1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/slab.h> 25 #include <linux/list.h> 26 #include <linux/types.h> 27 #include <linux/printk.h> 28 #include <linux/bitops.h> 29 #include "kfd_priv.h" 30 #include "kfd_device_queue_manager.h" 31 #include "kfd_mqd_manager.h" 32 #include "cik_regs.h" 33 #include "kfd_kernel_queue.h" 34 #include "../../radeon/cik_reg.h" 35 36 /* Size of the per-pipe EOP queue */ 37 #define CIK_HPD_EOP_BYTES_LOG2 11 38 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2) 39 40 static bool is_mem_initialized; 41 42 static int init_memory(struct device_queue_manager *dqm); 43 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, 44 unsigned int pasid, unsigned int vmid); 45 46 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm, 47 struct queue *q, 48 struct qcm_process_device *qpd); 49 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock); 50 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock); 51 52 53 static inline unsigned int get_pipes_num(struct device_queue_manager *dqm) 54 { 55 BUG_ON(!dqm || !dqm->dev); 56 return dqm->dev->shared_resources.compute_pipe_count; 57 } 58 59 static inline unsigned int get_first_pipe(struct device_queue_manager *dqm) 60 { 61 BUG_ON(!dqm); 62 return dqm->dev->shared_resources.first_compute_pipe; 63 } 64 65 static inline unsigned int get_pipes_num_cpsch(void) 66 { 67 return PIPE_PER_ME_CP_SCHEDULING; 68 } 69 70 static inline unsigned int 71 get_sh_mem_bases_nybble_64(struct kfd_process_device *pdd) 72 { 73 uint32_t nybble; 74 75 nybble = (pdd->lds_base >> 60) & 0x0E; 76 77 return nybble; 78 79 } 80 81 static inline unsigned int get_sh_mem_bases_32(struct kfd_process_device *pdd) 82 { 83 unsigned int shared_base; 84 85 shared_base = (pdd->lds_base >> 16) & 0xFF; 86 87 return shared_base; 88 } 89 90 static uint32_t compute_sh_mem_bases_64bit(unsigned int top_address_nybble); 91 static void init_process_memory(struct device_queue_manager *dqm, 92 struct qcm_process_device *qpd) 93 { 94 struct kfd_process_device *pdd; 95 unsigned int temp; 96 97 BUG_ON(!dqm || !qpd); 98 99 pdd = qpd_to_pdd(qpd); 100 101 /* check if sh_mem_config register already configured */ 102 if (qpd->sh_mem_config == 0) { 103 qpd->sh_mem_config = 104 ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED) | 105 DEFAULT_MTYPE(MTYPE_NONCACHED) | 106 APE1_MTYPE(MTYPE_NONCACHED); 107 qpd->sh_mem_ape1_limit = 0; 108 qpd->sh_mem_ape1_base = 0; 109 } 110 111 if (qpd->pqm->process->is_32bit_user_mode) { 112 temp = get_sh_mem_bases_32(pdd); 113 qpd->sh_mem_bases = SHARED_BASE(temp); 114 qpd->sh_mem_config |= PTR32; 115 } else { 116 temp = get_sh_mem_bases_nybble_64(pdd); 117 qpd->sh_mem_bases = compute_sh_mem_bases_64bit(temp); 118 } 119 120 pr_debug("kfd: is32bit process: %d sh_mem_bases nybble: 0x%X and register 0x%X\n", 121 qpd->pqm->process->is_32bit_user_mode, temp, qpd->sh_mem_bases); 122 } 123 124 static void program_sh_mem_settings(struct device_queue_manager *dqm, 125 struct qcm_process_device *qpd) 126 { 127 return kfd2kgd->program_sh_mem_settings(dqm->dev->kgd, qpd->vmid, 128 qpd->sh_mem_config, 129 qpd->sh_mem_ape1_base, 130 qpd->sh_mem_ape1_limit, 131 qpd->sh_mem_bases); 132 } 133 134 static int allocate_vmid(struct device_queue_manager *dqm, 135 struct qcm_process_device *qpd, 136 struct queue *q) 137 { 138 int bit, allocated_vmid; 139 140 if (dqm->vmid_bitmap == 0) 141 return -ENOMEM; 142 143 bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM); 