1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/ratelimit.h>
25 #include <linux/printk.h>
26 #include <linux/slab.h>
27 #include <linux/list.h>
28 #include <linux/types.h>
29 #include <linux/bitops.h>
30 #include <linux/sched.h>
31 #include "kfd_priv.h"
32 #include "kfd_device_queue_manager.h"
33 #include "kfd_mqd_manager.h"
34 #include "cik_regs.h"
35 #include "kfd_kernel_queue.h"
36 #include "amdgpu_amdkfd.h"
37 
38 /* Size of the per-pipe EOP queue */
39 #define CIK_HPD_EOP_BYTES_LOG2 11
40 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
41 
42 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
43 				  u32 pasid, unsigned int vmid);
44 
45 static int execute_queues_cpsch(struct device_queue_manager *dqm,
46 				enum kfd_unmap_queues_filter filter,
47 				uint32_t filter_param);
48 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
49 				enum kfd_unmap_queues_filter filter,
50 				uint32_t filter_param);
51 
52 static int map_queues_cpsch(struct device_queue_manager *dqm);
53 
54 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
55 				struct queue *q);
56 
57 static inline void deallocate_hqd(struct device_queue_manager *dqm,
58 				struct queue *q);
59 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
60 static int allocate_sdma_queue(struct device_queue_manager *dqm,
61 				struct queue *q);
62 static void kfd_process_hw_exception(struct work_struct *work);
63 
64 static inline
65 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
66 {
67 	if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
68 		return KFD_MQD_TYPE_SDMA;
69 	return KFD_MQD_TYPE_CP;
70 }
71 
72 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
73 {
74 	int i;
75 	int pipe_offset = (mec * dqm->dev->shared_resources.num_pipe_per_mec
76 		+ pipe) * dqm->dev->shared_resources.num_queue_per_pipe;
77 
78 	/* queue is available for KFD usage if bit is 1 */
79 	for (i = 0; i <  dqm->dev->shared_resources.num_queue_per_pipe; ++i)
80 		if (test_bit(pipe_offset + i,
81 			      dqm->dev->shared_resources.cp_queue_bitmap))
82 			return true;
83 	return false;
84 }
85 
86 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
87 {
88 	return bitmap_weight(dqm->dev->shared_resources.cp_queue_bitmap,
89 				KGD_MAX_QUEUES);
90 }
91 
92 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
93 {
94 	return dqm->dev->shared_resources.num_queue_per_pipe;
95 }
96 
97 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
98 {
99 	return dqm->dev->shared_resources.num_pipe_per_mec;
100 }
101 
102 static unsigned int get_num_sdma_engines(struct device_queue_manager *dqm)
103 {
104 	return dqm->dev->device_info->num_sdma_engines;
105 }
106 
107 static unsigned int get_num_xgmi_sdma_engines(struct device_queue_manager *dqm)
108 {
109 	return dqm->dev->device_info->num_xgmi_sdma_engines;
110 }
111 
112 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
113 {
114 	return get_num_sdma_engines(dqm) + get_num_xgmi_sdma_engines(dqm);
115 }
116 
117 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
118 {
119 	return dqm->dev->device_info->num_sdma_engines
120 			* dqm->dev->device_info->num_sdma_queues_per_engine;
121 }
122 
123 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
124 {
125 	return dqm->dev->device_info->num_xgmi_sdma_engines
126 			* dqm->dev->device_info->num_sdma_queues_per_engine;
127 }
128 
129 void program_sh_mem_settings(struct device_queue_manager *dqm,
130 					struct qcm_process_device *qpd)
131 {
132 	return dqm->dev->kfd2kgd->program_sh_mem_settings(
133 						dqm->dev->kgd, qpd->vmid,
134 						qpd->sh_mem_config,
135 						qpd->sh_mem_ape1_base,
136 						qpd->sh_mem_ape1_limit,
137 						qpd->sh_mem_bases);
138 }
139 
140 static void increment_queue_count(struct device_queue_manager *dqm,
141 			enum kfd_queue_type type)
142 {
143 	dqm->active_queue_count++;
144 	if (type == KFD_QUEUE_TYPE_COMPUTE || type == KFD_QUEUE_TYPE_DIQ)
145 		dqm->active_cp_queue_count++;
146 }
147 
148 static void decrement_queue_count(struct device_queue_manager *dqm,
149 			enum kfd_queue_type type)
150 {
151 	dqm->active_queue_count--;
152 	if (type == KFD_QUEUE_TYPE_COMPUTE || type == KFD_QUEUE_TYPE_DIQ)
153 		dqm->active_cp_queue_count--;
154 }
155 
156 static int allocate_doorbell(struct qcm_process_device *qpd, struct queue *q)
157 {
158 	struct kfd_dev *dev = qpd->dqm->dev;
159 
160 	if (!KFD_IS_SOC15(dev->device_info->asic_family)) {
161 		/* On pre-SOC15 chips we need to use the queue ID to
162 		 * preserve the user mode ABI.
163 		 */
164 		q->doorbell_id = q->properties.queue_id;
165 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
166 			q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
167 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
168 		 * doorbell assignments based on the engine and queue id.
169 		 * The doobell index distance between RLC (2*i) and (2*i+1)
170 		 * for a SDMA engine is 512.
171 		 */
172 		uint32_t *idx_offset =
173 				dev->shared_resources.sdma_doorbell_idx;
174 
175 		q->doorbell_id = idx_offset[q->properties.sdma_engine_id]
176 			+ (q->properties.sdma_queue_id & 1)
177 			* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
178 			+ (q->properties.sdma_queue_id >> 1);
179 	} else {
180 		/* For CP queues on SOC15 reserve a free doorbell ID */
181 		unsigned int found;
182 
183 		found = find_first_zero_bit(qpd->doorbell_bitmap,
184 					    KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
185 		if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
186 			pr_debug("No doorbells available");
187 			return -EBUSY;
188 		}
189 		set_bit(found, qpd->doorbell_bitmap);
190 		q->doorbell_id = found;
191 	}
192 
193 	q->properties.doorbell_off =
194 		kfd_get_doorbell_dw_offset_in_bar(dev, qpd_to_pdd(qpd),
195 					  q->doorbell_id);
196 	return 0;
197 }
198 
199 static void deallocate_doorbell(struct qcm_process_device *qpd,
200 				struct queue *q)
201 {
202 	unsigned int old;
203 	struct kfd_dev *dev = qpd->dqm->dev;
204 
205 	if (!KFD_IS_SOC15(dev->device_info->asic_family) ||
206 	    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
207 	    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
208 		return;
209 
210 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
211 	WARN_ON(!old);
212 }
213 
214 static void program_trap_handler_settings(struct device_queue_manager *dqm,
215 				struct qcm_process_device *qpd)
216 {
217 	if (dqm->dev->kfd2kgd->program_trap_handler_settings)
218 		dqm->dev->kfd2kgd->program_trap_handler_settings(
219 						dqm->dev->kgd, qpd->vmid,
220 						qpd->tba_addr, qpd->tma_addr);
221 }
222 
223 static int allocate_vmid(struct device_queue_manager *dqm,
224 			struct qcm_process_device *qpd,
225 			struct queue *q)
226 {
227 	int allocated_vmid = -1, i;
228 
229 	for (i = dqm->dev->vm_info.first_vmid_kfd;
230 			i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
231 		if (!dqm->vmid_pasid[i]) {
232 			allocated_vmid = i;
233 			break;
234 		}
235 	}
236 
237 	if (allocated_vmid < 0) {
238 		pr_err("no more vmid to allocate\n");
239 		return -ENOSPC;
240 	}
241 
242 	pr_debug("vmid allocated: %d\n", allocated_vmid);
243 
244 	dqm->vmid_pasid[allocated_vmid] = q->process->pasid;
245 
246 	set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid);
247 
248 	qpd->vmid = allocated_vmid;
249 	q->properties.vmid = allocated_vmid;
250 
251 	program_sh_mem_settings(dqm, qpd);
252 
253 	if (dqm->dev->device_info->asic_family >= CHIP_VEGA10 &&
254 	    dqm->dev->cwsr_enabled)
255 		program_trap_handler_settings(dqm, qpd);
256 
257 	/* qpd->page_table_base is set earlier when register_process()
258 	 * is called, i.e. when the first queue is created.
