1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/slab.h>
25 #include <linux/list.h>
26 #include <linux/types.h>
27 #include <linux/printk.h>
28 #include <linux/bitops.h>
29 #include "kfd_priv.h"
30 #include "kfd_device_queue_manager.h"
31 #include "kfd_mqd_manager.h"
32 #include "cik_regs.h"
33 #include "kfd_kernel_queue.h"
34 #include "../../radeon/cik_reg.h"
35 
36 /* Size of the per-pipe EOP queue */
37 #define CIK_HPD_EOP_BYTES_LOG2 11
38 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
39 
40 static bool is_mem_initialized;
41 
42 static int init_memory(struct device_queue_manager *dqm);
43 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
44 					unsigned int pasid, unsigned int vmid);
45 
46 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
47 					struct queue *q,
48 					struct qcm_process_device *qpd);
49 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
50 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock);
51 
52 
53 static inline unsigned int get_pipes_num(struct device_queue_manager *dqm)
54 {
55 	BUG_ON(!dqm || !dqm->dev);
56 	return dqm->dev->shared_resources.compute_pipe_count;
57 }
58 
59 static inline unsigned int get_first_pipe(struct device_queue_manager *dqm)
60 {
61 	BUG_ON(!dqm);
62 	return dqm->dev->shared_resources.first_compute_pipe;
63 }
64 
65 static inline unsigned int get_pipes_num_cpsch(void)
66 {
67 	return PIPE_PER_ME_CP_SCHEDULING;
68 }
69 
70 static inline unsigned int
71 get_sh_mem_bases_nybble_64(struct kfd_process_device *pdd)
72 {
73 	uint32_t nybble;
74 
75 	nybble = (pdd->lds_base >> 60) & 0x0E;
76 
77 	return nybble;
78 
79 }
80 
81 static inline unsigned int get_sh_mem_bases_32(struct kfd_process_device *pdd)
82 {
83 	unsigned int shared_base;
84 
85 	shared_base = (pdd->lds_base >> 16) & 0xFF;
86 
87 	return shared_base;
88 }
89 
90 static uint32_t compute_sh_mem_bases_64bit(unsigned int top_address_nybble);
91 static void init_process_memory(struct device_queue_manager *dqm,
92 				struct qcm_process_device *qpd)
93 {
94 	struct kfd_process_device *pdd;
95 	unsigned int temp;
96 
97 	BUG_ON(!dqm || !qpd);
98 
99 	pdd = qpd_to_pdd(qpd);
100 
101 	/* check if sh_mem_config register already configured */
102 	if (qpd->sh_mem_config == 0) {
103 		qpd->sh_mem_config =
104 			ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED) |
105 			DEFAULT_MTYPE(MTYPE_NONCACHED) |
106 			APE1_MTYPE(MTYPE_NONCACHED);
107 		qpd->sh_mem_ape1_limit = 0;
108 		qpd->sh_mem_ape1_base = 0;
109 	}
110 
111 	if (qpd->pqm->process->is_32bit_user_mode) {
112 		temp = get_sh_mem_bases_32(pdd);
113 		qpd->sh_mem_bases = SHARED_BASE(temp);
114 		qpd->sh_mem_config |= PTR32;
115 	} else {
116 		temp = get_sh_mem_bases_nybble_64(pdd);
117 		qpd->sh_mem_bases = compute_sh_mem_bases_64bit(temp);
118 	}
119 
120 	pr_debug("kfd: is32bit process: %d sh_mem_bases nybble: 0x%X and register 0x%X\n",
121 		qpd->pqm->process->is_32bit_user_mode, temp, qpd->sh_mem_bases);
122 }
123 
124 static void program_sh_mem_settings(struct device_queue_manager *dqm,
125 					struct qcm_process_device *qpd)
126 {
127 	return kfd2kgd->program_sh_mem_settings(dqm->dev->kgd, qpd->vmid,
128 						qpd->sh_mem_config,
129 						qpd->sh_mem_ape1_base,
130 						qpd->sh_mem_ape1_limit,
131 						qpd->sh_mem_bases);
132 }
133 
134 static int allocate_vmid(struct device_queue_manager *dqm,
135 			struct qcm_process_device *qpd,
136 			struct queue *q)
137 {
138 	int bit, allocated_vmid;
139 
140 	if (dqm->vmid_bitmap == 0)
141 		return -ENOMEM;
142 
143 	bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
144 	clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
145 
146 	/* Kaveri kfd vmid's starts from vmid 8 */
147 	allocated_vmid = bit + KFD_VMID_START_OFFSET;
148 	pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
149 	qpd->vmid = allocated_vmid;
150 	q->properties.vmid = allocated_vmid;
151 
152 	set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
