm;
2946 		struct qcm_process_device *qpd = &pdd->qpd;
2947 		struct queue *q;
2948 		int r, per_device_suspended = 0;
2949 
2950 		mutex_lock(&p->event_mutex);
2951 		dqm_lock(dqm);
2952 
2953 		/* unmask queues that suspend or already suspended */
2954 		list_for_each_entry(q, &qpd->queues_list, list) {
2955 			int q_idx = q_array_get_index(q->properties.queue_id,
2956 							num_queues,
2957 							queue_ids);
2958 
2959 			if (q_idx != QUEUE_NOT_FOUND) {
2960 				int err = suspend_single_queue(dqm, pdd, q);
2961 				bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
2962 
2963 				if (!err) {
2964 					queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
2965 					if (exception_clear_mask && is_mes)
2966 						q->properties.exception_status &=
2967 							~exception_clear_mask;
2968 
2969 					if (is_mes)
2970 						total_suspended++;
2971 					else
2972 						per_device_suspended++;
2973 				} else if (err != -EBUSY) {
2974 					r = err;
2975 					queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
2976 					break;
2977 				}
2978 			}
2979 		}
2980 
2981 		if (!per_device_suspended) {
2982 			dqm_unlock(dqm);
2983 			mutex_unlock(&p->event_mutex);
2984 			if (total_suspended)
2985 				amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
2986 			continue;
2987 		}
2988 
2989 		r = execute_queues_cpsch(dqm,
2990 			KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2991 			grace_period);
2992 
2993 		if (r)
2994 			pr_err("Failed to suspend process queues.\n");
2995 		else
2996 			total_suspended += per_device_suspended;
2997 
2998 		list_for_each_entry(q, &qpd->queues_list, list) {
2999 			int q_idx = q_array_get_index(q->properties.queue_id,
3000 						num_queues, queue_ids);
3001 
3002 			if (q_idx == QUEUE_NOT_FOUND)
3003 				continue;
3004 
3005 			/* mask queue as error on suspend fail */
3006 			if (r)
3007 				queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3008 			else if (exception_clear_mask)
3009 				q->properties.exception_status &=
3010 							~exception_clear_mask;
3011 		}
3012 
3013 		dqm_unlock(dqm);
3014 		mutex_unlock(&p->event_mutex);
3015 		amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
3016 	}
3017 
3018 	if (total_suspended) {
3019 		struct copy_context_work_handler_workarea copy_context_worker;
3020 
3021 		INIT_WORK_ONSTACK(
3022 				&copy_context_worker.copy_context_work,
3023 				copy_context_work_handler);
3024 
3025 		copy_context_worker.p = p;
3026 
3027 		schedule_work(&copy_context_worker.copy_context_work);
3028 
3029 
3030 		flush_work(&copy_context_worker.copy_context_work);
3031 		destroy_work_on_stack(&copy_context_worker.copy_context_work);
3032 	}
3033 
3034 	if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3035 			num_queues * sizeof(uint32_t)))
3036 		pr_err("copy_to_user failed on queue suspend\n");
3037 
3038 	kfree(queue_ids);
3039 
3040 	return total_suspended;
3041 }
3042 
3043 static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
3044 {
3045 	switch (q_props->type) {
3046 	case KFD_QUEUE_TYPE_COMPUTE:
3047 		return q_props->format == KFD_QUEUE_FORMAT_PM4
3048 					? KFD_IOC_QUEUE_TYPE_COMPUTE
3049 					: KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
3050 	case KFD_QUEUE_TYPE_SDMA:
3051 		return KFD_IOC_QUEUE_TYPE_SDMA;
3052 	case KFD_QUEUE_TYPE_SDMA_XGMI:
3053 		return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
3054 	default:
3055 		WARN_ONCE(true, "queue type not recognized!");
3056 		return 0xffffffff;
3057 	};
3058 }
3059 
3060 void set_queue_snapshot_entry(struct queue *q,
3061 			      uint64_t exception_clear_mask,
3062 			      struct kfd_queue_snapshot_entry *qss_entry)
3063 {
3064 	qss_entry->ring_base_address = q->properties.queue_address;
3065 	qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
3066 	qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
3067 	qss_entry->ctx_save_restore_address =
3068 				q->properties.ctx_save_restore_area_address;
3069 	qss_entry->ctx_save_restore_area_size =
3070 				q->properties.ctx_save_restore_area_size;
3071 	qss_entry->exception_status = q->properties.exception_status;
3072 	qss_entry->queue_id = q->properties.queue_id;
3073 	qss_entry->gpu_id = q->device->id;
3074 	qss_entry->ring_size = (uint32_t)q->properties.queue_size;
3075 	qss_entry->queue_type = set_queue_type_for_user(&q->properties);
3076 	q->properties.exception_status &= ~exception_clear_mask;
3077 }
3078 