259 	 */
260 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->kgd,
261 			qpd->vmid,
262 			qpd->page_table_base);
263 	/* invalidate the VM context after pasid and vmid mapping is set up */
264 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
265 
266 	if (dqm->dev->kfd2kgd->set_scratch_backing_va)
267 		dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->kgd,
268 				qpd->sh_hidden_private_base, qpd->vmid);
269 
270 	return 0;
271 }
272 
273 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev,
274 				struct qcm_process_device *qpd)
275 {
276 	const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
277 	int ret;
278 
279 	if (!qpd->ib_kaddr)
280 		return -ENOMEM;
281 
282 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
283 	if (ret)
284 		return ret;
285 
286 	return amdgpu_amdkfd_submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid,
287 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
288 				pmf->release_mem_size / sizeof(uint32_t));
289 }
290 
291 static void deallocate_vmid(struct device_queue_manager *dqm,
292 				struct qcm_process_device *qpd,
293 				struct queue *q)
294 {
295 	/* On GFX v7, CP doesn't flush TC at dequeue */
296 	if (q->device->device_info->asic_family == CHIP_HAWAII)
297 		if (flush_texture_cache_nocpsch(q->device, qpd))
298 			pr_err("Failed to flush TC\n");
299 
300 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
301 
302 	/* Release the vmid mapping */
303 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
304 	dqm->vmid_pasid[qpd->vmid] = 0;
305 
306 	qpd->vmid = 0;
307 	q->properties.vmid = 0;
308 }
309 
310 static int create_queue_nocpsch(struct device_queue_manager *dqm,
311 				struct queue *q,
312 				struct qcm_process_device *qpd)
313 {
314 	struct mqd_manager *mqd_mgr;
315 	int retval;
316 
317 	dqm_lock(dqm);
318 
319 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
320 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
321 				dqm->total_queue_count);
322 		retval = -EPERM;
323 		goto out_unlock;
324 	}
325 
326 	if (list_empty(&qpd->queues_list)) {
327 		retval = allocate_vmid(dqm, qpd, q);
328 		if (retval)
329 			goto out_unlock;
330 	}
331 	q->properties.vmid = qpd->vmid;
332 	/*
333 	 * Eviction state logic: mark all queues as evicted, even ones
334 	 * not currently active. Restoring inactive queues later only
335 	 * updates the is_evicted flag but is a no-op otherwise.
336 	 */
337 	q->properties.is_evicted = !!qpd->evicted;
338 
339 	q->properties.tba_addr = qpd->tba_addr;
340 	q->properties.tma_addr = qpd->tma_addr;
341 
342 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
343 			q->properties.type)];
344 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
345 		retval = allocate_hqd(dqm, q);
346 		if (retval)
347 			goto deallocate_vmid;
348 		pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
349 			q->pipe, q->queue);
350 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
351 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
352 		retval = allocate_sdma_queue(dqm, q);
353 		if (retval)
354 			goto deallocate_vmid;
355 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
356 	}
357 
358 	retval = allocate_doorbell(qpd, q);
359 	if (retval)
360 		goto out_deallocate_hqd;
361 
362 	/* Temporarily release dqm lock to avoid a circular lock dependency */
363 	dqm_unlock(dqm);
364 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
365 	dqm_lock(dqm);
366 
367 	if (!q->mqd_mem_obj) {
368 		retval = -ENOMEM;
369 		goto out_deallocate_doorbell;
370 	}
371 	mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
372 				&q->gart_mqd_addr, &q->properties);
373 	if (q->properties.is_active) {
374 		if (!dqm->sched_running) {
375 			WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
376 			goto add_queue_to_list;
377 		}
378 
379 		if (WARN(q->process->mm != current->mm,
380 					"should only run in user thread"))
381 			retval = -EFAULT;
382 		else
383 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
384 					q->queue, &q->properties, current->mm);
385 		if (retval)
386 			goto out_free_mqd;
387 	}
388 
389 add_queue_to_list:
390 	list_add(&q->list, &qpd->queues_list);
391 	qpd->queue_count++;
392 	if (q->properties.is_active)
393 		increment_queue_count(dqm, q->properties.type);
394 
395 	/*
396 	 * Unconditionally increment this counter, regardless of the queue's
397 	 * type or whether the queue is active.
398 	 */
399 	dqm->total_queue_count++;
400 	pr_debug("Total of %d queues are accountable so far\n",
401 			dqm->total_queue_count);
402 	goto out_unlock;
403 
404 out_free_mqd:
405 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
406 out_deallocate_doorbell:
407 	deallocate_doorbell(qpd, q);
408 out_deallocate_hqd:
409 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
410 		deallocate_hqd(dqm, q);
411 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
412 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
413 		deallocate_sdma_queue(dqm, q);
414 deallocate_vmid:
415 	if (list_empty(&qpd->queues_list))
416 		deallocate_vmid(dqm, qpd, q);
417 out_unlock:
418 	dqm_unlock(dqm);
419 	return retval;
420 }
421 
422 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
423 {
424 	bool set;
425 	int pipe, bit, i;
426 
427 	set = false;
428 
429 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
430 			i < get_pipes_per_mec(dqm);
431 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
432 
433 		if (!is_pipe_enabled(dqm, 0, pipe))
434 			continue;
435 
436 		if (dqm->allocated_queues[pipe] != 0) {
437 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
438 			dqm->allocated_queues[pipe] &= ~(1 << bit);
439 			q->pipe = pipe;
440 			q->queue = bit;
441 			set = true;
442 			break;
443 		}
444 	}
445 
446 	if (!set)
447 		return -EBUSY;
448 
449 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
450 	/* horizontal hqd allocation */
451 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
452 
453 	return 0;
454 }
455 
456 static inline void deallocate_hqd(struct device_queue_manager *dqm,
457 				struct queue *q)
458 {
459 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
460 }
461 
462 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
463  * to avoid asynchronized access
464  */
465 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
466 				struct qcm_process_device *qpd,
467 				struct queue *q)
468 {
469 	int retval;
470 	struct mqd_manager *mqd_mgr;
471 
472 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
473 			q->properties.type)];
474 
475 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
476 		deallocate_hqd(dqm, q);
477 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
478 		deallocate_sdma_queue(dqm, q);
479 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
480 		deallocate_sdma_queue(dqm, q);
481 	else {
482 		pr_debug("q->properties.type %d is invalid\n",
483 				q->properties.type);
484 		return -EINVAL;
485 	}
486 	dqm->total_queue_count--;
487 
488 	deallocate_doorbell(qpd, q);
489 
490 	if (!dqm->sched_running) {
491 		WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
492 		return 0;
493 	}
494 
495 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
496 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
497 				KFD_UNMAP_LATENCY_MS,
498 				q->pipe, q->queue);
499 	if (retval == -ETIME)
500 		qpd->reset_wavefronts = true;
501 
502 	list_del(&q->list);
503 	if (list_empty(&qpd->queues_list)) {
504 		if (qpd->reset_wavefronts) {
505 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
506 					dqm->dev);
507 			/* dbgdev_wave_reset_wavefronts has to be called before
508 			 * deallocate_vmid(), i.e. when vmid is still in use.
509 			 */
510 			dbgdev_wave_reset_wavefronts(dqm->dev,
511 					qpd->pqm->process);
512 			qpd->reset_wavefronts = false;
513 		}
514 
515 		deallocate_vmid(dqm, qpd, q);
516 	}
517 	qpd->queue_count--;
518 	if (q->properties.is_active) {
519 		decrement_queue_count(dqm, q->properties.type);
520 		if (q->properties.is_gws) {
521 			dqm->gws_queue_count--;
522 			qpd->mapped_gws_queue = false;
523 		}
524 	}
525 
526 	return retval;
527 }
528 
529 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
530 				struct qcm_process_device *qpd,
531 				struct queue *q)
532 {
533 	int retval;
534 	uint64_t sdma_val = 0;
535 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
536 	struct mqd_manager *mqd_mgr =
537 		dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
538 
539 	/* Get the SDMA queue stats */
540 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
541 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
542 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
543 							&sdma_val);
544 		if (retval)
545 			pr_err("Failed to read SDMA queue counter for queue: %d\n",
546 				q->properties.queue_id);
547 	}
548 
549 	dqm_lock(dqm);
550 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
551 	if (!retval)
552 		pdd->sdma_past_activity_counter += sdma_val;
553 	dqm_unlock(dqm);
554 
555 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
556 
557 	return retval;
558 }
559 
560 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
561 {
562 	int retval = 0;
563 	struct mqd_manager *mqd_mgr;
564 	struct kfd_process_device *pdd;
565 	bool prev_active = false;
566 
567 	dqm_lock(dqm);
568 	pdd = kfd_get_process_device_data(q->device, q->process);
569 	if (!pdd) {
570 		retval = -ENODEV;
571 		goto out_unlock;
572 	}
573 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
574 			q->properties.type)];
575 
576 	/* Save previous activity state for counters */
577 	prev_active = q->properties.is_active;
578 
579 	/* Make sure the queue is unmapped before updating the MQD */
580 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
581 		retval = unmap_queues_cpsch(dqm,
582 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
583 		if (retval) {
584 			pr_err("unmap queue failed\n");
585 			goto out_unlock;
586 		}
587 	} else if (prev_active &&
588 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
589 		    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
590 		    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
591 
592 		if (!dqm->sched_running) {
593 			WARN_ONCE(1, "Update non-HWS queue while stopped\n");
594 			goto out_unlock;
595 		}
596 
597 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
598 				(dqm->dev->cwsr_enabled?