153 	program_sh_mem_settings(dqm, qpd);
154 
155 	return 0;
156 }
157 
158 static void deallocate_vmid(struct device_queue_manager *dqm,
159 				struct qcm_process_device *qpd,
160 				struct queue *q)
161 {
162 	int bit = qpd->vmid - KFD_VMID_START_OFFSET;
163 
164 	/* Release the vmid mapping */
165 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
166 
167 	set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
168 	qpd->vmid = 0;
169 	q->properties.vmid = 0;
170 }
171 
172 static int create_queue_nocpsch(struct device_queue_manager *dqm,
173 				struct queue *q,
174 				struct qcm_process_device *qpd,
175 				int *allocated_vmid)
176 {
177 	int retval;
178 
179 	BUG_ON(!dqm || !q || !qpd || !allocated_vmid);
180 
181 	pr_debug("kfd: In func %s\n", __func__);
182 	print_queue(q);
183 
184 	mutex_lock(&dqm->lock);
185 
186 	if (list_empty(&qpd->queues_list)) {
187 		retval = allocate_vmid(dqm, qpd, q);
188 		if (retval != 0) {
189 			mutex_unlock(&dqm->lock);
190 			return retval;
191 		}
192 	}
193 	*allocated_vmid = qpd->vmid;
194 	q->properties.vmid = qpd->vmid;
195 
196 	retval = create_compute_queue_nocpsch(dqm, q, qpd);
197 
198 	if (retval != 0) {
199 		if (list_empty(&qpd->queues_list)) {
200 			deallocate_vmid(dqm, qpd, q);
201 			*allocated_vmid = 0;
202 		}
203 		mutex_unlock(&dqm->lock);
204 		return retval;
205 	}
206 
207 	list_add(&q->list, &qpd->queues_list);
208 	dqm->queue_count++;
209 
210 	mutex_unlock(&dqm->lock);
211 	return 0;
212 }
213 
214 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
215 {
216 	bool set;
217 	int pipe, bit;
218 
219 	set = false;
220 
221 	for (pipe = dqm->next_pipe_to_allocate; pipe < get_pipes_num(dqm);
222 			pipe = (pipe + 1) % get_pipes_num(dqm)) {
223 		if (dqm->allocated_queues[pipe] != 0) {
224 			bit = find_first_bit(
225 				(unsigned long *)&dqm->allocated_queues[pipe],
226 				QUEUES_PER_PIPE);
227 
228 			clear_bit(bit,
229 				(unsigned long *)&dqm->allocated_queues[pipe]);
230 			q->pipe = pipe;
231 			q->queue = bit;
232 			set = true;
233 			break;
234 		}
235 	}
236 
237 	if (set == false)
238 		return -EBUSY;
239 
240 	pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
241 				__func__, q->pipe, q->queue);
242 	/* horizontal hqd allocation */
243 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);
244 
245 	return 0;
246 }
247 
248 static inline void deallocate_hqd(struct device_queue_manager *dqm,
249 				struct queue *q)
250 {
251 	set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
252 }
253 
254 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
255 					struct queue *q,
256 					struct qcm_process_device *qpd)
257 {
258 	int retval;
259 	struct mqd_manager *mqd;
260 
261 	BUG_ON(!dqm || !q || !qpd);
262 
263 	mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
264 	if (mqd == NULL)
265 		return -ENOMEM;
266 
267 	retval = allocate_hqd(dqm, q);
268 	if (retval != 0)
269 		return retval;
270 
271 	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
272 				&q->gart_mqd_addr, &q->properties);
273 	if (retval != 0) {
274 		deallocate_hqd(dqm, q);
275 		return retval;
276 	}
277 
278 	pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
279 			q->pipe,
280 			q->queue);
281 
282 	retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
283 			q->queue, (uint32_t __user *) q->properties.write_ptr);
284 	if (retval != 0) {
285 		deallocate_hqd(dqm, q);
286 		mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
287 		return retval;
288 	}
289 
290 	return 0;
291 }
292 
293 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
294 				struct qcm_process_device *qpd,
295 				struct queue *q)
296 {
297 	int retval;
298 	struct mqd_manager *mqd;
299 
300 	BUG_ON(!dqm || !q || !q->mqd || !qpd);
301 
302 	retval = 0;
303 
304 	pr_debug("kfd: In Func %s\n", __func__);
305 
306 	mutex_lock(&dqm->lock);
307 	mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
