1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/slab.h> 25 #include <linux/list.h> 26 #include <linux/types.h> 27 #include <linux/printk.h> 28 #include <linux/bitops.h> 29 #include <linux/sched.h> 30 #include "kfd_priv.h" 31 #include "kfd_device_queue_manager.h" 32 #include "kfd_mqd_manager.h" 33 #include "cik_regs.h" 34 #include "kfd_kernel_queue.h" 35 36 /* Size of the per-pipe EOP queue */ 37 #define CIK_HPD_EOP_BYTES_LOG2 11 38 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2) 39 40 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, 41 unsigned int pasid, unsigned int vmid); 42 43 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm, 44 struct queue *q, 45 struct qcm_process_device *qpd); 46 47 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock); 48 static int destroy_queues_cpsch(struct device_queue_manager *dqm, 49 bool preempt_static_queues, bool lock); 50 51 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm, 52 struct queue *q, 53 struct qcm_process_device *qpd); 54 55 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 56 unsigned int sdma_queue_id); 57 58 static inline 59 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type) 60 { 61 if (type == KFD_QUEUE_TYPE_SDMA) 62 return KFD_MQD_TYPE_SDMA; 63 return KFD_MQD_TYPE_CP; 64 } 65 66 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe) 67 { 68 int i; 69 int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec 70 + pipe * dqm->dev->shared_resources.num_queue_per_pipe; 71 72 /* queue is available for KFD usage if bit is 1 */ 73 for (i = 0; i < dqm->dev->shared_resources.num_queue_per_pipe; ++i) 74 if (test_bit(pipe_offset + i, 75 dqm->dev->shared_resources.queue_bitmap)) 76 return true; 77 return false; 78 } 79 80 unsigned int get_mec_num(struct device_queue_manager *dqm) 81 { 82 BUG_ON(!dqm || !dqm->dev); 83 84 return dqm->dev->shared_resources.num_mec; 85 } 86 87 unsigned int get_queues_num(struct device_queue_manager *dqm) 88 { 89 BUG_ON(!dqm || !dqm->dev); 90 return bitmap_weight(dqm->dev->shared_resources.queue_bitmap, 91 KGD_MAX_QUEUES); 92 } 93 94 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm) 95 { 96 BUG_ON(!dqm || !dqm->dev); 97 return dqm->dev->shared_resources.num_queue_per_pipe; 98 } 99 100 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm) 101 { 102 BUG_ON(!dqm || !dqm->dev); 103 return dqm->dev->shared_resources.num_pipe_per_mec; 104 } 105 106 void program_sh_mem_settings(struct device_queue_manager *dqm, 107 struct qcm_process_device *qpd) 108 { 109 return dqm->dev->kfd2kgd->program_sh_mem_settings( 110 dqm->dev->kgd, qpd->vmid, 111 qpd->sh_mem_config, 112 qpd->sh_mem_ape1_base, 113 qpd->sh_mem_ape1_limit, 114 qpd->sh_mem_bases); 115 } 116 117 static int allocate_vmid(struct device_queue_manager *dqm, 118 struct qcm_process_device *qpd, 119 struct queue *q) 120 { 121 int bit, allocated_vmid; 122 123 if (dqm->vmid_bitmap == 0) 124 return -ENOMEM; 125 126 bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM); 127 clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap); 128 129 /* Kaveri kfd vmid's starts from vmid 8 */ 130 allocated_vmid = bit + KFD_VMID_START_OFFSET; 131 pr_debug("kfd: vmid allocation %d\n", allocated_vmid); 132 qpd->vmid = allocated_vmid; 133 q->properties.vmid = allocated_vmid; 134 135 set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid); 136 program_sh_mem_settings(dqm, qpd); 137 138 return 0; 139 } 140 141 static void deallocate_vmid(struct device_queue_manager *dqm, 142 struct qcm_process_device *qpd, 143 struct queue *q) 144 { 145 int bit = qpd->vmid - KFD_VMID_START_OFFSET; 146 147 /* Release the vmid mapping */ 148 set_pasid_vmid_mapping(dqm, 0, qpd->vmid); 149 150 set_bit(bit, (unsigned long *)&dqm->vmid_bitmap); 151 qpd->vmid = 0; 152 q->properties.vmid = 0; 153 } 154 155 static int create_queue_nocpsch(struct device_queue_manager *dqm, 156 struct queue *q, 157 struct qcm_process_device *qpd, 158 int *allocated_vmid) 159 { 160 int retval; 161 162 