599 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
600 				KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
601 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
602 		if (retval) {
603 			pr_err("destroy mqd failed\n");
604 			goto out_unlock;
605 		}
606 	}
607 
608 	mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties);
609 
610 	/*
611 	 * check active state vs. the previous state and modify
612 	 * counter accordingly. map_queues_cpsch uses the
613 	 * dqm->active_queue_count to determine whether a new runlist must be
614 	 * uploaded.
615 	 */
616 	if (q->properties.is_active && !prev_active)
617 		increment_queue_count(dqm, q->properties.type);
618 	else if (!q->properties.is_active && prev_active)
619 		decrement_queue_count(dqm, q->properties.type);
620 
621 	if (q->gws && !q->properties.is_gws) {
622 		if (q->properties.is_active) {
623 			dqm->gws_queue_count++;
624 			pdd->qpd.mapped_gws_queue = true;
625 		}
626 		q->properties.is_gws = true;
627 	} else if (!q->gws && q->properties.is_gws) {
628 		if (q->properties.is_active) {
629 			dqm->gws_queue_count--;
630 			pdd->qpd.mapped_gws_queue = false;
631 		}
632 		q->properties.is_gws = false;
633 	}
634 
635 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS)
636 		retval = map_queues_cpsch(dqm);
637 	else if (q->properties.is_active &&
638 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
639 		  q->properties.type == KFD_QUEUE_TYPE_SDMA ||
640 		  q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
641 		if (WARN(q->process->mm != current->mm,
642 			 "should only run in user thread"))
643 			retval = -EFAULT;
644 		else
645 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
646 						   q->pipe, q->queue,
647 						   &q->properties, current->mm);
648 	}
649 
650 out_unlock:
651 	dqm_unlock(dqm);
652 	return retval;
653 }
654 
655 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
656 					struct qcm_process_device *qpd)
657 {
658 	struct queue *q;
659 	struct mqd_manager *mqd_mgr;
660 	struct kfd_process_device *pdd;
661 	int retval, ret = 0;
662 
663 	dqm_lock(dqm);
664 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
665 		goto out;
666 
667 	pdd = qpd_to_pdd(qpd);
668 	pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
669 			    pdd->process->pasid);
670 
671 	pdd->last_evict_timestamp = get_jiffies_64();
672 	/* Mark all queues as evicted. Deactivate all active queues on
673 	 * the qpd.
674 	 */
675 	list_for_each_entry(q, &qpd->queues_list, list) {
676 		q->properties.is_evicted = true;
677 		if (!q->properties.is_active)
678 			continue;
679 
680 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
681 				q->properties.type)];
682 		q->properties.is_active = false;
683 		decrement_queue_count(dqm, q->properties.type);
684 		if (q->properties.is_gws) {
685 			dqm->gws_queue_count--;
686 			qpd->mapped_gws_queue = false;
687 		}
688 
689 		if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
690 			continue;
691 
692 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
693 				(dqm->dev->cwsr_enabled?
694 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
695 				KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
696 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
697 		if (retval && !ret)
698 			/* Return the first error, but keep going to
699 			 * maintain a consistent eviction state
700 			 */
701 			ret = retval;
702 	}
703 
704 out:
705 	dqm_unlock(dqm);
706 	return ret;
707 }
708 
709 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
710 				      struct qcm_process_device *qpd)
711 {
712 	struct queue *q;
713 	struct kfd_process_device *pdd;
714 	int retval = 0;
715 
716 	dqm_lock(dqm);
717 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
718 		goto out;
719 
720 	pdd = qpd_to_pdd(qpd);
721 	pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
722 			    pdd->process->pasid);
723 
724 	/* Mark all queues as evicted. Deactivate all active queues on
725 	 * the qpd.
726 	 */
727 	list_for_each_entry(q, &qpd->queues_list, list) {
728 		q->properties.is_evicted = true;
729 		if (!q->properties.is_active)
730 			continue;
731 
732 		q->properties.is_active = false;
733 		decrement_queue_count(dqm, q->properties.type);
734 	}
735 	pdd->last_evict_timestamp = get_jiffies_64();
736 	retval = execute_queues_cpsch(dqm,
737 				qpd->is_debug ?
738 				KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
739 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
740 
741 out:
742 	dqm_unlock(dqm);
743 	return retval;
744 }
745 
746 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
747 					  struct qcm_process_device *qpd)
748 {
749 	struct mm_struct *mm = NULL;
750 	struct queue *q;
751 	struct mqd_manager *mqd_mgr;
752 	struct kfd_process_device *pdd;
753 	uint64_t pd_base;
754 	uint64_t eviction_duration;
755 	int retval, ret = 0;
756 
757 	pdd = qpd_to_pdd(qpd);
758 	/* Retrieve PD base */
759 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
760 
761 	dqm_lock(dqm);
762 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
763 		goto out;
764 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
765 		qpd->evicted--;
766 		goto out;
767 	}
768 
769 	pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
770 			    pdd->process->pasid);
771 
772 	/* Update PD Base in QPD */
773 	qpd->page_table_base = pd_base;
774 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
775 
776 	if (!list_empty(&qpd->queues_list)) {
777 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
778 				dqm->dev->kgd,
779 				qpd->vmid,
780 				qpd->page_table_base);
781 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
782 	}
783 
784 	/* Take a safe reference to the mm_struct, which may otherwise
785 	 * disappear even while the kfd_process is still referenced.
786 	 */
787 	mm = get_task_mm(pdd->process->lead_thread);
788 	if (!mm) {
789 		ret = -EFAULT;
790 		goto out;
791 	}
792 
793 	/* Remove the eviction flags. Activate queues that are not
794 	 * inactive for other reasons.