308 	if (mqd == NULL) {
309 		retval = -ENOMEM;
310 		goto out;
311 	}
312 
313 	retval = mqd->destroy_mqd(mqd, q->mqd,
314 				KFD_PREEMPT_TYPE_WAVEFRONT,
315 				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
316 				q->pipe, q->queue);
317 
318 	if (retval != 0)
319 		goto out;
320 
321 	deallocate_hqd(dqm, q);
322 
323 	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
324 
325 	list_del(&q->list);
326 	if (list_empty(&qpd->queues_list))
327 		deallocate_vmid(dqm, qpd, q);
328 	dqm->queue_count--;
329 out:
330 	mutex_unlock(&dqm->lock);
331 	return retval;
332 }
333 
334 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
335 {
336 	int retval;
337 	struct mqd_manager *mqd;
338 	bool prev_active = false;
339 
340 	BUG_ON(!dqm || !q || !q->mqd);
341 
342 	mutex_lock(&dqm->lock);
343 	mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
344 	if (mqd == NULL) {
345 		mutex_unlock(&dqm->lock);
346 		return -ENOMEM;
347 	}
348 
349 	if (q->properties.is_active == true)
350 		prev_active = true;
351 
352 	/*
353 	 *
354 	 * check active state vs. the previous state
355 	 * and modify counter accordingly
356 	 */
357 	retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
358 	if ((q->properties.is_active == true) && (prev_active == false))
359 		dqm->queue_count++;
360 	else if ((q->properties.is_active == false) && (prev_active == true))
361 		dqm->queue_count--;
362 
363 	if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
364 		retval = execute_queues_cpsch(dqm, false);
365 
366 	mutex_unlock(&dqm->lock);
367 	return retval;
368 }
369 
370 static struct mqd_manager *get_mqd_manager_nocpsch(
371 		struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
372 {
373 	struct mqd_manager *mqd;
374 
375 	BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);
376 
377 	pr_debug("kfd: In func %s mqd type %d\n", __func__, type);
378 
379 	mqd = dqm->mqds[type];
380 	if (!mqd) {
381 		mqd = mqd_manager_init(type, dqm->dev);
382 		if (mqd == NULL)
383 			pr_err("kfd: mqd manager is NULL");
384 		dqm->mqds[type] = mqd;
385 	}
386 
387 	return mqd;
388 }
389 
390 static int register_process_nocpsch(struct device_queue_manager *dqm,
391 					struct qcm_process_device *qpd)
392 {
393 	struct device_process_node *n;
394 
395 	BUG_ON(!dqm || !qpd);
396 
397 	pr_debug("kfd: In func %s\n", __func__);
398 
399 	n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
400 	if (!n)
401 		return -ENOMEM;
402 
403 	n->qpd = qpd;
404 
405 	mutex_lock(&dqm->lock);
406 	list_add(&n->list, &dqm->queues);
407 
408 	init_process_memory(dqm, qpd);
409 	dqm->processes_count++;
410 
411 	mutex_unlock(&dqm->lock);
412 
413 	return 0;
414 }
415 
416 static int unregister_process_nocpsch(struct device_queue_manager *dqm,
417 					struct qcm_process_device *qpd)
418 {
419 	int retval;
420 	struct device_process_node *cur, *next;
421 
422 	BUG_ON(!dqm || !qpd);
423 
424 	BUG_ON(!list_empty(&qpd->queues_list));
425 
426 	pr_debug("kfd: In func %s\n", __func__);
427 
428 	retval = 0;
429 	mutex_lock(&dqm->lock);
430 
431 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
432 		if (qpd == cur->qpd) {
433 			list_del(&cur->list);
434 			kfree(cur);
435 			dqm->processes_count--;
436 			goto out;
437 		}
438 	}
439 	/* qpd not found in dqm list */
440 	retval = 1;
441 out:
442 	mutex_unlock(&dqm->lock);
443 	return retval;
444 }
445 
446 static int
447 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
448 			unsigned int vmid)
449 {
450 	uint32_t pasid_mapping;
451 
452 	pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
453 						ATC_VMID_PASID_MAPPING_VALID;
454 	return kfd2kgd->set_pasid_vmid_mapping(dqm->dev->kgd, pasid_mapping,
455 						vmid);
456 }
457 
458 static uint32_t compute_sh_mem_bases_64bit(unsigned int top_address_nybble)
459 {
460 	/* In 64-bit mode, we can only control the top 3 bits of the LDS,
461 	 * scratch and GPUVM apertures.