BUG_ON(!dqm || !q || !qpd || !allocated_vmid); 163 164 pr_debug("kfd: In func %s\n", __func__); 165 print_queue(q); 166 167 mutex_lock(&dqm->lock); 168 169 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 170 pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n", 171 dqm->total_queue_count); 172 mutex_unlock(&dqm->lock); 173 return -EPERM; 174 } 175 176 if (list_empty(&qpd->queues_list)) { 177 retval = allocate_vmid(dqm, qpd, q); 178 if (retval != 0) { 179 mutex_unlock(&dqm->lock); 180 return retval; 181 } 182 } 183 *allocated_vmid = qpd->vmid; 184 q->properties.vmid = qpd->vmid; 185 186 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 187 retval = create_compute_queue_nocpsch(dqm, q, qpd); 188 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 189 retval = create_sdma_queue_nocpsch(dqm, q, qpd); 190 191 if (retval != 0) { 192 if (list_empty(&qpd->queues_list)) { 193 deallocate_vmid(dqm, qpd, q); 194 *allocated_vmid = 0; 195 } 196 mutex_unlock(&dqm->lock); 197 return retval; 198 } 199 200 list_add(&q->list, &qpd->queues_list); 201 if (q->properties.is_active) 202 dqm->queue_count++; 203 204 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 205 dqm->sdma_queue_count++; 206 207 /* 208 * Unconditionally increment this counter, regardless of the queue's 209 * type or whether the queue is active. 210 */ 211 dqm->total_queue_count++; 212 pr_debug("Total of %d queues are accountable so far\n", 213 dqm->total_queue_count); 214 215 mutex_unlock(&dqm->lock); 216 return 0; 217 } 218 219 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q) 220 { 221 bool set; 222 int pipe, bit, i; 223 224 set = false; 225 226 for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_per_mec(dqm); 227 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) { 228 229 if (!is_pipe_enabled(dqm, 0, pipe)) 230 continue; 231 232 if (dqm->allocated_queues[pipe] != 0) { 233 bit = find_first_bit( 234 (unsigned long *)&dqm->allocated_queues[pipe], 235 get_queues_per_pipe(dqm)); 236 237 clear_bit(bit, 238 (unsigned long *)&dqm->allocated_queues[pipe]); 239 q->pipe = pipe; 240 q->queue = bit; 241 set = true; 242 break; 243 } 244 } 245 246 if (!set) 247 return -EBUSY; 248 249 pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n", 250 __func__, q->pipe, q->queue); 251 /* horizontal hqd allocation */ 252 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm); 253 254 return 0; 255 } 256 257 static inline void deallocate_hqd(struct device_queue_manager *dqm, 258 struct queue *q) 259 { 260 set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]); 261 } 262 263 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm, 264 struct queue *q, 265 struct qcm_process_device *qpd) 266 { 267 int retval; 268 struct mqd_manager *mqd; 269 270 BUG_ON(!dqm || !q || !qpd); 271 272 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE); 273 if (mqd == NULL) 274 return -ENOMEM; 275 276 retval = allocate_hqd(dqm, q); 277 if (retval != 0) 278 return retval; 279 280 retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj, 281 &q->gart_mqd_addr, &q->properties); 282 if (retval != 0) { 283 deallocate_hqd(dqm, q); 284 return retval; 285 } 286 287 pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n", 288 q->pipe, 289 q->queue); 290 291 retval = mqd->load_mqd(mqd, q->mqd, q->pipe, 292 q->queue, (uint32_t __user *) q->properties.write_ptr); 293 if (retval != 0) { 294 deallocate_hqd(dqm, q); 295 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj); 296 return retval; 297 } 298 299 return 0; 300 } 301 302 static int destroy_queue_nocpsch(struct device_queue_manager *dqm, 303 struct qcm_process_device *qpd, 304 struct queue *q) 305 { 306 int retval; 307 struct mqd_manager *mqd; 308 309 BUG_ON(!dqm || !q || !q->mqd || !qpd); 310 311 retval = 0; 312 313 pr_debug("kfd: In Func %s\n", __func__); 314 315 mutex_lock(&dqm->lock); 316 317 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) { 318 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE); 319 if (mqd == NULL) { 320 retval = -ENOMEM; 321 goto out; 322 } 323 deallocate_hqd(dqm, q); 324 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 325 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA); 326 if (mqd == NULL) { 327 retval = -ENOMEM; 328 goto out; 329 } 330 dqm->sdma_queue_count--; 331 deallocate_sdma_queue(dqm, q->sdma_id); 332 } else { 333 pr_debug("q->properties.type is invalid (%d)\n", 334 q->properties.type); 335 retval = -EINVAL; 336 goto out; 337 } 338 339 retval = mqd->destroy_mqd(mqd, q->mqd, 340 KFD_PREEMPT_TYPE_WAVEFRONT_RESET, 341 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS, 342 q->pipe, q->queue); 343 344 if (retval != 0) 345 goto out; 346 347 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj); 348 349 list_del(&q->list); 350 if (list_empty(&qpd->queues_list)) 351 deallocate_vmid(dqm, qpd, q); 352 if (q->properties.is_active) 353 dqm->queue_count--; 354 355 /* 356 * Unconditionally decrement this counter, regardless of the queue's 357 * type 358 */ 359 dqm->total_queue_count--; 360 pr_debug("Total of %d queues are accountable so far\n", 361 dqm->total_queue_count); 362 363 out: 364 mutex_unlock(&dqm->lock); 365 return retval; 366 } 367 368 static int update_queue(struct device_queue_manager *dqm, struct queue *q) 369 { 370 int retval; 371 struct mqd_manager *mqd; 372 bool prev_active = false; 373 374 BUG_ON(!dqm || !q || !q->mqd); 375 376 mutex_lock(&dqm->lock); 377 mqd = dqm->ops.get_mqd_manager(dqm, 378 get_mqd_type_from_queue_type(q->properties.type)); 379 if (mqd == NULL) { 380 mutex_unlock(&dqm->lock); 381 return -ENOMEM; 382 } 383 384 if (q->properties.is_active) 385 prev_active = true; 386 387 /* 388 * 389 * check active state vs. the previous state 390 * and modify counter accordingly 391 */ 392 retval = mqd->update_mqd(mqd, q->mqd, &q->properties); 393 if ((q->properties.is_active) && (!prev_active)) 394 dqm->queue_count++; 395 else if ((!q->properties.is_active) && (prev_active)) 396 dqm->queue_count--; 397 398 if (sched_policy != KFD_SCHED_POLICY_NO_HWS) 399 retval = execute_queues_cpsch(dqm, false); 400 401 mutex_unlock(&dqm->lock); 402 return retval; 403 } 404 405 static struct mqd_manager *get_mqd_manager_nocpsch( 406 struct device_queue_manager *dqm, enum KFD_MQD_TYPE type) 407 { 408 struct mqd_manager *mqd; 409 410 BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX); 411 412 pr_debug("kfd: In func %s mqd type %d\n", __func__, type); 413 414 mqd = dqm->mqds[type]; 415 if (!mqd) { 416 mqd = mqd_manager_init(type, dqm->dev); 417 if (mqd == NULL) 418 pr_err("kfd: mqd manager is NULL"); 419 dqm->mqds[type] = mqd; 420 } 421 422 return mqd; 423 } 424 425 static int register_process_nocpsch(struct device_queue_manager *dqm, 426 struct qcm_process_device *qpd) 427 { 428 struct device_process_node *n; 429 int retval; 430 431 BUG_ON(!dqm || !qpd); 432 433 pr_debug("kfd: In func %s\n", __func__); 434 435 n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL); 436 if (!n) 437 return -ENOMEM; 438 439 n->qpd = qpd; 440 441 mutex_lock(&dqm->lock); 442 list_add(&n->list, &dqm->queues); 443 444 retval = dqm->ops_asic_specific.register_process(dqm, qpd); 445 446 dqm->processes_count++; 447 448 mutex_unlock(&dqm->lock); 449 450 return retval; 451 } 452 453 static int unregister_process_nocpsch(struct device_queue_manager *dqm, 454 struct qcm_process_device *qpd) 455 { 456 int retval; 457 struct device_process_node *cur, *next; 458 459 BUG_ON(!dqm || !qpd); 460 461 pr_debug("In func %s\n", __func__); 462 463 pr_debug("qpd->queues_list is %s\n", 464 list_empty(&qpd->queues_list) ? "empty" : "not empty"); 465 466 retval = 0; 467 mutex_lock(&dqm->lock); 468 469 list_for_each_entry_safe(cur, next, &dqm->queues, list) { 470 if (qpd == cur->qpd) { 471 list_del(&cur->list); 472 kfree(cur); 473 dqm->processes_count--; 474 goto out; 475 } 476 } 477 /* qpd not found in dqm list */ 478 retval = 1; 479 out: 480 mutex_unlock(&dqm->lock); 481 return retval; 482 } 483 484 static int 485 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid, 486 unsigned int vmid) 487 { 488 uint32_t pasid_mapping; 489 490 pasid_mapping = (pasid == 0) ? 