795 	 */
796 	list_for_each_entry(q, &qpd->queues_list, list) {
797 		q->properties.is_evicted = false;
798 		if (!QUEUE_IS_ACTIVE(q->properties))
799 			continue;
800 
801 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
802 				q->properties.type)];
803 		q->properties.is_active = true;
804 		increment_queue_count(dqm, q->properties.type);
805 		if (q->properties.is_gws) {
806 			dqm->gws_queue_count++;
807 			qpd->mapped_gws_queue = true;
808 		}
809 
810 		if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
811 			continue;
812 
813 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
814 				       q->queue, &q->properties, mm);
815 		if (retval && !ret)
816 			/* Return the first error, but keep going to
817 			 * maintain a consistent eviction state
818 			 */
819 			ret = retval;
820 	}
821 	qpd->evicted = 0;
822 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
823 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
824 out:
825 	if (mm)
826 		mmput(mm);
827 	dqm_unlock(dqm);
828 	return ret;
829 }
830 
831 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
832 					struct qcm_process_device *qpd)
833 {
834 	struct queue *q;
835 	struct kfd_process_device *pdd;
836 	uint64_t pd_base;
837 	uint64_t eviction_duration;
838 	int retval = 0;
839 
840 	pdd = qpd_to_pdd(qpd);
841 	/* Retrieve PD base */
842 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
843 
844 	dqm_lock(dqm);
845 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
846 		goto out;
847 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
848 		qpd->evicted--;
849 		goto out;
850 	}
851 
852 	pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
853 			    pdd->process->pasid);
854 
855 	/* Update PD Base in QPD */
856 	qpd->page_table_base = pd_base;
857 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
858 
859 	/* activate all active queues on the qpd */
860 	list_for_each_entry(q, &qpd->queues_list, list) {
861 		q->properties.is_evicted = false;
862 		if (!QUEUE_IS_ACTIVE(q->properties))
863 			continue;
864 
865 		q->properties.is_active = true;
866 		increment_queue_count(dqm, q->properties.type);
867 	}
868 	retval = execute_queues_cpsch(dqm,
869 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
870 	qpd->evicted = 0;
871 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
872 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
873 out:
874 	dqm_unlock(dqm);
875 	return retval;
876 }
877 
878 static int register_process(struct device_queue_manager *dqm,
879 					struct qcm_process_device *qpd)
880 {
881 	struct device_process_node *n;
882 	struct kfd_process_device *pdd;
883 	uint64_t pd_base;
884 	int retval;
885 
886 	n = kzalloc(sizeof(*n), GFP_KERNEL);
887 	if (!n)
888 		return -ENOMEM;
889 
890 	n->qpd = qpd;
891 
892 	pdd = qpd_to_pdd(qpd);
893 	/* Retrieve PD base */
894 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
895 
896 	dqm_lock(dqm);
897 	list_add(&n->list, &dqm->queues);
898 
899 	/* Update PD Base in QPD */
900 	qpd->page_table_base = pd_base;
901 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
902 
903 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
904 
905 	dqm->processes_count++;
906 
907 	dqm_unlock(dqm);
908 
909 	/* Outside the DQM lock because under the DQM lock we can't do
910 	 * reclaim or take other locks that others hold while reclaiming.
911 	 */
912 	kfd_inc_compute_active(dqm->dev);
913 
914 	return retval;
915 }
916 
917 static int unregister_process(struct device_queue_manager *dqm,
918 					struct qcm_process_device *qpd)
919 {
920 	int retval;
921 	struct device_process_node *cur, *next;
922 
923 	pr_debug("qpd->queues_list is %s\n",
924 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
925 
926 	retval = 0;
927 	dqm_lock(dqm);
928 
929 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
930 		if (qpd == cur->qpd) {
931 			list_del(&cur->list);
932 			kfree(cur);
933 			dqm->processes_count--;
934 			goto out;
935 		}
936 	}
937 	/* qpd not found in dqm list */
938 	retval = 1;
939 out:
940 	dqm_unlock(dqm);
941 
942 	/* Outside the DQM lock because under the DQM lock we can't do
943 	 * reclaim or take other locks that others hold while reclaiming.
944 	 */
945 	if (!retval)
946 		kfd_dec_compute_active(dqm->dev);
947 
948 	return retval;
949 }
950 
951 static int
952 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
953 			unsigned int vmid)
954 {
955 	return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
956 						dqm->dev->kgd, pasid, vmid);
957 }
958 
959 static void init_interrupts(struct device_queue_manager *dqm)
960 {
961 	unsigned int i;
962 
963 	for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
964 		if (is_pipe_enabled(dqm, 0, i))
965 			dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i);
966 }
967 
968 static int initialize_nocpsch(struct device_queue_manager *dqm)
969 {
970 	int pipe, queue;
971 
972 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
973 
974 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
975 					sizeof(unsigned int), GFP_KERNEL);
976 	if (!dqm->allocated_queues)
977 		return -ENOMEM;
978 
979 	mutex_init(&dqm->lock_hidden);
980 	INIT_LIST_HEAD(&dqm->queues);
981 	dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
982 	dqm->active_cp_queue_count = 0;
983 	dqm->gws_queue_count = 0;
984 
985 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
986 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
987 
988 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
989 			if (test_bit(pipe_offset + queue,
990 				     dqm->dev->shared_resources.cp_queue_bitmap))
991 				dqm->allocated_queues[pipe] |= 1 << queue;
992 	}
993 
994 	memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
995 
996 	dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm));
997 	dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm));
998 
999 	return 0;
1000 }
1001 
1002 static void uninitialize(struct device_queue_manager *dqm)
1003 {
1004 	int i;
1005 
1006 	WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1007 
1008 	kfree(dqm->allocated_queues);
1009 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1010 		kfree(dqm->mqd_mgrs[i]);
1011 	mutex_destroy(&dqm->lock_hidden);
1012 }
1013 
1014 static int start_nocpsch(struct device_queue_manager *dqm)
1015 {
1016 	pr_info("SW scheduler is used");
1017 	init_interrupts(dqm);
1018 
1019 	if (dqm->dev->device_info->asic_family == CHIP_HAWAII)
1020 		return pm_init(&dqm->packet_mgr, dqm);
1021 	dqm->sched_running = true;
1022 
1023 	return 0;
1024 }
1025 
1026 static int stop_nocpsch(struct device_queue_manager *dqm)
1027 {
1028 	if (dqm->dev->device_info->asic_family == CHIP_HAWAII)
1029 		pm_uninit(&dqm->packet_mgr, false);
1030 	dqm->sched_running = false;
1031 
1032 	return 0;
1033 }
1034 
1035 static void pre_reset(struct device_queue_manager *dqm)
1036 {
1037 	dqm_lock(dqm);
1038 	dqm->is_resetting = true;
1039 	dqm_unlock(dqm);
1040 }
1041 
1042 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1043 				struct queue *q)
1044 {
1045 	int bit;
1046 
1047 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1048 		if (dqm->sdma_bitmap == 0) {
1049 			pr_err("No more SDMA queue to allocate\n");
1050 			return -ENOMEM;
1051 		}
1052 
1053 		bit = __ffs64(dqm->sdma_bitmap);
1054 		dqm->sdma_bitmap &= ~(1ULL << bit);
1055 		q->sdma_id = bit;
1056 		q->properties.sdma_engine_id = q->sdma_id %
1057 				get_num_sdma_engines(dqm);
1058 		q->properties.sdma_queue_id = q->sdma_id /
1059 				get_num_sdma_engines(dqm);
1060 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1061 		if (dqm->xgmi_sdma_bitmap == 0) {
1062 			pr_err("No more XGMI SDMA queue to allocate\n");
1063 			return -ENOMEM;
1064 		}
1065 		bit = __ffs64(dqm->xgmi_sdma_bitmap);
1066 		dqm->xgmi_sdma_bitmap &= ~(1ULL << bit);
1067 		q->sdma_id = bit;
1068 		/* sdma_engine_id is sdma id including
1069 		 * both PCIe-optimized SDMAs and XGMI-
1070 		 * optimized SDMAs. The calculation below
1071 		 * assumes the first N engines are always
1072 		 * PCIe-optimized ones
1073 		 */
1074 		q->properties.sdma_engine_id = get_num_sdma_engines(dqm) +
1075 				q->sdma_id % get_num_xgmi_sdma_engines(dqm);
1076 		q->properties.sdma_queue_id = q->sdma_id /
1077 				get_num_xgmi_sdma_engines(dqm);
1078 	}
1079 
1080 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1081 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1082 
1083 	return 0;
1084 }
1085 
1086 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1087 				struct queue *q)
1088 {
1089 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1090 		if (q->sdma_id >= get_num_sdma_queues(dqm))
1091 			return;
1092 		dqm->sdma_bitmap |= (1ULL << q->sdma_id);
1093 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1094 		if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1095 			return;
1096 		dqm->xgmi_sdma_bitmap |= (1ULL << q->sdma_id);