462 	 * The hardware fills in the remaining 59 bits according to the
463 	 * following pattern:
464 	 * LDS:		X0000000'00000000 - X0000001'00000000 (4GB)
465 	 * Scratch:	X0000001'00000000 - X0000002'00000000 (4GB)
466 	 * GPUVM:	Y0010000'00000000 - Y0020000'00000000 (1TB)
467 	 *
468 	 * (where X/Y is the configurable nybble with the low-bit 0)
469 	 *
470 	 * LDS and scratch will have the same top nybble programmed in the
471 	 * top 3 bits of SH_MEM_BASES.PRIVATE_BASE.
472 	 * GPUVM can have a different top nybble programmed in the
473 	 * top 3 bits of SH_MEM_BASES.SHARED_BASE.
474 	 * We don't bother to support different top nybbles
475 	 * for LDS/Scratch and GPUVM.
476 	 */
477 
478 	BUG_ON((top_address_nybble & 1) || top_address_nybble > 0xE ||
479 		top_address_nybble == 0);
480 
481 	return PRIVATE_BASE(top_address_nybble << 12) |
482 			SHARED_BASE(top_address_nybble << 12);
483 }
484 
485 static int init_memory(struct device_queue_manager *dqm)
486 {
487 	int i, retval;
488 
489 	for (i = 8; i < 16; i++)
490 		set_pasid_vmid_mapping(dqm, 0, i);
491 
492 	retval = kfd2kgd->init_memory(dqm->dev->kgd);
493 	if (retval == 0)
494 		is_mem_initialized = true;
495 	return retval;
496 }
497 
498 
499 static int init_pipelines(struct device_queue_manager *dqm,
500 			unsigned int pipes_num, unsigned int first_pipe)
501 {
502 	void *hpdptr;
503 	struct mqd_manager *mqd;
504 	unsigned int i, err, inx;
505 	uint64_t pipe_hpd_addr;
506 
507 	BUG_ON(!dqm || !dqm->dev);
508 
509 	pr_debug("kfd: In func %s\n", __func__);
510 
511 	/*
512 	 * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
513 	 * The driver never accesses this memory after zeroing it.
514 	 * It doesn't even have to be saved/restored on suspend/resume
515 	 * because it contains no data when there are no active queues.