144 clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap); 145 146 /* Kaveri kfd vmid's starts from vmid 8 */ 147 allocated_vmid = bit + KFD_VMID_START_OFFSET; 148 pr_debug("kfd: vmid allocation %d\n", allocated_vmid); 149 qpd->vmid = allocated_vmid; 150 q->properties.vmid = allocated_vmid; 151 152 set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid); 153 program_sh_mem_settings(dqm, qpd); 154 155 return 0; 156 } 157 158 static void deallocate_vmid(struct device_queue_manager *dqm, 159 struct qcm_process_device *qpd, 160 struct queue *q) 161 { 162 int bit = qpd->vmid - KFD_VMID_START_OFFSET; 163 164 /* Release the vmid mapping */ 165 set_pasid_vmid_mapping(dqm, 0, qpd->vmid); 166 167 set_bit(bit, (unsigned long *)&dqm->vmid_bitmap); 168 qpd->vmid = 0; 169 q->properties.vmid = 0; 170 } 171 172 static int create_queue_nocpsch(struct device_queue_manager *dqm, 173 struct queue *q, 174 struct qcm_process_device *qpd, 175 int *allocated_vmid) 176 { 177 int retval; 178 179 BUG_ON(!dqm || !q || !qpd || !allocated_vmid); 180 181 pr_debug("kfd: In func %s\n", __func__); 182 print_queue(q); 183 184 mutex_lock(&dqm->lock); 185 186 if (list_empty(&qpd->queues_list)) { 187 retval = allocate_vmid(dqm, qpd, q); 188 if (retval != 0) { 189 mutex_unlock(&dqm->lock); 190 return retval; 191 } 192 } 193 *allocated_vmid = qpd->vmid; 194 q->properties.vmid = qpd->vmid; 195 196 retval = create_compute_queue_nocpsch(dqm, q, qpd); 197 198 if (retval != 0) { 199 if (list_empty(&qpd->queues_list)) { 200 deallocate_vmid(dqm, qpd, q); 201 *allocated_vmid = 0; 202 } 203 mutex_unlock(&dqm->lock); 204 return retval; 205 } 206 207 list_add(&q->list, &qpd->queues_list); 208 dqm->queue_count++; 209 210 mutex_unlock(&dqm->lock); 211 return 0; 212 } 213 214 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q) 215 { 216 bool set; 217 int pipe, bit; 218 219 set = false; 220 221 for (pipe = dqm->next_pipe_to_allocate; pipe < get_pipes_num(dqm); 222 pipe = (pipe + 1) % get_pipes_num(dqm)) { 223 if (dqm->allocated_queues[pipe] != 0) { 224 bit = find_first_bit( 225 (unsigned long *)&dqm->allocated_queues[pipe], 226 QUEUES_PER_PIPE); 227 228 clear_bit(bit, 229 (unsigned long *)&dqm->allocated_queues[pipe]); 230 q->pipe = pipe; 231 q->queue = bit; 232 set = true; 233 break; 234 } 235 } 236 237 if (set == false) 238 return -EBUSY; 239 240 pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n", 241 __func__, q->pipe, q->queue); 242 /* horizontal hqd allocation */ 243 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm); 244 245 return 0; 246 } 247 248 static inline void deallocate_hqd(struct device_queue_manager *dqm, 249 struct queue *q) 250 { 251 set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]); 252 } 253 254 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm, 255 struct queue *q, 256 struct qcm_process_device *qpd) 257 { 258 int retval; 259 struct mqd_manager *mqd; 260 261 BUG_ON(!dqm || !q || !qpd); 262 263 mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE); 264 if (mqd == NULL) 265 return -ENOMEM; 266 267 retval = allocate_hqd(dqm, q); 268 if (retval != 0) 269 return retval; 270 271 retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj, 272 &q->gart_mqd_addr, &q->properties); 273 if (retval != 0) { 274 deallocate_hqd(dqm, q); 275 return retval; 276 } 277 278 pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n", 279 q->pipe, 280 q->queue); 281 282 retval = mqd->load_mqd(mqd, q->mqd, q->pipe, 