0 : 491 (uint32_t)pasid | 492 ATC_VMID_PASID_MAPPING_VALID; 493 494 return dqm->dev->kfd2kgd->set_pasid_vmid_mapping( 495 dqm->dev->kgd, pasid_mapping, 496 vmid); 497 } 498 499 static void init_interrupts(struct device_queue_manager *dqm) 500 { 501 unsigned int i; 502 503 BUG_ON(dqm == NULL); 504 505 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) 506 if (is_pipe_enabled(dqm, 0, i)) 507 dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i); 508 } 509 510 static int init_scheduler(struct device_queue_manager *dqm) 511 { 512 int retval = 0; 513 514 BUG_ON(!dqm); 515 516 pr_debug("kfd: In %s\n", __func__); 517 518 return retval; 519 } 520 521 static int initialize_nocpsch(struct device_queue_manager *dqm) 522 { 523 int i; 524 525 BUG_ON(!dqm); 526 527 pr_debug("kfd: In func %s num of pipes: %d\n", 528 __func__, get_pipes_per_mec(dqm)); 529 530 mutex_init(&dqm->lock); 531 INIT_LIST_HEAD(&dqm->queues); 532 dqm->queue_count = dqm->next_pipe_to_allocate = 0; 533 dqm->sdma_queue_count = 0; 534 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm), 535 sizeof(unsigned int), GFP_KERNEL); 536 if (!dqm->allocated_queues) { 537 mutex_destroy(&dqm->lock); 538 return -ENOMEM; 539 } 540 541 for (i = 0; i < get_pipes_per_mec(dqm); i++) 542 dqm->allocated_queues[i] = (1 << get_queues_per_pipe(dqm)) - 1; 543 544 dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1; 545 dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1; 546 547 init_scheduler(dqm); 548 return 0; 549 } 550 551 static void uninitialize_nocpsch(struct device_queue_manager *dqm) 552 { 553 int i; 554 555 BUG_ON(!dqm); 556 557 BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0); 558 559 kfree(dqm->allocated_queues); 560 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++) 561 kfree(dqm->mqds[i]); 562 mutex_destroy(&dqm->lock); 563 kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem); 564 } 565 566 static int start_nocpsch(struct device_queue_manager *dqm) 567 { 568 init_interrupts(dqm); 569 return 0; 570 } 571 572 static int stop_nocpsch(struct device_queue_manager *dqm) 573 { 574 return 0; 575 } 576 577 static int allocate_sdma_queue(struct device_queue_manager *dqm, 578 unsigned int *sdma_queue_id) 579 { 580 int bit; 581 582 if (dqm->sdma_bitmap == 0) 583 return -ENOMEM; 584 585 bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap, 586 CIK_SDMA_QUEUES); 587 588 clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap); 589 *sdma_queue_id = bit; 590 591 return 0; 592 } 593 594 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 595 unsigned int sdma_queue_id) 596 { 597 if (sdma_queue_id >= CIK_SDMA_QUEUES) 598 return; 599 set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap); 600 } 601 602 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm, 603 struct queue *q, 604 struct qcm_process_device *qpd) 605 { 606 struct mqd_manager *mqd; 607 int retval; 608 609 mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA); 610 if (!mqd) 611 return -ENOMEM; 612 613 retval = allocate_sdma_queue(dqm, &q->sdma_id); 614 if (retval != 0) 615 return retval; 616 617 q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE; 618 q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM; 619 620 pr_debug("kfd: sdma id is: %d\n", q->sdma_id); 621 pr_debug(" sdma queue id: %d\n", q->properties.sdma_queue_id); 622 pr_debug(" sdma engine id: %d\n", q->properties.sdma_engine_id); 623 624 dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd); 625 retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj, 626 &q->gart_mqd_addr, &q->properties); 627 if (retval != 0) { 628 deallocate_sdma_queue(dqm, q->sdma_id); 629 return retval; 630 } 631 632 retval = mqd->load_mqd(mqd, q->mqd, 0, 633 0, NULL); 634 if (retval != 0) { 635 deallocate_sdma_queue(dqm, q->sdma_id); 636 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj); 