1097 	}
1098 }
1099 
1100 /*
1101  * Device Queue Manager implementation for cp scheduler
1102  */
1103 
1104 static int set_sched_resources(struct device_queue_manager *dqm)
1105 {
1106 	int i, mec;
1107 	struct scheduling_resources res;
1108 
1109 	res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap;
1110 
1111 	res.queue_mask = 0;
1112 	for (i = 0; i < KGD_MAX_QUEUES; ++i) {
1113 		mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
1114 			/ dqm->dev->shared_resources.num_pipe_per_mec;
1115 
1116 		if (!test_bit(i, dqm->dev->shared_resources.cp_queue_bitmap))
1117 			continue;
1118 
1119 		/* only acquire queues from the first MEC */
1120 		if (mec > 0)
1121 			continue;
1122 
1123 		/* This situation may be hit in the future if a new HW
1124 		 * generation exposes more than 64 queues. If so, the
1125 		 * definition of res.queue_mask needs updating
1126 		 */
1127 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1128 			pr_err("Invalid queue enabled by amdgpu: %d\n", i);
1129 			break;
1130 		}
1131 
1132 		res.queue_mask |= 1ull
1133 			<< amdgpu_queue_mask_bit_to_set_resource_bit(
1134 				(struct amdgpu_device *)dqm->dev->kgd, i);
1135 	}
1136 	res.gws_mask = ~0ull;
1137 	res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1138 
1139 	pr_debug("Scheduling resources:\n"
1140 			"vmid mask: 0x%8X\n"
1141 			"queue mask: 0x%8llX\n",
1142 			res.vmid_mask, res.queue_mask);
1143 
1144 	return pm_send_set_resources(&dqm->packet_mgr, &res);
1145 }
1146 
1147 static int initialize_cpsch(struct device_queue_manager *dqm)
1148 {
1149 	uint64_t num_sdma_queues;
1150 	uint64_t num_xgmi_sdma_queues;
1151 
1152 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1153 
1154 	mutex_init(&dqm->lock_hidden);
1155 	INIT_LIST_HEAD(&dqm->queues);
1156 	dqm->active_queue_count = dqm->processes_count = 0;
1157 	dqm->active_cp_queue_count = 0;
1158 	dqm->gws_queue_count = 0;
1159 	dqm->active_runlist = false;
1160 
1161 	num_sdma_queues = get_num_sdma_queues(dqm);
1162 	if (num_sdma_queues >= BITS_PER_TYPE(dqm->sdma_bitmap))
1163 		dqm->sdma_bitmap = ULLONG_MAX;
1164 	else
1165 		dqm->sdma_bitmap = (BIT_ULL(num_sdma_queues) - 1);
1166 
1167 	num_xgmi_sdma_queues = get_num_xgmi_sdma_queues(dqm);
1168 	if (num_xgmi_sdma_queues >= BITS_PER_TYPE(dqm->xgmi_sdma_bitmap))
1169 		dqm->xgmi_sdma_bitmap = ULLONG_MAX;
1170 	else
1171 		dqm->xgmi_sdma_bitmap = (BIT_ULL(num_xgmi_sdma_queues) - 1);
1172 
1173 	INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1174 
1175 	return 0;
1176 }
1177 
1178 static int start_cpsch(struct device_queue_manager *dqm)
1179 {
1180 	int retval;
1181 
1182 	retval = 0;
1183 
1184 	dqm_lock(dqm);
1185 	retval = pm_init(&dqm->packet_mgr, dqm);
1186 	if (retval)
1187 		goto fail_packet_manager_init;
1188 
1189 	retval = set_sched_resources(dqm);
1190 	if (retval)
1191 		goto fail_set_sched_resources;
1192 
1193 	pr_debug("Allocating fence memory\n");
1194 
1195 	/* allocate fence memory on the gart */
1196 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1197 					&dqm->fence_mem);
1198 
1199 	if (retval)
1200 		goto fail_allocate_vidmem;
1201 
1202 	dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1203 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1204 
1205 	init_interrupts(dqm);
1206 
1207 	/* clear hang status when driver try to start the hw scheduler */
1208 	dqm->is_hws_hang = false;
1209 	dqm->is_resetting = false;
1210 	dqm->sched_running = true;
1211 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1212 	dqm_unlock(dqm);
1213 
1214 	return 0;
1215 fail_allocate_vidmem:
1216 fail_set_sched_resources:
1217 	pm_uninit(&dqm->packet_mgr, false);
1218 fail_packet_manager_init:
1219 	dqm_unlock(dqm);
1220 	return retval;
1221 }
1222 
1223 static int stop_cpsch(struct device_queue_manager *dqm)
1224 {
1225 	bool hanging;
1226 
1227 	dqm_lock(dqm);
1228 	if (!dqm->is_hws_hang)
1229 		unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1230 	hanging = dqm->is_hws_hang || dqm->is_resetting;
1231 	dqm->sched_running = false;
1232 
1233 	pm_release_ib(&dqm->packet_mgr);
1234 
1235 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1236 	pm_uninit(&dqm->packet_mgr, hanging);
1237 	dqm_unlock(dqm);
1238 
1239 	return 0;
1240 }
1241 
1242 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1243 					struct kernel_queue *kq,
1244 					struct qcm_process_device *qpd)
1245 {
1246 	dqm_lock(dqm);
1247 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1248 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1249 				dqm->total_queue_count);
1250 		dqm_unlock(dqm);
1251 		return -EPERM;
1252 	}
1253 
1254 	/*
1255 	 * Unconditionally increment this counter, regardless of the queue's
1256 	 * type or whether the queue is active.
1257 	 */
1258 	dqm->total_queue_count++;
1259 	pr_debug("Total of %d queues are accountable so far\n",
1260 			dqm->total_queue_count);
1261 
1262 	list_add(&kq->list, &qpd->priv_queue_list);
1263 	increment_queue_count(dqm, kq->queue->properties.type);
1264 	qpd->is_debug = true;
1265 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1266 	dqm_unlock(dqm);
1267 
1268 	return 0;
1269 }
1270 
1271 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1272 					struct kernel_queue *kq,
1273 					struct qcm_process_device *qpd)
1274 {
1275 	dqm_lock(dqm);
1276 	list_del(&kq->list);
1277 	decrement_queue_count(dqm, kq->queue->properties.type);
1278 	qpd->is_debug = false;
1279 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1280 	/*
1281 	 * Unconditionally decrement this counter, regardless of the queue's
1282 	 * type.
1283 	 */
1284 	dqm->total_queue_count--;
1285 	pr_debug("Total of %d queues are accountable so far\n",
1286 			dqm->total_queue_count);
1287 	dqm_unlock(dqm);
1288 }
1289 
1290 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1291 			struct qcm_process_device *qpd)
1292 {
1293 	int retval;
1294 	struct mqd_manager *mqd_mgr;
1295 
1296 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1297 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1298 				dqm->total_queue_count);
1299 		retval = -EPERM;
1300 		goto out;
1301 	}
1302 
1303 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1304 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1305 		dqm_lock(dqm);
1306 		retval = allocate_sdma_queue(dqm, q);
1307 		dqm_unlock(dqm);
1308 		if (retval)
1309 			goto out;
1310 	}
1311 
1312 	retval = allocate_doorbell(qpd, q);
1313 	if (retval)
1314 		goto out_deallocate_sdma_queue;
1315 
1316 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1317 			q->properties.type)];
1318 
1319 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1320 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1321 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1322 	q->properties.tba_addr = qpd->tba_addr;
1323 	q->properties.tma_addr = qpd->tma_addr;
1324 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
1325 	if (!q->mqd_mem_obj) {
1326 		retval = -ENOMEM;
1327 		goto out_deallocate_doorbell;
1328 	}
1329 
1330 	dqm_lock(dqm);
1331 	/*
1332 	 * Eviction state logic: mark all queues as evicted, even ones
1333 	 * not currently active. Restoring inactive queues later only
1334 	 * updates the is_evicted flag but is a no-op otherwise.
1335 	 */
1336 	q->properties.is_evicted = !!qpd->evicted;
1337 	mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
1338 				&q->gart_mqd_addr, &q->properties);
1339 
1340 	list_add(&q->list, &qpd->queues_list);
1341 	qpd->queue_count++;
1342 
1343 	if (q->properties.is_active) {
1344 		increment_queue_count(dqm, q->properties.type);
1345 
1346 		execute_queues_cpsch(dqm,
1347 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1348 	}
1349 
1350 	/*
1351 	 * Unconditionally increment this counter, regardless of the queue's
1352 	 * type or whether the queue is active.
1353 	 */
1354 	dqm->total_queue_count++;
1355 
1356 	pr_debug("Total of %d queues are accountable so far\n",
1357 			dqm->total_queue_count);
1358 
1359 	dqm_unlock(dqm);
1360 	return retval;
1361 
1362 out_deallocate_doorbell:
1363 	deallocate_doorbell(qpd, q);
1364 out_deallocate_sdma_queue:
1365 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1366 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1367 		dqm_lock(dqm);
1368 		deallocate_sdma_queue(dqm, q);
1369 		dqm_unlock(dqm);
1370 	}
1371 out:
1372 	return retval;
1373 }
1374 
1375 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1376 				uint64_t fence_value,
1377 				unsigned int timeout_ms)
1378 {
1379 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1380 
1381 	while (*fence_addr != fence_value) {
1382 		if (time_after(jiffies, end_jiffies)) {
1383 			pr_err("qcm fence wait loop timeout expired\n");
1384 			/* In HWS case, this is used to halt the driver thread
1385 			 * in order not to mess up CP states before doing
1386 			 * scandumps for FW debugging.