516 	 */
517 
518 	err = kfd2kgd->allocate_mem(dqm->dev->kgd,
519 				CIK_HPD_EOP_BYTES * pipes_num,
520 				PAGE_SIZE,
521 				KFD_MEMPOOL_SYSTEM_WRITECOMBINE,
522 				(struct kgd_mem **) &dqm->pipeline_mem);
523 
524 	if (err) {
525 		pr_err("kfd: error allocate vidmem num pipes: %d\n",
526 			pipes_num);
527 		return -ENOMEM;
528 	}
529 
530 	hpdptr = dqm->pipeline_mem->cpu_ptr;
531 	dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;
532 
533 	memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);
534 
535 	mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE);
536 	if (mqd == NULL) {
537 		kfd2kgd->free_mem(dqm->dev->kgd,
538 				(struct kgd_mem *) dqm->pipeline_mem);
539 		return -ENOMEM;
540 	}
541 
542 	for (i = 0; i < pipes_num; i++) {
543 		inx = i + first_pipe;
544 		pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
545 		pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
546 		/* = log2(bytes/4)-1 */
547 		kfd2kgd->init_pipeline(dqm->dev->kgd, i,
548 				CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
549 	}
550 
551 	return 0;
552 }
553 
554 
555 static int init_scheduler(struct device_queue_manager *dqm)
556 {
557 	int retval;
558 
559 	BUG_ON(!dqm);
560 
561 	pr_debug("kfd: In %s\n", __func__);
562 
563 	retval = init_pipelines(dqm, get_pipes_num(dqm), KFD_DQM_FIRST_PIPE);
564 	if (retval != 0)
565 		return retval;
566 
567 	retval = init_memory(dqm);
568 
569 	return retval;
570 }
571 
572 static int initialize_nocpsch(struct device_queue_manager *dqm)
573 {
574 	int i;
575 
576 	BUG_ON(!dqm);
577 
578 	pr_debug("kfd: In func %s num of pipes: %d\n",
579 			__func__, get_pipes_num(dqm));
580 
581 	mutex_init(&dqm->lock);
582 	INIT_LIST_HEAD(&dqm->queues);
583 	dqm->queue_count = dqm->next_pipe_to_allocate = 0;
584 	dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
585 					sizeof(unsigned int), GFP_KERNEL);
586 	if (!dqm->allocated_queues) {
587 		mutex_destroy(&dqm->lock);
588 		return -ENOMEM;
589 	}
590 
591 	for (i = 0; i < get_pipes_num(dqm); i++)
592 		dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;
593 
594 	dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
595 
596 	init_scheduler(dqm);
597 	return 0;
598 }
599 
600 static void uninitialize_nocpsch(struct device_queue_manager *dqm)
601 {
602 	int i;
603 
604 	BUG_ON(!dqm);
605 
606 	BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
607 
608 	kfree(dqm->allocated_queues);
609 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
610 		kfree(dqm->mqds[i]);
611 	mutex_destroy(&dqm->lock);
612 	kfd2kgd->free_mem(dqm->dev->kgd,
613 			(struct kgd_mem *) dqm->pipeline_mem);
614 }
615 
616 static int start_nocpsch(struct device_queue_manager *dqm)
617 {
618 	return 0;
619 }
620 
621 static int stop_nocpsch(struct device_queue_manager *dqm)
622 {
623 	return 0;
624 }
625 
626 /*
627  * Device Queue Manager implementation for cp scheduler
628  */
629 
630 static int set_sched_resources(struct device_queue_manager *dqm)
631 {
632 	struct scheduling_resources res;
633 	unsigned int queue_num, queue_mask;
634 
635 	BUG_ON(!dqm);
636 
637 	pr_debug("kfd: In func %s\n", __func__);
638 
639 	queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
640 	queue_mask = (1 << queue_num) - 1;
641 	res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
642 	res.vmid_mask <<= KFD_VMID_START_OFFSET;
643 	res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
644 	res.gws_mask = res.oac_mask = res.gds_heap_base =
645 						res.gds_heap_size = 0;
646 
647 	pr_debug("kfd: scheduling resources:\n"
648 			"      vmid mask: 0x%8X\n"
649 			"      queue mask: 0x%8llX\n",
650 			res.vmid_mask, res.queue_mask);
651 
652 	return pm_send_set_resources(&dqm->packets, &res);
653 }
654 
655 static int initialize_cpsch(struct device_queue_manager *dqm)
656 {
657 	int retval;
658 
659 	BUG_ON(!dqm);
660 
661 	pr_debug("kfd: In func %s num of pipes: %d\n",
662 			__func__, get_pipes_num_cpsch());