637 return retval; 638 } 639 640 return 0; 641 } 642 643 /* 644 * Device Queue Manager implementation for cp scheduler 645 */ 646 647 static int set_sched_resources(struct device_queue_manager *dqm) 648 { 649 int i, mec; 650 struct scheduling_resources res; 651 652 BUG_ON(!dqm); 653 654 pr_debug("kfd: In func %s\n", __func__); 655 656 res.vmid_mask = (1 << VMID_PER_DEVICE) - 1; 657 res.vmid_mask <<= KFD_VMID_START_OFFSET; 658 659 res.queue_mask = 0; 660 for (i = 0; i < KGD_MAX_QUEUES; ++i) { 661 mec = (i / dqm->dev->shared_resources.num_queue_per_pipe) 662 / dqm->dev->shared_resources.num_pipe_per_mec; 663 664 if (!test_bit(i, dqm->dev->shared_resources.queue_bitmap)) 665 continue; 666 667 /* only acquire queues from the first MEC */ 668 if (mec > 0) 669 continue; 670 671 /* This situation may be hit in the future if a new HW 672 * generation exposes more than 64 queues. If so, the 673 * definition of res.queue_mask needs updating */ 674 if (WARN_ON(i > (sizeof(res.queue_mask)*8))) { 675 pr_err("Invalid queue enabled by amdgpu: %d\n", i); 676 break; 677 } 678 679 res.queue_mask |= (1ull << i); 680 } 681 res.gws_mask = res.oac_mask = res.gds_heap_base = 682 res.gds_heap_size = 0; 683 684 pr_debug("kfd: scheduling resources:\n" 685 " vmid mask: 0x%8X\n" 686 " queue mask: 0x%8llX\n", 687 res.vmid_mask, res.queue_mask); 688 689 return pm_send_set_resources(&dqm->packets, &res); 690 } 691 692 static int initialize_cpsch(struct device_queue_manager *dqm) 693 { 694 int retval; 695 696 BUG_ON(!dqm); 697 698 pr_debug("kfd: In func %s num of pipes: %d\n", 699 __func__, get_pipes_per_mec(dqm)); 700 701 mutex_init(&dqm->lock); 702 INIT_LIST_HEAD(&dqm->queues); 703 dqm->queue_count = dqm->processes_count = 0; 704 dqm->sdma_queue_count = 0; 705 dqm->active_runlist = false; 706 retval = dqm->ops_asic_specific.initialize(dqm); 707 if (retval != 0) 708 goto fail_init_pipelines; 709 710 return 0; 711 712 fail_init_pipelines: 713 mutex_destroy(&dqm->lock); 714 return retval; 715 } 716 717 static int start_cpsch(struct device_queue_manager *dqm) 718 { 719 struct device_process_node *node; 720 int retval; 721 722 BUG_ON(!dqm); 723 724 retval = 0; 725 726 retval = pm_init(&dqm->packets, dqm); 727 if (retval != 0) 728 goto fail_packet_manager_init; 729 730 retval = set_sched_resources(dqm); 731 if (retval != 0) 732 goto fail_set_sched_resources; 733 734 pr_debug("kfd: allocating fence memory\n"); 735 736 /* allocate fence memory on the gart */ 737 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr), 738 &dqm->fence_mem); 739 740 if (retval != 0) 741 goto fail_allocate_vidmem; 742 743 dqm->fence_addr = dqm->fence_mem->cpu_ptr; 744 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr; 745 746 init_interrupts(dqm); 747 748 list_for_each_entry(node, &dqm->queues, list) 749 if (node->qpd->pqm->process && dqm->dev) 750 kfd_bind_process_to_device(dqm->dev, 751 node->qpd->pqm->process); 752 753 execute_queues_cpsch(dqm, true); 754 755 return 0; 756 fail_allocate_vidmem: 757 fail_set_sched_resources: 758 pm_uninit(&dqm->packets); 759 fail_packet_manager_init: 760 return retval; 761 } 762 763 static int stop_cpsch(struct device_queue_manager *dqm) 764 { 765 struct device_process_node *node; 766 struct kfd_process_device *pdd; 767 768 BUG_ON(!dqm); 769 770 destroy_queues_cpsch(dqm, true, true); 771 772 list_for_each_entry(node, &dqm->queues, list) { 773 pdd = qpd_to_pdd(node->qpd); 774 pdd->bound = false; 775 } 776 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); 777 pm_uninit(&dqm->packets); 778 779 return 0; 780 } 781 782 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm, 783 struct kernel_queue *kq, 784 struct qcm_process_device *qpd) 785 { 786 BUG_ON(!dqm || !kq || !qpd); 787 788 pr_debug("kfd: In func %s\n", __func__); 789 790 mutex_lock(&dqm->lock); 791 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 792 pr_warn("amdkfd: Can't create new kernel queue because %d queues were already created\n", 793 dqm->total_queue_count); 794 mutex_unlock(&dqm->lock); 795 return -EPERM; 796 } 797 798 /* 799 * Unconditionally increment this counter, regardless of the queue's 800 * type or whether the queue is active. 