283 q->queue, (uint32_t __user *) q->properties.write_ptr); 284 if (retval != 0) { 285 deallocate_hqd(dqm, q); 286 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj); 287 return retval; 288 } 289 290 return 0; 291 } 292 293 static int destroy_queue_nocpsch(struct device_queue_manager *dqm, 294 struct qcm_process_device *qpd, 295 struct queue *q) 296 { 297 int retval; 298 struct mqd_manager *mqd; 299 300 BUG_ON(!dqm || !q || !q->mqd || !qpd); 301 302 retval = 0; 303 304 pr_debug("kfd: In Func %s\n", __func__); 305 306 mutex_lock(&dqm->lock); 307 mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE); 308 if (mqd == NULL) { 309 retval = -ENOMEM; 310 goto out; 311 } 312 313 retval = mqd->destroy_mqd(mqd, q->mqd, 314 KFD_PREEMPT_TYPE_WAVEFRONT, 315 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS, 316 q->pipe, q->queue); 317 318 if (retval != 0) 319 goto out; 320 321 deallocate_hqd(dqm, q); 322 323 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj); 324 325 list_del(&q->list); 326 if (list_empty(&qpd->queues_list)) 327 deallocate_vmid(dqm, qpd, q); 328 dqm->queue_count--; 329 out: 330 mutex_unlock(&dqm->lock); 331 return retval; 332 } 333 334 static int update_queue(struct device_queue_manager *dqm, struct queue *q) 335 { 336 int retval; 337 struct mqd_manager *mqd; 338 bool prev_active = false; 339 340 BUG_ON(!dqm || !q || !q->mqd); 341 342 mutex_lock(&dqm->lock); 343 mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE); 344 if (mqd == NULL) { 345 mutex_unlock(&dqm->lock); 346 return -ENOMEM; 347 } 348 349 if (q->properties.is_active == true) 350 prev_active = true; 351 352 /* 353 * 354 * check active state vs. the previous state 355 * and modify counter accordingly 356 */ 357 retval = mqd->update_mqd(mqd, q->mqd, &q->properties); 358 if ((q->properties.is_active == true) && (prev_active == false)) 359 dqm->queue_count++; 360 else if ((q->properties.is_active == false) && (prev_active == true)) 361 dqm->queue_count--; 362 363 if (sched_policy != KFD_SCHED_POLICY_NO_HWS) 364 retval = execute_queues_cpsch(dqm, false); 365 366 mutex_unlock(&dqm->lock); 367 return retval; 368 } 369 370 static struct mqd_manager *get_mqd_manager_nocpsch( 371 struct device_queue_manager *dqm, enum KFD_MQD_TYPE type) 372 { 373 struct mqd_manager *mqd; 374 375 BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX); 376 377 pr_debug("kfd: In func %s mqd type %d\n", __func__, type); 378 379 mqd = dqm->mqds[type]; 380 if (!mqd) { 381 mqd = mqd_manager_init(type, dqm->dev); 382 if (mqd == NULL) 383 pr_err("kfd: mqd manager is NULL"); 384 dqm->mqds[type] = mqd; 385 } 386 387 return mqd; 388 } 389 390 static int register_process_nocpsch(struct device_queue_manager *dqm, 391 struct qcm_process_device *qpd) 392 { 393 struct device_process_node *n; 394 395 BUG_ON(!dqm || !qpd); 396 397 pr_debug("kfd: In func %s\n", __func__); 398 399 n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL); 400 if (!n) 401 return -ENOMEM; 402 403 n->qpd = qpd; 404 405 mutex_lock(&dqm->lock); 406 list_add(&n->list, &dqm->queues); 407 408 init_process_memory(dqm, qpd); 409 dqm->processes_count++; 410 411 mutex_unlock(&dqm->lock); 412 413 return 0; 414 } 415 416 static int unregister_process_nocpsch(struct device_queue_manager *dqm, 417 struct qcm_process_device *qpd) 418 { 419 int retval; 420 struct device_process_node *cur, *next; 421 422 BUG_ON(!dqm || !qpd); 423 424 BUG_ON(!list_empty(&qpd->queues_list)); 