1387 			 */
1388 			while (halt_if_hws_hang)
1389 				schedule();
1390 
1391 			return -ETIME;
1392 		}
1393 		schedule();
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 /* dqm->lock mutex has to be locked before calling this function */
1400 static int map_queues_cpsch(struct device_queue_manager *dqm)
1401 {
1402 	int retval;
1403 
1404 	if (!dqm->sched_running)
1405 		return 0;
1406 	if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
1407 		return 0;
1408 	if (dqm->active_runlist)
1409 		return 0;
1410 
1411 	retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
1412 	pr_debug("%s sent runlist\n", __func__);
1413 	if (retval) {
1414 		pr_err("failed to execute runlist\n");
1415 		return retval;
1416 	}
1417 	dqm->active_runlist = true;
1418 
1419 	return retval;
1420 }
1421 
1422 /* dqm->lock mutex has to be locked before calling this function */
1423 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1424 				enum kfd_unmap_queues_filter filter,
1425 				uint32_t filter_param)
1426 {
1427 	int retval = 0;
1428 	struct mqd_manager *mqd_mgr;
1429 
1430 	if (!dqm->sched_running)
1431 		return 0;
1432 	if (dqm->is_hws_hang)
1433 		return -EIO;
1434 	if (!dqm->active_runlist)
1435 		return retval;
1436 
1437 	retval = pm_send_unmap_queue(&dqm->packet_mgr, KFD_QUEUE_TYPE_COMPUTE,
1438 			filter, filter_param, false, 0);
1439 	if (retval)
1440 		return retval;
1441 
1442 	*dqm->fence_addr = KFD_FENCE_INIT;
1443 	pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
1444 				KFD_FENCE_COMPLETED);
1445 	/* should be timed out */
1446 	retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
1447 				queue_preemption_timeout_ms);
1448 	if (retval) {
1449 		pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1450 		dqm->is_hws_hang = true;
1451 		/* It's possible we're detecting a HWS hang in the
1452 		 * middle of a GPU reset. No need to schedule another
1453 		 * reset in this case.
1454 		 */
1455 		if (!dqm->is_resetting)
1456 			schedule_work(&dqm->hw_exception_work);
1457 		return retval;
1458 	}
1459 
1460 	/* In the current MEC firmware implementation, if compute queue
1461 	 * doesn't response to the preemption request in time, HIQ will
1462 	 * abandon the unmap request without returning any timeout error
1463 	 * to driver. Instead, MEC firmware will log the doorbell of the
1464 	 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
1465 	 * To make sure the queue unmap was successful, driver need to
1466 	 * check those fields
1467 	 */
1468 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
1469 	if (mqd_mgr->read_doorbell_id(dqm->packet_mgr.priv_queue->queue->mqd)) {
1470 		pr_err("HIQ MQD's queue_doorbell_id0 is not 0, Queue preemption time out\n");
1471 		while (halt_if_hws_hang)
1472 			schedule();
1473 		return -ETIME;
1474 	}
1475 
1476 	pm_release_ib(&dqm->packet_mgr);
1477 	dqm->active_runlist = false;
1478 
1479 	return retval;
1480 }
1481 
1482 /* dqm->lock mutex has to be locked before calling this function */
1483 static int execute_queues_cpsch(struct device_queue_manager *dqm,
1484 				enum kfd_unmap_queues_filter filter,
1485 				uint32_t filter_param)
1486 {
1487 	int retval;
1488 
1489 	if (dqm->is_hws_hang)
1490 		return -EIO;
1491 	retval = unmap_queues_cpsch(dqm, filter, filter_param);
1492 	if (retval)
1493 		return retval;
1494 
1495 	return map_queues_cpsch(dqm);
1496 }
1497 
1498 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1499 				struct qcm_process_device *qpd,
1500 				struct queue *q)
1501 {
1502 	int retval;
1503 	struct mqd_manager *mqd_mgr;
1504 	uint64_t sdma_val = 0;
1505 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
1506 
1507 	/* Get the SDMA queue stats */
1508 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
1509 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1510 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
1511 							&sdma_val);
1512 		if (retval)
1513 			pr_err("Failed to read SDMA queue counter for queue: %d\n",
1514 				q->properties.queue_id);
1515 	}
1516 
1517 	retval = 0;
1518 
1519 	/* remove queue from list to prevent rescheduling after preemption */
1520 	dqm_lock(dqm);
1521 
1522 	if (qpd->is_debug) {
1523 		/*
1524 		 * error, currently we do not allow to destroy a queue
1525 		 * of a currently debugged process
1526 		 */
1527 		retval = -EBUSY;
1528 		goto failed_try_destroy_debugged_queue;
1529 
1530 	}
1531 
1532 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1533 			q->properties.type)];
1534 
1535 	deallocate_doorbell(qpd, q);
1536 
1537 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
1538 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1539 		deallocate_sdma_queue(dqm, q);
1540 		pdd->sdma_past_activity_counter += sdma_val;
1541 	}
1542 
1543 	list_del(&q->list);
1544 	qpd->queue_count--;
1545 	if (q->properties.is_active) {
1546 		decrement_queue_count(dqm, q->properties.type);
1547 		retval = execute_queues_cpsch(dqm,
1548 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1549 		if (retval == -ETIME)
1550 			qpd->reset_wavefronts = true;
1551 		if (q->properties.is_gws) {
1552 			dqm->gws_queue_count--;
1553 			qpd->mapped_gws_queue = false;
1554 		}
1555 	}
1556 
1557 	/*
1558 	 * Unconditionally decrement this counter, regardless of the queue's
1559 	 * type
1560 	 */
1561 	dqm->total_queue_count--;
1562 	pr_debug("Total of %d queues are accountable so far\n",
1563 			dqm->total_queue_count);
1564 
1565 	dqm_unlock(dqm);
1566 
1567 	/* Do free_mqd after dqm_unlock(dqm) to avoid circular locking */
1568 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1569 
1570 	return retval;
1571 
1572 failed_try_destroy_debugged_queue:
1573 
1574 	dqm_unlock(dqm);
1575 	return retval;
1576 }
1577 
1578 /*
1579  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1580  * stay in user mode.
1581  */
1582 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1583 /* APE1 limit is inclusive and 64K aligned. */
1584 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1585 
1586 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1587 				   struct qcm_process_device *qpd,
1588 				   enum cache_policy default_policy,
1589 				   enum cache_policy alternate_policy,
1590 				   void __user *alternate_aperture_base,
1591 				   uint64_t alternate_aperture_size)
1592 {
1593 	bool retval = true;
1594 
1595 	if (!dqm->asic_ops.set_cache_memory_policy)
1596 		return retval;
1597 
1598 	dqm_lock(dqm);
1599 
1600 	if (alternate_aperture_size == 0) {
1601 		/* base > limit disables APE1 */
1602 		qpd->sh_mem_ape1_base = 1;
1603 		qpd->sh_mem_ape1_limit = 0;
1604 	} else {
1605 		/*
1606 		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1607 		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
1608 		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1609 		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1610 		 * Verify that the base and size parameters can be
1611 		 * represented in this format and convert them.
1612 		 * Additionally restrict APE1 to user-mode addresses.