801 */ 802 dqm->total_queue_count++; 803 pr_debug("Total of %d queues are accountable so far\n", 804 dqm->total_queue_count); 805 806 list_add(&kq->list, &qpd->priv_queue_list); 807 dqm->queue_count++; 808 qpd->is_debug = true; 809 execute_queues_cpsch(dqm, false); 810 mutex_unlock(&dqm->lock); 811 812 return 0; 813 } 814 815 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm, 816 struct kernel_queue *kq, 817 struct qcm_process_device *qpd) 818 { 819 BUG_ON(!dqm || !kq); 820 821 pr_debug("kfd: In %s\n", __func__); 822 823 mutex_lock(&dqm->lock); 824 /* here we actually preempt the DIQ */ 825 destroy_queues_cpsch(dqm, true, false); 826 list_del(&kq->list); 827 dqm->queue_count--; 828 qpd->is_debug = false; 829 execute_queues_cpsch(dqm, false); 830 /* 831 * Unconditionally decrement this counter, regardless of the queue's 832 * type. 833 */ 834 dqm->total_queue_count--; 835 pr_debug("Total of %d queues are accountable so far\n", 836 dqm->total_queue_count); 837 mutex_unlock(&dqm->lock); 838 } 839 840 static void select_sdma_engine_id(struct queue *q) 841 { 842 static int sdma_id; 843 844 q->sdma_id = sdma_id; 845 sdma_id = (sdma_id + 1) % 2; 846 } 847 848 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q, 849 struct qcm_process_device *qpd, int *allocate_vmid) 850 { 851 int retval; 852 struct mqd_manager *mqd; 853 854 BUG_ON(!dqm || !q || !qpd); 855 856 retval = 0; 857 858 if (allocate_vmid) 859 *allocate_vmid = 0; 860 861 mutex_lock(&dqm->lock); 862 863 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 864 pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n", 865 dqm->total_queue_count); 866 retval = -EPERM; 867 goto out; 868 } 869 870 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 871 select_sdma_engine_id(q); 872 873 mqd = dqm->ops.get_mqd_manager(dqm, 874 get_mqd_type_from_queue_type(q->properties.type)); 875 876 if (mqd == NULL) { 877 mutex_unlock(&dqm->lock); 878 return -ENOMEM; 879 } 880 881 dqm->ops_asic_specific.init_sdma_vm(dqm, q, qpd); 882 retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj, 883 &q->gart_mqd_addr, &q->properties); 884 if (retval != 0) 885 goto out; 886 887 list_add(&q->list, &qpd->queues_list); 888 if (q->properties.is_active) { 889 dqm->queue_count++; 890 retval = execute_queues_cpsch(dqm, false); 891 } 892 893 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 894 dqm->sdma_queue_count++; 895 /* 896 * Unconditionally increment this counter, regardless of the queue's 897 * type or whether the queue is active. 898 */ 899 dqm->total_queue_count++; 900 901 pr_debug("Total of %d queues are accountable so far\n", 902 dqm->total_queue_count); 903 904 out: 905 mutex_unlock(&dqm->lock); 906 return retval; 907 } 908 909 int amdkfd_fence_wait_timeout(unsigned int *fence_addr, 910 unsigned int fence_value, 911 unsigned long timeout) 912 { 913 BUG_ON(!fence_addr); 914 timeout += jiffies; 915 916 while (*fence_addr != fence_value) { 917 if (time_after(jiffies, timeout)) { 918 pr_err("kfd: qcm fence wait loop timeout expired\n"); 919 return -ETIME; 920 } 921 schedule(); 922 } 923 924 return 0; 925 } 926 927 static int destroy_sdma_queues(struct device_queue_manager *dqm, 928 unsigned int sdma_engine) 929 { 930 return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA, 931 KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES, 0, false, 932 sdma_engine); 933 } 934 935 static int destroy_queues_cpsch(struct device_queue_manager *dqm, 936 bool preempt_static_queues, bool lock) 937 { 938 int retval; 939 enum kfd_preempt_type_filter preempt_type; 940 struct kfd_process_device *pdd; 941 942 BUG_ON(!dqm); 943 944 retval = 0; 945 946 if (lock) 947 mutex_lock(&dqm->lock); 948 if (!dqm->active_runlist) 949 goto out; 950 951 pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n", 952 dqm->sdma_queue_count); 953 954 if (dqm->sdma_queue_count > 0) { 955 destroy_sdma_queues(dqm, 0); 956 destroy_sdma_queues(dqm, 1); 957 } 958 959 preempt_type = preempt_static_queues ? 