3079 int debug_lock_and_unmap(struct device_queue_manager *dqm)
3080 {
3081 	int r;
3082 
3083 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3084 		pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy);
3085 		return -EINVAL;
3086 	}
3087 
3088 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3089 		return 0;
3090 
3091 	dqm_lock(dqm);
3092 
3093 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
3094 	if (r)
3095 		dqm_unlock(dqm);
3096 
3097 	return r;
3098 }
3099 
3100 int debug_map_and_unlock(struct device_queue_manager *dqm)
3101 {
3102 	int r;
3103 
3104 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3105 		pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy);
3106 		return -EINVAL;
3107 	}
3108 
3109 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3110 		return 0;
3111 
3112 	r = map_queues_cpsch(dqm);
3113 
3114 	dqm_unlock(dqm);
3115 
3116 	return r;
3117 }
3118 
3119 int debug_refresh_runlist(struct device_queue_manager *dqm)
3120 {
3121 	int r = debug_lock_and_unmap(dqm);
3122 
3123 	if (r)
3124 		return r;
3125 
3126 	return debug_map_and_unlock(dqm);
3127 }
3128 
3129 #if defined(CONFIG_DEBUG_FS)
3130 
3131 static void seq_reg_dump(struct seq_file *m,
3132 			 uint32_t (*dump)[2], uint32_t n_regs)
3133 {
3134 	uint32_t i, count;
3135 
3136 	for (i = 0, count = 0; i < n_regs; i++) {
3137 		if (count == 0 ||
3138 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
3139 			seq_printf(m, "%s    %08x: %08x",
3140 				   i ? "\n" : "",
3141 				   dump[i][0], dump[i][1]);
3142 			count = 7;
3143 		} else {
3144 			seq_printf(m, " %08x", dump[i][1]);
3145 			count--;
3146 		}
3147 	}
3148 
3149 	seq_puts(m, "\n");
3150 }
3151 
3152 int dqm_debugfs_hqds(struct seq_file *m, void *data)
3153 {
3154 	struct device_queue_manager *dqm = data;
3155 	uint32_t xcc_mask = dqm->dev->xcc_mask;
3156 	uint32_t (*dump)[2], n_regs;
3157 	int pipe, queue;
3158 	int r = 0, xcc_id;
3159 	uint32_t sdma_engine_start;
3160 
3161 	if (!dqm->sched_running) {
3162 		seq_puts(m, " Device is stopped\n");
3163 		return 0;
3164 	}
3165 
3166 	for_each_inst(xcc_id, xcc_mask) {
3167 		r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3168 						KFD_CIK_HIQ_PIPE,
3169 						KFD_CIK_HIQ_QUEUE, &dump,
3170 						&n_regs, xcc_id);
3171 		if (!r) {
3172 			seq_printf(
3173 				m,
3174 				"   Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
3175 				xcc_id,
3176 				KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
3177 				KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
3178 				KFD_CIK_HIQ_QUEUE);
3179 			seq_reg_dump(m, dump, n_regs);
3180 
3181 			kfree(dump);
3182 		}
3183 
3184 		for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
3185 			int pipe_offset = pipe * get_queues_per_pipe(dqm);
3186 
3187 			for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
3188 				if (!test_bit(pipe_offset + queue,
3189 				      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
3190 					continue;
3191 
3192 				r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3193 								pipe, queue,
3194 								&dump, &n_regs,
3195 								xcc_id);
3196 				if (r)
3197 					break;
3198 
3199 				seq_printf(m,
3200 					   " Inst %d,  CP Pipe %d, Queue %d\n",
3201 					   xcc_id, pipe, queue);
3202 				seq_reg_dump(m, dump, n_regs);
3203 
3204 				kfree(dump);
3205 			}
3206 		}
3207 	}
3208 
3209 	sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
3210 	for (pipe = sdma_engine_start;
3211 	     pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
3212 	     pipe++) {
3213 		for (queue = 0;
3214 		     queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
3215 		     queue++) {
3216 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
3217 				dqm->dev->adev, pipe, queue, &dump, &n_regs);
3218 			if (r)
3219 				break;
3220 
3221 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
3222 				  pipe, queue);
3223 			seq_reg_dump(m, dump, n_regs);
3224 
3225 			kfree(dump);
3226 		}
3227 	}
3228 
3229 	return r;
3230 }
3231 
3232 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
3233 {
3234 	int r = 0;
3235 
3236 	dqm_lock(dqm);
3237 	r = pm_debugfs_hang_hws(&dqm->packet_mgr);
3238 	if (r) {
3239 		dqm_unlock(dqm);
3240 		return r;
3241 	}
3242 	dqm->active_runlist = true;
3243 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
3244 				0, USE_DEFAULT_GRACE_PERIOD);
3245 	dqm_unlock(dqm);
3246 
3247 	return r;
3248 }
3249 
3250 #endif
3251