425 426 pr_debug("kfd: In func %s\n", __func__); 427 428 retval = 0; 429 mutex_lock(&dqm->lock); 430 431 list_for_each_entry_safe(cur, next, &dqm->queues, list) { 432 if (qpd == cur->qpd) { 433 list_del(&cur->list); 434 kfree(cur); 435 dqm->processes_count--; 436 goto out; 437 } 438 } 439 /* qpd not found in dqm list */ 440 retval = 1; 441 out: 442 mutex_unlock(&dqm->lock); 443 return retval; 444 } 445 446 static int 447 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid, 448 unsigned int vmid) 449 { 450 uint32_t pasid_mapping; 451 452 pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid | 453 ATC_VMID_PASID_MAPPING_VALID; 454 return kfd2kgd->set_pasid_vmid_mapping(dqm->dev->kgd, pasid_mapping, 455 vmid); 456 } 457 458 static uint32_t compute_sh_mem_bases_64bit(unsigned int top_address_nybble) 459 { 460 /* In 64-bit mode, we can only control the top 3 bits of the LDS, 461 * scratch and GPUVM apertures. 462 * The hardware fills in the remaining 59 bits according to the 463 * following pattern: 464 * LDS: X0000000'00000000 - X0000001'00000000 (4GB) 465 * Scratch: X0000001'00000000 - X0000002'00000000 (4GB) 466 * GPUVM: Y0010000'00000000 - Y0020000'00000000 (1TB) 467 * 468 * (where X/Y is the configurable nybble with the low-bit 0) 469 * 470 * LDS and scratch will have the same top nybble programmed in the 471 * top 3 bits of SH_MEM_BASES.PRIVATE_BASE. 472 * GPUVM can have a different top nybble programmed in the 473 * top 3 bits of SH_MEM_BASES.SHARED_BASE. 474 * We don't bother to support different top nybbles 475 * for LDS/Scratch and GPUVM. 476 */ 477 478 BUG_ON((top_address_nybble & 1) || top_address_nybble > 0xE || 479 top_address_nybble == 0); 480 481 return PRIVATE_BASE(top_address_nybble << 12) | 482 SHARED_BASE(top_address_nybble << 12); 483 } 484 485 static int init_memory(struct device_queue_manager *dqm) 486 { 487 int i, retval; 488 489 for (i = 8; i < 16; i++) 490 set_pasid_vmid_mapping(dqm, 0, i); 491 492 retval = kfd2kgd->init_memory(dqm->dev->kgd); 493 if (retval == 0) 494 is_mem_initialized = true; 495 return retval; 496 } 497 498 499 static int init_pipelines(struct device_queue_manager *dqm, 500 unsigned int pipes_num, unsigned int first_pipe) 501 { 502 void *hpdptr; 503 struct mqd_manager *mqd; 504 unsigned int i, err, inx; 505 uint64_t pipe_hpd_addr; 506 507 BUG_ON(!dqm || !dqm->dev); 508 509 pr_debug("kfd: In func %s\n", __func__); 510 511 /* 512 * Allocate memory for the HPDs. This is hardware-owned per-pipe data. 513 * The driver never accesses this memory after zeroing it. 514 * It doesn't even have to be saved/restored on suspend/resume 515 * because it contains no data when there are no active queues. 516 */ 517 518 err = kfd2kgd->allocate_mem(dqm->dev->kgd, 519 CIK_HPD_EOP_BYTES * pipes_num, 520 PAGE_SIZE, 521 KFD_MEMPOOL_SYSTEM_WRITECOMBINE, 522 (struct kgd_mem **) &dqm->pipeline_mem); 523 524 if (err) { 525 pr_err("kfd: error allocate vidmem num pipes: %d\n", 526 pipes_num); 527 return -ENOMEM; 528 } 529 530 hpdptr = dqm->pipeline_mem->cpu_ptr; 531 dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr; 532 533 memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num); 534 535 mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_COMPUTE); 536 if (mqd == NULL) { 537 kfd2kgd->free_mem(dqm->dev->kgd, 538 (struct kgd_mem *) dqm->pipeline_mem); 539 return -ENOMEM; 540 } 541 542 for (i = 0; i < pipes_num; i++) { 543 inx = i + first_pipe; 544 pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES; 545 pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr); 546 /* = log2(bytes/4)-1 */ 547 kfd2kgd->init_pipeline(dqm->dev->kgd, i, 548 CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr); 549 } 550 551 return 0; 552 } 553 554 555 static int init_scheduler(struct device_queue_manager *dqm) 556 { 557 int retval; 558 559 BUG_ON(!dqm); 560 561 pr_debug("kfd: In %s\n", __func__); 562 563 retval = init_pipelines(dqm, get_pipes_num(dqm), KFD_DQM_FIRST_PIPE); 564 if (retval != 0) 565 return retval; 566 567 retval = init_memory(dqm); 568 569 return retval; 570 } 571 572 static int initialize_nocpsch(struct device_queue_manager *dqm) 573 { 574 int i; 575 576 BUG_ON(!dqm); 577 578 pr_debug("kfd: In func %s num of pipes: %d\n", 579 __func__, get_pipes_num(dqm)); 580 581 mutex_init(&dqm->lock); 582 INIT_LIST_HEAD(&dqm->queues); 583 dqm->queue_count = dqm->next_pipe_to_allocate = 0; 584 dqm->allocated_queues = kcalloc(get_pipes_num(dqm), 585 sizeof(unsigned int), GFP_KERNEL); 586 if (!dqm->allocated_queues) { 587 mutex_destroy(&dqm->lock); 588 return -ENOMEM; 589 } 590 591 for (i = 0; i < get_pipes_num(dqm); i++) 592 dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1; 593 594 dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1; 595 596 init_scheduler(dqm); 597 return 0; 598 } 599 600 static void uninitialize_nocpsch(struct device_queue_manager *dqm) 601 { 602 int i; 603 604 BUG_ON(!dqm); 605 606 BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0); 607 608 kfree(dqm->allocated_queues); 609 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++) 610 kfree(dqm->mqds[i]); 611 mutex_destroy(&dqm->lock); 612 kfd2kgd->free_mem(dqm->dev->kgd, 613 (struct kgd_mem *) dqm->pipeline_mem); 614 } 615 616 static int start_nocpsch(struct device_queue_manager *dqm) 617 { 618 return 0; 619 } 620 621 static int stop_nocpsch(struct device_queue_manager *dqm) 622 { 623 return 0; 624 } 625 626 /* 627 * Device Queue Manager implementation for cp scheduler 628 */ 629 630 static int set_sched_resources(struct device_queue_manager *dqm) 631 { 632 struct scheduling_resources res; 633 unsigned int queue_num, queue_mask; 634 635 BUG_ON(!dqm); 636 637 pr_debug("kfd: In func %s\n", __func__); 638 639 queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE; 640 queue_mask = (1 << queue_num) - 1; 641 res.vmid_mask = (1 << VMID_PER_DEVICE) - 1; 642 res.vmid_mask <<= KFD_VMID_START_OFFSET; 643 res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE); 644 res.gws_mask = res.oac_mask = res.gds_heap_base = 645 res.gds_heap_size = 0; 646 647 pr_debug("kfd: scheduling resources:\n" 648 " vmid mask: 0x%8X\n" 649 " queue mask: 0x%8llX\n", 650 res.vmid_mask, res.queue_mask); 651 652 return pm_send_set_resources(&dqm->packets, &res); 653 } 654 655 static int initialize_cpsch(struct device_queue_manager *dqm) 656 { 657 int retval; 658 659 BUG_ON(!dqm); 660 661 pr_debug("kfd: In func %s num of pipes: %d\n", 662 __func__, get_pipes_num_cpsch()); 663 664 mutex_init(&dqm->lock); 665 INIT_LIST_HEAD(&dqm->queues); 666 dqm->queue_count = dqm->processes_count = 0; 667 dqm->active_runlist = false; 668 retval = init_pipelines(dqm, get_pipes_num(dqm), 0); 669 if (retval != 0) 670 goto fail_init_pipelines; 671 672 return 0; 673 674 fail_init_pipelines: 675 mutex_destroy(&dqm->lock); 676 return retval; 677 } 678 679 static int start_cpsch(struct device_queue_manager *dqm) 680 { 681 struct