663 
664 	mutex_init(&dqm->lock);
665 	INIT_LIST_HEAD(&dqm->queues);
666 	dqm->queue_count = dqm->processes_count = 0;
667 	dqm->active_runlist = false;
668 	retval = init_pipelines(dqm, get_pipes_num(dqm), 0);
669 	if (retval != 0)
670 		goto fail_init_pipelines;
671 
672 	return 0;
673 
674 fail_init_pipelines:
675 	mutex_destroy(&dqm->lock);
676 	return retval;
677 }
678 
679 static int start_cpsch(struct device_queue_manager *dqm)
680 {
681 	struct device_process_node *node;
682 	int retval;
683 
684 	BUG_ON(!dqm);
685 
686 	retval = 0;
687 
688 	retval = pm_init(&dqm->packets, dqm);
689 	if (retval != 0)
690 		goto fail_packet_manager_init;
691 
692 	retval = set_sched_resources(dqm);
693 	if (retval != 0)
694 		goto fail_set_sched_resources;
695 
696 	pr_debug("kfd: allocating fence memory\n");
697 
698 	/* allocate fence memory on the gart */
699 	retval = kfd2kgd->allocate_mem(dqm->dev->kgd,
700 					sizeof(*dqm->fence_addr),
701 					32,
702 					KFD_MEMPOOL_SYSTEM_WRITECOMBINE,
703 					(struct kgd_mem **) &dqm->fence_mem);
704 
705 	if (retval != 0)
706 		goto fail_allocate_vidmem;
707 
708 	dqm->fence_addr = dqm->fence_mem->cpu_ptr;
709 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
710 
711 	list_for_each_entry(node, &dqm->queues, list)
712 		if (node->qpd->pqm->process && dqm->dev)
713 			kfd_bind_process_to_device(dqm->dev,
714 						node->qpd->pqm->process);
715 
716 	execute_queues_cpsch(dqm, true);
717 
718 	return 0;
719 fail_allocate_vidmem:
720 fail_set_sched_resources:
721 	pm_uninit(&dqm->packets);
722 fail_packet_manager_init:
723 	return retval;
724 }
725 
726 static int stop_cpsch(struct device_queue_manager *dqm)
727 {
728 	struct device_process_node *node;
729 	struct kfd_process_device *pdd;
730 
731 	BUG_ON(!dqm);
732 
733 	destroy_queues_cpsch(dqm, true);
734 
735 	list_for_each_entry(node, &dqm->queues, list) {
736 		pdd = qpd_to_pdd(node->qpd);
737 		pdd->bound = false;
738 	}
739 	kfd2kgd->free_mem(dqm->dev->kgd,
740 			(struct kgd_mem *) dqm->fence_mem);
741 	pm_uninit(&dqm->packets);
742 
743 	return 0;
744 }
745 
746 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
747 					struct kernel_queue *kq,
748 					struct qcm_process_device *qpd)
749 {
750 	BUG_ON(!dqm || !kq || !qpd);
751 
752 	pr_debug("kfd: In func %s\n", __func__);
753 
754 	mutex_lock(&dqm->lock);
755 	list_add(&kq->list, &qpd->priv_queue_list);
756 	dqm->queue_count++;
757 	qpd->is_debug = true;
758 	execute_queues_cpsch(dqm, false);
759 	mutex_unlock(&dqm->lock);
760 
761 	return 0;
762 }
763 
764 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
765 					struct kernel_queue *kq,
766 					struct qcm_process_device *qpd)
767 {
768 	BUG_ON(!dqm || !kq);
769 
770 	pr_debug("kfd: In %s\n", __func__);
771 
772 	mutex_lock(&dqm->lock);
773 	destroy_queues_cpsch(dqm, false);
774 	list_del(&kq->list);
775 	dqm->queue_count--;
776 	qpd->is_debug = false;
777 	execute_queues_cpsch(dqm, false);
778 	mutex_unlock(&dqm->lock);
779 }
780 
781 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
782 			struct qcm_process_device *qpd, int *allocate_vmid)
783 {
784 	int retval;
785 	struct mqd_manager *mqd;
786 
787 	BUG_ON(!dqm || !q || !qpd);
788 
789 	retval = 0;
790 
791 	if (allocate_vmid)
792 		*allocate_vmid = 0;
793 
794 	mutex_lock(&dqm->lock);
795 
796 	mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_CP);
797 	if (mqd == NULL) {
798 		mutex_unlock(&dqm->lock);
799 		return -ENOMEM;
800 	}
801 
802 	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
803 				&q->gart_mqd_addr, &q->properties);
804 	if (retval != 0)
805 		goto out;
806 
807 	list_add(&q->list, &qpd->queues_list);
808 	if (q->properties.is_active) {
809 		dqm->queue_count++;
810 		retval = execute_queues_cpsch(dqm, false);
811 	}
812 
813 out:
814 	mutex_unlock(&dqm->lock);
815 	return retval;
816 }
817 
818 static int fence_wait_timeout(unsigned int *fence_addr,
819 				unsigned int fence_value,