1613 		 */
1614 
1615 		uint64_t base = (uintptr_t)alternate_aperture_base;
1616 		uint64_t limit = base + alternate_aperture_size - 1;
1617 
1618 		if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
1619 		   (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
1620 			retval = false;
1621 			goto out;
1622 		}
1623 
1624 		qpd->sh_mem_ape1_base = base >> 16;
1625 		qpd->sh_mem_ape1_limit = limit >> 16;
1626 	}
1627 
1628 	retval = dqm->asic_ops.set_cache_memory_policy(
1629 			dqm,
1630 			qpd,
1631 			default_policy,
1632 			alternate_policy,
1633 			alternate_aperture_base,
1634 			alternate_aperture_size);
1635 
1636 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1637 		program_sh_mem_settings(dqm, qpd);
1638 
1639 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1640 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1641 		qpd->sh_mem_ape1_limit);
1642 
1643 out:
1644 	dqm_unlock(dqm);
1645 	return retval;
1646 }
1647 
1648 static int process_termination_nocpsch(struct device_queue_manager *dqm,
1649 		struct qcm_process_device *qpd)
1650 {
1651 	struct queue *q;
1652 	struct device_process_node *cur, *next_dpn;
1653 	int retval = 0;
1654 	bool found = false;
1655 
1656 	dqm_lock(dqm);
1657 
1658 	/* Clear all user mode queues */
1659 	while (!list_empty(&qpd->queues_list)) {
1660 		struct mqd_manager *mqd_mgr;
1661 		int ret;
1662 
1663 		q = list_first_entry(&qpd->queues_list, struct queue, list);
1664 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1665 				q->properties.type)];
1666 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
1667 		if (ret)
1668 			retval = ret;
1669 		dqm_unlock(dqm);
1670 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1671 		dqm_lock(dqm);
1672 	}
1673 
1674 	/* Unregister process */
1675 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1676 		if (qpd == cur->qpd) {
1677 			list_del(&cur->list);
1678 			kfree(cur);
1679 			dqm->processes_count--;
1680 			found = true;
1681 			break;
1682 		}
1683 	}
1684 
1685 	dqm_unlock(dqm);
1686 
1687 	/* Outside the DQM lock because under the DQM lock we can't do
1688 	 * reclaim or take other locks that others hold while reclaiming.
1689 	 */
1690 	if (found)
1691 		kfd_dec_compute_active(dqm->dev);
1692 
1693 	return retval;
1694 }
1695 
1696 static int get_wave_state(struct device_queue_manager *dqm,
1697 			  struct queue *q,
1698 			  void __user *ctl_stack,
1699 			  u32 *ctl_stack_used_size,
1700 			  u32 *save_area_used_size)
1701 {
1702 	struct mqd_manager *mqd_mgr;
1703 
1704 	dqm_lock(dqm);
1705 
1706 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
1707 
1708 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
1709 	    q->properties.is_active || !q->device->cwsr_enabled ||
1710 	    !mqd_mgr->get_wave_state) {
1711 		dqm_unlock(dqm);
1712 		return -EINVAL;
1713 	}
1714 
1715 	dqm_unlock(dqm);
1716 
1717 	/*
1718 	 * get_wave_state is outside the dqm lock to prevent circular locking
1719 	 * and the queue should be protected against destruction by the process
1720 	 * lock.
1721 	 */
1722 	return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, ctl_stack,
1723 			ctl_stack_used_size, save_area_used_size);
1724 }
1725 
1726 static int process_termination_cpsch(struct device_queue_manager *dqm,
1727 		struct qcm_process_device *qpd)
1728 {
1729 	int retval;
1730 	struct queue *q;
1731 	struct kernel_queue *kq, *kq_next;
1732 	struct mqd_manager *mqd_mgr;
1733 	struct device_process_node *cur, *next_dpn;
1734 	enum kfd_unmap_queues_filter filter =
1735 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
1736 	bool found = false;
1737 
1738 	retval = 0;
1739 
1740 	dqm_lock(dqm);
1741 
1742 	/* Clean all kernel queues */
1743 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
1744 		list_del(&kq->list);
1745 		decrement_queue_count(dqm, kq->queue->properties.type);
1746 		qpd->is_debug = false;
1747 		dqm->total_queue_count--;
1748 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
1749 	}
1750 
1751 	/* Clear all user mode queues */
1752 	list_for_each_entry(q, &qpd->queues_list, list) {
1753 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1754 			deallocate_sdma_queue(dqm, q);
1755 		else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1756 			deallocate_sdma_queue(dqm, q);
1757 
1758 		if (q->properties.is_active) {
1759 			decrement_queue_count(dqm, q->properties.type);
1760 			if (q->properties.is_gws) {
1761 				dqm->gws_queue_count--;
1762 				qpd->mapped_gws_queue = false;
1763 			}
1764 		}
1765 
1766 		dqm->total_queue_count--;
1767 	}
1768 
1769 	/* Unregister process */
1770 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1771 		if (qpd == cur->qpd) {
1772 			list_del(&cur->list);
1773 			kfree(cur);
1774 			dqm->processes_count--;
1775 			found = true;
1776 			break;
1777 		}
1778 	}
1779 
1780 	retval = execute_queues_cpsch(dqm, filter, 0);
1781 	if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
1782 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
1783 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
1784 		qpd->reset_wavefronts = false;
1785 	}
1786 
1787 	/* Lastly, free mqd resources.
1788 	 * Do free_mqd() after dqm_unlock to avoid circular locking.
1789 	 */
1790 	while (!list_empty(&qpd->queues_list)) {
1791 		q = list_first_entry(&qpd->queues_list, struct queue, list);
1792 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1793 				q->properties.type)];
1794 		list_del(&q->list);
1795 		qpd->queue_count--;
1796 		dqm_unlock(dqm);
1797 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1798 		dqm_lock(dqm);
1799 	}
1800 	dqm_unlock(dqm);
1801 
1802 	/* Outside the DQM lock because under the DQM lock we can't do
1803 	 * reclaim or take other locks that others hold while reclaiming.
1804 	 */
1805 	if (found)
1806 		kfd_dec_compute_active(dqm->dev);
1807 
1808 	return retval;
1809 }
1810 
1811 static int init_mqd_managers(struct device_queue_manager *dqm)
1812 {
1813 	int i, j;
1814 	struct mqd_manager *mqd_mgr;
1815 
1816 	for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
1817 		mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
1818 		if (!mqd_mgr) {
1819 			pr_err("mqd manager [%d] initialization failed\n", i);
1820 			goto out_free;
1821 		}
1822 		dqm->mqd_mgrs[i] = mqd_mgr;
1823 	}
1824 
1825 	return 0;
1826 
1827 out_free:
1828 	for (j = 0; j < i; j++) {
1829 		kfree(dqm->mqd_mgrs[j]);
1830 		dqm->mqd_mgrs[j] = NULL;
1831 	}
1832 
1833 	return -ENOMEM;
1834 }
1835 
1836 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
1837 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
1838 {
1839 	int retval;
1840 	struct kfd_dev *dev = dqm->dev;
1841 	struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
1842 	uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
1843 		get_num_all_sdma_engines(dqm) *
1844 		dev->device_info->num_sdma_queues_per_engine +
1845 		dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size;
1846 
1847 	retval = amdgpu_amdkfd_alloc_gtt_mem(dev->kgd, size,
1848 		&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
1849 		(void *)&(mem_obj->cpu_ptr), false);
1850 
1851 	return retval;
1852 }
1853 
1854 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1855 {
1856 	struct device_queue_manager *dqm;
1857 
1858 	pr_debug("Loading device queue manager\n");
1859 
1860 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
1861 	if (!dqm)
1862 		return NULL;
1863 
1864 	switch (dev->device_info->asic_family) {
1865 	/* HWS is not available on Hawaii. */
1866 	case CHIP_HAWAII:
1867 	/* HWS depends on CWSR for timely dequeue. CWSR is not
1868 	 * available on Tonga.
1869 	 *
1870 	 * FIXME: This argument also applies to Kaveri.