device_process_node *node; 682 int retval; 683 684 BUG_ON(!dqm); 685 686 retval = 0; 687 688 retval = pm_init(&dqm->packets, dqm); 689 if (retval != 0) 690 goto fail_packet_manager_init; 691 692 retval = set_sched_resources(dqm); 693 if (retval != 0) 694 goto fail_set_sched_resources; 695 696 pr_debug("kfd: allocating fence memory\n"); 697 698 /* allocate fence memory on the gart */ 699 retval = kfd2kgd->allocate_mem(dqm->dev->kgd, 700 sizeof(*dqm->fence_addr), 701 32, 702 KFD_MEMPOOL_SYSTEM_WRITECOMBINE, 703 (struct kgd_mem **) &dqm->fence_mem); 704 705 if (retval != 0) 706 goto fail_allocate_vidmem; 707 708 dqm->fence_addr = dqm->fence_mem->cpu_ptr; 709 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr; 710 711 list_for_each_entry(node, &dqm->queues, list) 712 if (node->qpd->pqm->process && dqm->dev) 713 kfd_bind_process_to_device(dqm->dev, 714 node->qpd->pqm->process); 715 716 execute_queues_cpsch(dqm, true); 717 718 return 0; 719 fail_allocate_vidmem: 720 fail_set_sched_resources: 721 pm_uninit(&dqm->packets); 722 fail_packet_manager_init: 723 return retval; 724 } 725 726 static int stop_cpsch(struct device_queue_manager *dqm) 727 { 728 struct device_process_node *node; 729 struct kfd_process_device *pdd; 730 731 BUG_ON(!dqm); 732 733 destroy_queues_cpsch(dqm, true); 734 735 list_for_each_entry(node, &dqm->queues, list) { 736 pdd = qpd_to_pdd(node->qpd); 737 pdd->bound = false; 738 } 739 kfd2kgd->free_mem(dqm->dev->kgd, 740 (struct kgd_mem *) dqm->fence_mem); 741 pm_uninit(&dqm->packets); 742 743 return 0; 744 } 745 746 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm, 747 struct kernel_queue *kq, 748 struct qcm_process_device *qpd) 749 { 750 BUG_ON(!dqm || !kq || !qpd); 751 752 pr_debug("kfd: In func %s\n", __func__); 753 754 mutex_lock(&dqm->lock); 755 list_add(&kq->list, &qpd->priv_queue_list); 756 dqm->queue_count++; 757 qpd->is_debug = true; 758 execute_queues_cpsch(dqm, false); 759 mutex_unlock(&dqm->lock); 760 761 return 0; 762 } 763 764 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm, 765 struct kernel_queue *kq, 766 struct qcm_process_device *qpd) 767 { 768 BUG_ON(!dqm || !kq); 769 770 pr_debug("kfd: In %s\n", __func__); 771 772 mutex_lock(&dqm->lock); 773 destroy_queues_cpsch(dqm, false); 774 list_del(&kq->list); 775 dqm->queue_count--; 776 qpd->is_debug = false; 777 execute_queues_cpsch(dqm, false); 778 mutex_unlock(&dqm->lock); 779 } 780 781 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q, 782 struct qcm_process_device *qpd, int *allocate_vmid) 783 { 784 int retval; 785 struct mqd_manager *mqd; 786 787 BUG_ON(!dqm || !q || !qpd); 788 789 retval = 0; 790 791 if (allocate_vmid) 792 *allocate_vmid = 0; 793 794 mutex_lock(&dqm->lock); 795 796 mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_CP); 797 if (mqd == NULL) { 798 mutex_unlock(&dqm->lock); 799 return -ENOMEM; 800 } 801 802 retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj, 803 &q->gart_mqd_addr, &q->properties); 804 if (retval != 0) 805 goto out; 806 807 list_add(&q->list, &qpd->queues_list); 808 if (q->properties.is_active) { 809 dqm->queue_count++; 810 retval = execute_queues_cpsch(dqm, false); 811 } 812 813 out: 814 mutex_unlock(&dqm->lock); 815 return retval; 816 } 817 818 static int fence_wait_timeout(unsigned int *fence_addr, 819 unsigned int fence_value, 820 unsigned long timeout) 821 { 822 BUG_ON(!fence_addr); 823 timeout += jiffies; 824 825 while (*fence_addr != fence_value) { 