820 				unsigned long timeout)
821 {
822 	BUG_ON(!fence_addr);
823 	timeout += jiffies;
824 
825 	while (*fence_addr != fence_value) {
826 		if (time_after(jiffies, timeout)) {
827 			pr_err("kfd: qcm fence wait loop timeout expired\n");
828 			return -ETIME;
829 		}
830 		cpu_relax();
831 	}
832 
833 	return 0;
834 }
835 
836 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock)
837 {
838 	int retval;
839 
840 	BUG_ON(!dqm);
841 
842 	retval = 0;
843 
844 	if (lock)
845 		mutex_lock(&dqm->lock);
846 	if (dqm->active_runlist == false)
847 		goto out;
848 	retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
849 			KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false, 0);
850 	if (retval != 0)
851 		goto out;
852 
853 	*dqm->fence_addr = KFD_FENCE_INIT;
854 	pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
855 				KFD_FENCE_COMPLETED);
856 	/* should be timed out */
857 	fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
858 				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
859 	pm_release_ib(&dqm->packets);
860 	dqm->active_runlist = false;
861 
862 out:
863 	if (lock)
864 		mutex_unlock(&dqm->lock);
865 	return retval;
866 }
867 
868 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
869 {
870 	int retval;
871 
872 	BUG_ON(!dqm);
873 
874 	if (lock)
875 		mutex_lock(&dqm->lock);
876 
877 	retval = destroy_queues_cpsch(dqm, false);
878 	if (retval != 0) {
879 		pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
880 		goto out;
881 	}
882 
883 	if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
884 		retval = 0;
885 		goto out;
886 	}
887 
888 	if (dqm->active_runlist) {
889 		retval = 0;
890 		goto out;
891 	}
892 
893 	retval = pm_send_runlist(&dqm->packets, &dqm->queues);
894 	if (retval != 0) {
895 		pr_err("kfd: failed to execute runlist");
896 		goto out;
897 	}
898 	dqm->active_runlist = true;
899 
900 out:
901 	if (lock)
902 		mutex_unlock(&dqm->lock);
903 	return retval;
904 }
905 
906 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
907 				struct qcm_process_device *qpd,
908 				struct queue *q)
909 {
910 	int retval;
911 	struct mqd_manager *mqd;
912 
913 	BUG_ON(!dqm || !qpd || !q);
914 
915 	retval = 0;
916 
917 	/* remove queue from list to prevent rescheduling after preemption */
918 	mutex_lock(&dqm->lock);
919 
920 	mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_CP);
921 	if (!mqd) {
922 		retval = -ENOMEM;
923 		goto failed;
924 	}
925 
926 	list_del(&q->list);
927 	dqm->queue_count--;
928 
929 	execute_queues_cpsch(dqm, false);
930 
931 	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
932 
933 	mutex_unlock(&dqm->lock);
934 
935 	return 0;
936 
937 failed:
938 	mutex_unlock(&dqm->lock);
939 	return retval;
940 }
941 
942 /*
943  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
944  * stay in user mode.
945  */
946 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
947 /* APE1 limit is inclusive and 64K aligned. */
948 #define APE1_LIMIT_ALIGNMENT 0xFFFF
949 
950 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
951 				   struct qcm_process_device *qpd,
952 				   enum cache_policy default_policy,
953 				   enum cache_policy alternate_policy,
954 				   void __user *alternate_aperture_base,
955 				   uint64_t alternate_aperture_size)
956 {
957 	uint32_t default_mtype;
958 	uint32_t ape1_mtype;
959 
960 	pr_debug("kfd: In func %s\n", __func__);
961 
962 	mutex_lock(&dqm->lock);
963 
964 	if (alternate_aperture_size == 0) {
965 		/* base > limit disables APE1 */
966 		qpd->sh_mem_ape1_base = 1;
967 		qpd->sh_mem_ape1_limit = 0;
968 	} else {
969 		/*
970 		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
971 		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
972 		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
973 		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
974 		 * Verify that the base and size parameters can be
975 		 * represented in this format and convert them.