960 KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES : 961 KFD_PREEMPT_TYPE_FILTER_DYNAMIC_QUEUES; 962 963 retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE, 964 preempt_type, 0, false, 0); 965 if (retval != 0) 966 goto out; 967 968 *dqm->fence_addr = KFD_FENCE_INIT; 969 pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr, 970 KFD_FENCE_COMPLETED); 971 /* should be timed out */ 972 retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED, 973 QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS); 974 if (retval != 0) { 975 pdd = kfd_get_process_device_data(dqm->dev, 976 kfd_get_process(current)); 977 pdd->reset_wavefronts = true; 978 goto out; 979 } 980 pm_release_ib(&dqm->packets); 981 dqm->active_runlist = false; 982 983 out: 984 if (lock) 985 mutex_unlock(&dqm->lock); 986 return retval; 987 } 988 989 static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock) 990 { 991 int retval; 992 993 BUG_ON(!dqm); 994 995 if (lock) 996 mutex_lock(&dqm->lock); 997 998 retval = destroy_queues_cpsch(dqm, false, false); 999 if (retval != 0) { 1000 pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption"); 1001 goto out; 1002 } 1003 1004 if (dqm->queue_count <= 0 || dqm->processes_count <= 0) { 1005 retval = 0; 1006 goto out; 1007 } 1008 1009 if (dqm->active_runlist) { 1010 retval = 0; 1011 goto out; 1012 } 1013 1014 retval = pm_send_runlist(&dqm->packets, &dqm->queues); 1015 if (retval != 0) { 1016 pr_err("kfd: failed to execute runlist"); 1017 goto out; 1018 } 1019 dqm->active_runlist = true; 1020 1021 out: 1022 if (lock) 1023 mutex_unlock(&dqm->lock); 1024 return retval; 1025 } 1026 1027 static int destroy_queue_cpsch(struct device_queue_manager *dqm, 1028 struct qcm_process_device *qpd, 1029 struct queue *q) 1030 { 1031 int retval; 1032 struct mqd_manager *mqd; 1033 bool preempt_all_queues; 1034 1035 BUG_ON(!dqm || !qpd || !q); 1036 1037 preempt_all_queues = false; 1038 1039 retval = 0; 1040 1041 /* remove queue from list to prevent rescheduling after preemption */ 1042 mutex_lock(&dqm->lock); 1043 1044 if (qpd->is_debug) { 1045 /* 1046 * error, currently we do not allow to destroy a queue 1047 * of a currently debugged process 1048 */ 1049 retval = -EBUSY; 1050 goto failed_try_destroy_debugged_queue; 1051 1052 } 1053 1054 mqd = dqm->ops.get_mqd_manager(dqm, 1055 get_mqd_type_from_queue_type(q->properties.type)); 1056 if (!mqd) { 1057 retval = -ENOMEM; 1058 goto failed; 1059 } 1060 1061 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 1062 dqm->sdma_queue_count--; 1063 1064 list_del(&q->list); 1065 if (q->properties.is_active) 1066 dqm->queue_count--; 1067 1068 execute_queues_cpsch(dqm, false); 1069 1070 mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj); 1071 1072 /* 1073 * Unconditionally decrement this counter, regardless of the queue's 1074 * type 1075 */ 1076 dqm->total_queue_count--; 1077 pr_debug("Total of %d queues are accountable so far\n", 1078 dqm->total_queue_count); 1079 1080 mutex_unlock(&dqm->lock); 1081 1082 return 0; 1083 1084 failed: 1085 failed_try_destroy_debugged_queue: 1086 1087 mutex_unlock(&dqm->lock); 1088 return retval; 1089 } 1090 1091 /* 1092 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to 1093 * stay in user mode. 1094 */ 1095 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL 1096 /* APE1 limit is inclusive and 64K aligned. */ 1097 #define APE1_LIMIT_ALIGNMENT 0xFFFF 1098 1099 static bool set_cache_memory_policy(struct device_queue_manager *dqm, 1100 struct qcm_process_device *qpd, 1101 enum cache_policy default_policy, 1102 enum cache_policy alternate_policy, 1103 void __user *alternate_aperture_base, 1104 uint64_t alternate_aperture_size) 1105 { 1106 bool retval; 1107 1108 pr_debug("kfd: In func %s\n", __func__); 1109 1110 mutex_lock(&dqm->lock); 1111 1112 if (alternate_aperture_size == 0) { 1113 /* base > limit disables APE1 */ 1114 qpd->sh_mem_ape1_base = 1; 1115 qpd->sh_mem_ape1_limit = 0; 1116 } else { 1117 /* 1118 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]}, 1119 * SH_MEM_APE1_BASE[31:0], 0x0000 } 1120 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]}, 1121 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF } 1122 * Verify that the base and size parameters can be 1123 * represented in this format and convert them. 1124 * Additionally restrict APE1 to user-mode addresses. 