826 if (time_after(jiffies, timeout)) { 827 pr_err("kfd: qcm fence wait loop timeout expired\n"); 828 return -ETIME; 829 } 830 cpu_relax(); 831 } 832 833 return 0; 834 } 835 836 static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock) 837 { 838 int retval; 839 840 BUG_ON(!dqm); 841 842 retval = 0; 843 844 if (lock) 845 mutex_lock(&dqm->lock); 846 if (dqm->active_runlist == false) 847 goto out; 848 retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE, 849 KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false, 0); 850 if (retval != 0) 851 goto out; 852 853 *dqm->fence_addr = KFD_FENCE_INIT; 854 pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr, 855 KFD_FENCE_COMPLETED); 856 /* should be timed out */ 857 fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED, 858 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS); 859 pm_release_ib(&dqm->packets); 860 dqm->active_runlist = false; 861 862 out: 863 if (lock) 864 mutex_unlock(&dqm->lock); 865 return retval; 866 } 867 868 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock) 869 { 870 int retval; 871 872 BUG_ON(!dqm); 873 874 if (lock) 875 mutex_lock(&dqm->lock); 876 877 retval = destroy_queues_cpsch(dqm, false); 878 if (retval != 0) { 879 pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption"); 880 goto out; 881 } 882 883 if (dqm->queue_count <= 0 || dqm->processes_count <= 0) { 884 retval = 0; 885 goto out; 886 } 887 888 if (dqm->active_runlist) { 889 retval = 0; 890 goto out; 891 } 892 893 retval = pm_send_runlist(&dqm->packets, &dqm->queues); 894 if (retval != 0) { 895 pr_err("kfd: failed to execute runlist"); 896 goto out; 897 } 898 dqm->active_runlist = true; 899 900 out: 901 if (lock) 902 mutex_unlock(&dqm->lock); 903 return retval; 904 } 905 906 static int destroy_queue_cpsch(struct device_queue_manager *dqm, 907 struct qcm_process_device *qpd, 908 struct queue *q) 909 { 910 int retval; 911 struct mqd_manager *mqd; 912 913 BUG_ON(!dqm || !qpd || !q); 914 915 retval = 0; 916 917 /* remove queue from list to prevent rescheduling after preemption */ 918 mutex_lock(&dqm->lock); 919 920 mqd = dqm->get_mqd_manager(dqm, KFD_MQD_TYPE_CIK_CP); 921 if (!mqd) { 922 retval = -ENOMEM; 923 goto failed; 924 } 925 926 list_del(&q->list); 927 dqm->queue_count--; 928 929 execute_queues_cpsch(dqm, false); 930 931 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj); 932 933 mutex_unlock(&dqm->lock); 934 935 return 0; 936 937 failed: 938 mutex_unlock(&dqm->lock); 939 return retval; 940 } 941 942 /* 943 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to 944 * stay in user mode. 945 */ 946 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL 947 /* APE1 limit is inclusive and 64K aligned. */ 948 #define APE1_LIMIT_ALIGNMENT 0xFFFF 949 950 static bool set_cache_memory_policy(struct device_queue_manager *dqm, 951 struct qcm_process_device *qpd, 952 enum cache_policy default_policy, 953 enum cache_policy alternate_policy, 954 void __user *alternate_aperture_base, 955 uint64_t alternate_aperture_size) 956 { 957 uint32_t default_mtype; 958 uint32_t ape1_mtype; 959 960 pr_debug("kfd: In func %s\n", __func__); 961 962 mutex_lock(&dqm->lock); 963 964 if (alternate_aperture_size == 0) { 965 /* base > limit disables APE1 */ 966 qpd->sh_mem_ape1_base = 1; 967 qpd->sh_mem_ape1_limit = 0; 968 } else { 969 /* 970 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]}, 971 * SH_MEM_APE1_BASE[31:0], 0x0000 } 972 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]}, 973 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF } 974 * Verify that the base and size parameters can be 975 * represented in this format and convert them. 976 * Additionally restrict APE1 to user-mode addresses. 