976 		 * Additionally restrict APE1 to user-mode addresses.
977 		 */
978 
979 		uint64_t base = (uintptr_t)alternate_aperture_base;
980 		uint64_t limit = base + alternate_aperture_size - 1;
981 
982 		if (limit <= base)
983 			goto out;
984 
985 		if ((base & APE1_FIXED_BITS_MASK) != 0)
986 			goto out;
987 
988 		if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
989 			goto out;
990 
991 		qpd->sh_mem_ape1_base = base >> 16;
992 		qpd->sh_mem_ape1_limit = limit >> 16;
993 	}
994 
995 	default_mtype = (default_policy == cache_policy_coherent) ?
996 			MTYPE_NONCACHED :
997 			MTYPE_CACHED;
998 
999 	ape1_mtype = (alternate_policy == cache_policy_coherent) ?
1000 			MTYPE_NONCACHED :
1001 			MTYPE_CACHED;
1002 
1003 	qpd->sh_mem_config = (qpd->sh_mem_config & PTR32)
1004 			| ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED)
1005 			| DEFAULT_MTYPE(default_mtype)
1006 			| APE1_MTYPE(ape1_mtype);
1007 
1008 	if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1009 		program_sh_mem_settings(dqm, qpd);
1010 
1011 	pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1012 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1013 		qpd->sh_mem_ape1_limit);
1014 
1015 	mutex_unlock(&dqm->lock);
1016 	return true;
1017 
1018 out:
1019 	mutex_unlock(&dqm->lock);
1020 	return false;
1021 }
1022 
1023 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1024 {
1025 	struct device_queue_manager *dqm;
1026 
1027 	BUG_ON(!dev);
1028 
1029 	dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
1030 	if (!dqm)
1031 		return NULL;
1032 
1033 	dqm->dev = dev;
1034 	switch (sched_policy) {
1035 	case KFD_SCHED_POLICY_HWS:
1036 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1037 		/* initialize dqm for cp scheduling */
1038 		dqm->create_queue = create_queue_cpsch;
1039 		dqm->initialize = initialize_cpsch;
1040 		dqm->start = start_cpsch;
1041 		dqm->stop = stop_cpsch;
1042 		dqm->destroy_queue = destroy_queue_cpsch;
1043 		dqm->update_queue = update_queue;
1044 		dqm->get_mqd_manager = get_mqd_manager_nocpsch;
1045 		dqm->register_process = register_process_nocpsch;
1046 		dqm->unregister_process = unregister_process_nocpsch;
1047 		dqm->uninitialize = uninitialize_nocpsch;
1048 		dqm->create_kernel_queue = create_kernel_queue_cpsch;
1049 		dqm->destroy_kernel_queue = destroy_kernel_queue_cpsch;
1050 		dqm->set_cache_memory_policy = set_cache_memory_policy;
1051 		break;
1052 	case KFD_SCHED_POLICY_NO_HWS:
1053 		/* initialize dqm for no cp scheduling */
1054 		dqm->start = start_nocpsch;
1055 		dqm->stop = stop_nocpsch;
1056 		dqm->create_queue = create_queue_nocpsch;
1057 		dqm->destroy_queue = destroy_queue_nocpsch;
1058 		dqm->update_queue = update_queue;
1059 		dqm->get_mqd_manager = get_mqd_manager_nocpsch;
1060 		dqm->register_process = register_process_nocpsch;
1061 		dqm->unregister_process = unregister_process_nocpsch;
1062 		dqm->initialize = initialize_nocpsch;
1063 		dqm->uninitialize = uninitialize_nocpsch;
1064 		dqm->set_cache_memory_policy = set_cache_memory_policy;
1065 		break;
1066 	default:
1067 		BUG();
1068 		break;
1069 	}
1070 
1071 	if (dqm->initialize(dqm) != 0) {
1072 		kfree(dqm);
1073 		return NULL;
1074 	}
1075 
1076 	return dqm;
1077 }
1078 
1079 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1080 {
1081 	BUG_ON(!dqm);
1082 
1083 	dqm->uninitialize(dqm);
1084 	kfree(dqm);
1085 }
1086 
1087