1871 	 */
1872 	case CHIP_TONGA:
1873 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
1874 		break;
1875 	default:
1876 		dqm->sched_policy = sched_policy;
1877 		break;
1878 	}
1879 
1880 	dqm->dev = dev;
1881 	switch (dqm->sched_policy) {
1882 	case KFD_SCHED_POLICY_HWS:
1883 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1884 		/* initialize dqm for cp scheduling */
1885 		dqm->ops.create_queue = create_queue_cpsch;
1886 		dqm->ops.initialize = initialize_cpsch;
1887 		dqm->ops.start = start_cpsch;
1888 		dqm->ops.stop = stop_cpsch;
1889 		dqm->ops.pre_reset = pre_reset;
1890 		dqm->ops.destroy_queue = destroy_queue_cpsch;
1891 		dqm->ops.update_queue = update_queue;
1892 		dqm->ops.register_process = register_process;
1893 		dqm->ops.unregister_process = unregister_process;
1894 		dqm->ops.uninitialize = uninitialize;
1895 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1896 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1897 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1898 		dqm->ops.process_termination = process_termination_cpsch;
1899 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
1900 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
1901 		dqm->ops.get_wave_state = get_wave_state;
1902 		break;
1903 	case KFD_SCHED_POLICY_NO_HWS:
1904 		/* initialize dqm for no cp scheduling */
1905 		dqm->ops.start = start_nocpsch;
1906 		dqm->ops.stop = stop_nocpsch;
1907 		dqm->ops.pre_reset = pre_reset;
1908 		dqm->ops.create_queue = create_queue_nocpsch;
1909 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
1910 		dqm->ops.update_queue = update_queue;
1911 		dqm->ops.register_process = register_process;
1912 		dqm->ops.unregister_process = unregister_process;
1913 		dqm->ops.initialize = initialize_nocpsch;
1914 		dqm->ops.uninitialize = uninitialize;
1915 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1916 		dqm->ops.process_termination = process_termination_nocpsch;
1917 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
1918 		dqm->ops.restore_process_queues =
1919 			restore_process_queues_nocpsch;
1920 		dqm->ops.get_wave_state = get_wave_state;
1921 		break;
1922 	default:
1923 		pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
1924 		goto out_free;
1925 	}
1926 
1927 	switch (dev->device_info->asic_family) {
1928 	case CHIP_CARRIZO:
1929 		device_queue_manager_init_vi(&dqm->asic_ops);
1930 		break;
1931 
1932 	case CHIP_KAVERI:
1933 		device_queue_manager_init_cik(&dqm->asic_ops);
1934 		break;
1935 
1936 	case CHIP_HAWAII:
1937 		device_queue_manager_init_cik_hawaii(&dqm->asic_ops);
1938 		break;
1939 
1940 	case CHIP_TONGA:
1941 	case CHIP_FIJI:
1942 	case CHIP_POLARIS10:
1943 	case CHIP_POLARIS11:
1944 	case CHIP_POLARIS12:
1945 	case CHIP_VEGAM:
1946 		device_queue_manager_init_vi_tonga(&dqm->asic_ops);
1947 		break;
1948 
1949 	case CHIP_VEGA10:
1950 	case CHIP_VEGA12:
1951 	case CHIP_VEGA20:
1952 	case CHIP_RAVEN:
1953 	case CHIP_RENOIR:
1954 	case CHIP_ARCTURUS:
1955 	case CHIP_ALDEBARAN:
1956 		device_queue_manager_init_v9(&dqm->asic_ops);
1957 		break;
1958 	case CHIP_NAVI10:
1959 	case CHIP_NAVI12:
1960 	case CHIP_NAVI14:
1961 	case CHIP_SIENNA_CICHLID:
1962 	case CHIP_NAVY_FLOUNDER:
1963 	case CHIP_VANGOGH:
1964 	case CHIP_DIMGREY_CAVEFISH:
1965 	case CHIP_BEIGE_GOBY:
1966 	case CHIP_YELLOW_CARP:
1967 	case CHIP_CYAN_SKILLFISH:
1968 		device_queue_manager_init_v10_navi10(&dqm->asic_ops);
1969 		break;
1970 	default:
1971 		WARN(1, "Unexpected ASIC family %u",
1972 		     dev->device_info->asic_family);
1973 		goto out_free;
1974 	}
1975 
1976 	if (init_mqd_managers(dqm))
1977 		goto out_free;
1978 
1979 	if (allocate_hiq_sdma_mqd(dqm)) {
1980 		pr_err("Failed to allocate hiq sdma mqd trunk buffer\n");
1981 		goto out_free;
1982 	}
1983 
1984 	if (!dqm->ops.initialize(dqm))
1985 		return dqm;
1986 
1987 out_free:
1988 	kfree(dqm);
1989 	return NULL;
1990 }
1991 
1992 static void deallocate_hiq_sdma_mqd(struct kfd_dev *dev,
1993 				    struct kfd_mem_obj *mqd)
1994 {
1995 	WARN(!mqd, "No hiq sdma mqd trunk to free");
1996 
1997 	amdgpu_amdkfd_free_gtt_mem(dev->kgd, mqd->gtt_mem);
1998 }
1999 
2000 void device_queue_manager_uninit(struct device_queue_manager *dqm)
2001 {
2002 	dqm->ops.uninitialize(dqm);
2003 	deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
2004 	kfree(dqm);
2005 }
2006 
2007 int kfd_process_vm_fault(struct device_queue_manager *dqm, u32 pasid)
2008 {
2009 	struct kfd_process_device *pdd;
2010 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
2011 	int ret = 0;
2012 
2013 	if (!p)
2014 		return -EINVAL;
2015 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
2016 	pdd = kfd_get_process_device_data(dqm->dev, p);
2017 	if (pdd)
2018 		ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
2019 	kfd_unref_process(p);
2020 
2021 	return ret;
2022 }
2023 
2024 static void kfd_process_hw_exception(struct work_struct *work)
2025 {
2026 	struct device_queue_manager *dqm = container_of(work,
2027 			struct device_queue_manager, hw_exception_work);
2028 	amdgpu_amdkfd_gpu_reset(dqm->dev->kgd);
2029 }
2030 
2031 #if defined(CONFIG_DEBUG_FS)
2032 
2033 static void seq_reg_dump(struct seq_file *m,
2034 			 uint32_t (*dump)[2], uint32_t n_regs)
2035 {
2036 	uint32_t i, count;
2037 
2038 	for (i = 0, count = 0; i < n_regs; i++) {
2039 		if (count == 0 ||
2040 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
2041 			seq_printf(m, "%s    %08x: %08x",
2042 				   i ? "\n" : "",
2043 				   dump[i][0], dump[i][1]);
2044 			count = 7;
2045 		} else {
2046 			seq_printf(m, " %08x", dump[i][1]);
2047 			count--;
2048 		}
2049 	}
2050 
2051 	seq_puts(m, "\n");
2052 }
2053 
2054 int dqm_debugfs_hqds(struct seq_file *m, void *data)
2055 {
2056 	struct device_queue_manager *dqm = data;
2057 	uint32_t (*dump)[2], n_regs;
2058 	int pipe, queue;
2059 	int r = 0;
2060 
2061 	if (!dqm->sched_running) {
2062 		seq_printf(m, " Device is stopped\n");
2063 
2064 		return 0;
2065 	}
2066 
2067 	r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->kgd,
2068 					KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE,
2069 					&dump, &n_regs);
2070 	if (!r) {
2071 		seq_printf(m, "  HIQ on MEC %d Pipe %d Queue %d\n",
2072 			   KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1,
2073 			   KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm),
2074 			   KFD_CIK_HIQ_QUEUE);
2075 		seq_reg_dump(m, dump, n_regs);
2076 
2077 		kfree(dump);
2078 	}
2079 
2080 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
2081 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
2082 
2083 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
2084 			if (!test_bit(pipe_offset + queue,
2085 				      dqm->dev->shared_resources.cp_queue_bitmap))
2086 				continue;
2087 
2088 			r = dqm->dev->kfd2kgd->hqd_dump(
2089 				dqm->dev->kgd, pipe, queue, &dump, &n_regs);
2090 			if (r)
2091 				break;
2092 
2093 			seq_printf(m, "  CP Pipe %d, Queue %d\n",
2094 				  pipe, queue);
2095 			seq_reg_dump(m, dump, n_regs);
2096 
2097 			kfree(dump);
2098 		}
2099 	}
2100 
2101 	for (pipe = 0; pipe < get_num_all_sdma_engines(dqm); pipe++) {
2102 		for (queue = 0;
2103 		     queue < dqm->dev->device_info->num_sdma_queues_per_engine;
2104 		     queue++) {
2105 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
2106 				dqm->dev->kgd, pipe, queue, &dump, &n_regs);
2107 			if (r)
2108 				break;
2109 
2110 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
2111 				  pipe, queue);
2112 			seq_reg_dump(m, dump, n_regs);
2113 
2114 			kfree(dump);
2115 		}
2116 	}
2117 
2118 	return r;
2119 }
2120 
2121 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
2122 {
2123 	int r = 0;
2124 
2125 	dqm_lock(dqm);
2126 	r = pm_debugfs_hang_hws(&dqm->packet_mgr);
2127 	if (r) {
2128 		dqm_unlock(dqm);
2129 		return r;
2130 	}
2131 	dqm->active_runlist = true;
2132 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
2133 	dqm_unlock(dqm);
2134 
2135 	return r;
2136 }
2137 
2138 #endif
2139