977 */ 978 979 uint64_t base = (uintptr_t)alternate_aperture_base; 980 uint64_t limit = base + alternate_aperture_size - 1; 981 982 if (limit <= base) 983 goto out; 984 985 if ((base & APE1_FIXED_BITS_MASK) != 0) 986 goto out; 987 988 if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) 989 goto out; 990 991 qpd->sh_mem_ape1_base = base >> 16; 992 qpd->sh_mem_ape1_limit = limit >> 16; 993 } 994 995 default_mtype = (default_policy == cache_policy_coherent) ? 996 MTYPE_NONCACHED : 997 MTYPE_CACHED; 998 999 ape1_mtype = (alternate_policy == cache_policy_coherent) ? 1000 MTYPE_NONCACHED : 1001 MTYPE_CACHED; 1002 1003 qpd->sh_mem_config = (qpd->sh_mem_config & PTR32) 1004 | ALIGNMENT_MODE(SH_MEM_ALIGNMENT_MODE_UNALIGNED) 1005 | DEFAULT_MTYPE(default_mtype) 1006 | APE1_MTYPE(ape1_mtype); 1007 1008 if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0)) 1009 program_sh_mem_settings(dqm, qpd); 1010 1011 pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n", 1012 qpd->sh_mem_config, qpd->sh_mem_ape1_base, 1013 qpd->sh_mem_ape1_limit); 1014 1015 mutex_unlock(&dqm->lock); 1016 return true; 1017 1018 out: 1019 mutex_unlock(&dqm->lock); 1020 return false; 1021 } 1022 1023 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev) 1024 { 1025 struct device_queue_manager *dqm; 1026 1027 BUG_ON(!dev); 1028 1029 dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL); 1030 if (!dqm) 1031 return NULL; 1032 1033 dqm->dev = dev; 1034 switch (sched_policy) { 1035 case KFD_SCHED_POLICY_HWS: 1036 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: 1037 /* initialize dqm for cp scheduling */ 1038 dqm->create_queue = create_queue_cpsch; 1039 dqm->initialize = initialize_cpsch; 1040 dqm->start = start_cpsch; 1041 dqm->stop = stop_cpsch; 1042 dqm->destroy_queue = destroy_queue_cpsch; 1043 dqm->update_queue = update_queue; 1044 dqm->get_mqd_manager = get_mqd_manager_nocpsch; 1045 dqm->register_process = register_process_nocpsch; 1046 dqm->unregister_process = unregister_process_nocpsch; 1047 dqm->uninitialize = uninitialize_nocpsch; 1048 dqm->create_kernel_queue = create_kernel_queue_cpsch; 1049 dqm->destroy_kernel_queue = destroy_kernel_queue_cpsch; 1050 dqm->set_cache_memory_policy = set_cache_memory_policy; 1051 break; 1052 case KFD_SCHED_POLICY_NO_HWS: 1053 /* initialize dqm for no cp scheduling */ 1054 dqm->start = start_nocpsch; 1055 dqm->stop = stop_nocpsch; 1056 dqm->create_queue = create_queue_nocpsch; 1057 dqm->destroy_queue = destroy_queue_nocpsch; 1058 dqm->update_queue = update_queue; 1059 dqm->get_mqd_manager = get_mqd_manager_nocpsch; 1060 dqm->register_process = register_process_nocpsch; 1061 dqm->unregister_process = unregister_process_nocpsch; 1062 dqm->initialize = initialize_nocpsch; 1063 dqm->uninitialize = uninitialize_nocpsch; 1064 dqm->set_cache_memory_policy = set_cache_memory_policy; 1065 break; 1066 default: 1067 BUG(); 1068 break; 1069 } 1070 1071 if (dqm->initialize(dqm) != 0) { 1072 kfree(dqm); 1073 return NULL; 1074 } 1075 1076 return dqm; 1077 } 1078 1079 void device_queue_manager_uninit(struct device_queue_manager *dqm) 1080 { 1081 BUG_ON(!dqm); 1082 1083 dqm->uninitialize(dqm); 1084 kfree(dqm); 1085 } 1086 1087