1125 */ 1126 1127 uint64_t base = (uintptr_t)alternate_aperture_base; 1128 uint64_t limit = base + alternate_aperture_size - 1; 1129 1130 if (limit <= base) 1131 goto out; 1132 1133 if ((base & APE1_FIXED_BITS_MASK) != 0) 1134 goto out; 1135 1136 if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) 1137 goto out; 1138 1139 qpd->sh_mem_ape1_base = base >> 16; 1140 qpd->sh_mem_ape1_limit = limit >> 16; 1141 } 1142 1143 retval = dqm->ops_asic_specific.set_cache_memory_policy( 1144 dqm, 1145 qpd, 1146 default_policy, 1147 alternate_policy, 1148 alternate_aperture_base, 1149 alternate_aperture_size); 1150 1151 if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0)) 1152 program_sh_mem_settings(dqm, qpd); 1153 1154 pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n", 1155 qpd->sh_mem_config, qpd->sh_mem_ape1_base, 1156 qpd->sh_mem_ape1_limit); 1157 1158 mutex_unlock(&dqm->lock); 1159 return retval; 1160 1161 out: 1162 mutex_unlock(&dqm->lock); 1163 return false; 1164 } 1165 1166 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev) 1167 { 1168 struct device_queue_manager *dqm; 1169 1170 BUG_ON(!dev); 1171 1172 pr_debug("kfd: loading device queue manager\n"); 1173 1174 dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL); 1175 if (!dqm) 1176 return NULL; 1177 1178 dqm->dev = dev; 1179 switch (sched_policy) { 1180 case KFD_SCHED_POLICY_HWS: 1181 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: 1182 /* initialize dqm for cp scheduling */ 1183 dqm->ops.create_queue = create_queue_cpsch; 1184 dqm->ops.initialize = initialize_cpsch; 1185 dqm->ops.start = start_cpsch; 1186 dqm->ops.stop = stop_cpsch; 1187 dqm->ops.destroy_queue = destroy_queue_cpsch; 1188 dqm->ops.update_queue = update_queue; 1189 dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch; 1190 dqm->ops.register_process = register_process_nocpsch; 1191 dqm->ops.unregister_process = unregister_process_nocpsch; 1192 dqm->ops.uninitialize = uninitialize_nocpsch; 1193 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch; 1194 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch; 1195 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 1196 break; 1197 case KFD_SCHED_POLICY_NO_HWS: 1198 /* initialize dqm for no cp scheduling */ 1199 dqm->ops.start = start_nocpsch; 1200 dqm->ops.stop = stop_nocpsch; 1201 dqm->ops.create_queue = create_queue_nocpsch; 1202 dqm->ops.destroy_queue = destroy_queue_nocpsch; 1203 dqm->ops.update_queue = update_queue; 1204 dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch; 1205 dqm->ops.register_process = register_process_nocpsch; 1206 dqm->ops.unregister_process = unregister_process_nocpsch; 1207 dqm->ops.initialize = initialize_nocpsch; 1208 dqm->ops.uninitialize = uninitialize_nocpsch; 1209 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 1210 break; 1211 default: 1212 BUG(); 1213 break; 1214 } 1215 1216 switch (dev->device_info->asic_family) { 1217 case CHIP_CARRIZO: 1218 device_queue_manager_init_vi(&dqm->ops_asic_specific); 1219 break; 1220 1221 case CHIP_KAVERI: 1222 device_queue_manager_init_cik(&dqm->ops_asic_specific); 1223 break; 1224 } 1225 1226 if (dqm->ops.initialize(dqm) != 0) { 1227 kfree(dqm); 1228 return NULL; 1229 } 1230 1231 return dqm; 1232 } 1233 1234 void device_queue_manager_uninit(struct device_queue_manager *dqm) 1235 { 1236 BUG_ON(!dqm); 1237 1238 dqm->ops.uninitialize(dqm); 1239 kfree(dqm); 1240 } 1241