1 // SPDX-License-Identifier: GPL-2.0 OR MIT 2 /* 3 * Copyright 2014-2022 Advanced Micro Devices, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 21 * OTHER DEALINGS IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/ratelimit.h> 26 #include <linux/printk.h> 27 #include <linux/slab.h> 28 #include <linux/list.h> 29 #include <linux/types.h> 30 #include <linux/bitops.h> 31 #include <linux/sched.h> 32 #include "kfd_priv.h" 33 #include "kfd_device_queue_manager.h" 34 #include "kfd_mqd_manager.h" 35 #include "cik_regs.h" 36 #include "kfd_kernel_queue.h" 37 #include "amdgpu_amdkfd.h" 38 #include "mes_api_def.h" 39 #include "kfd_debug.h" 40 41 /* Size of the per-pipe EOP queue */ 42 #define CIK_HPD_EOP_BYTES_LOG2 11 43 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2) 44 45 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, 46 u32 pasid, unsigned int vmid); 47 48 static int execute_queues_cpsch(struct device_queue_manager *dqm, 49 enum kfd_unmap_queues_filter filter, 50 uint32_t filter_param, 51 uint32_t grace_period); 52 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 53 enum kfd_unmap_queues_filter filter, 54 uint32_t filter_param, 55 uint32_t grace_period, 56 bool reset); 57 58 static int map_queues_cpsch(struct device_queue_manager *dqm); 59 60 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 61 struct queue *q); 62 63 static inline void deallocate_hqd(struct device_queue_manager *dqm, 64 struct queue *q); 65 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q); 66 static int allocate_sdma_queue(struct device_queue_manager *dqm, 67 struct queue *q, const uint32_t *restore_sdma_id); 68 static void kfd_process_hw_exception(struct work_struct *work); 69 70 static inline 71 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type) 72 { 73 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI) 74 return KFD_MQD_TYPE_SDMA; 75 return KFD_MQD_TYPE_CP; 76 } 77 78 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe) 79 { 80 int i; 81 int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec 82 + pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe; 83 84 /* queue is available for KFD usage if bit is 1 */ 85 for (i = 0; i < dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i) 86 if (test_bit(pipe_offset + i, 87 dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 88 return true; 89 return false; 90 } 91 92 unsigned int get_cp_queues_num(struct device_queue_manager *dqm) 93 { 94 return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap, 95 KGD_MAX_QUEUES); 96 } 97 98 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm) 99 { 100 return dqm->dev->kfd->shared_resources.num_queue_per_pipe; 101 } 102 103 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm) 104 { 105 return dqm->dev->kfd->shared_resources.num_pipe_per_mec; 106 } 107 108 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm) 109 { 110 return kfd_get_num_sdma_engines(dqm->dev) + 111 kfd_get_num_xgmi_sdma_engines(dqm->dev); 112 } 113 114 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm) 115 { 116 return kfd_get_num_sdma_engines(dqm->dev) * 117 dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 118 } 119 120 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm) 121 { 122 return kfd_get_num_xgmi_sdma_engines(dqm->dev) * 123 dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 124 } 125 126 static void init_sdma_bitmaps(struct device_queue_manager *dqm) 127 { 128 bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES); 129 bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm)); 130 131 bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES); 132 bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm)); 133 134 /* Mask out the reserved queues */ 135 bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap, 136 dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap, 137 KFD_MAX_SDMA_QUEUES); 138 } 139 140 void program_sh_mem_settings(struct device_queue_manager *dqm, 141 struct qcm_process_device *qpd) 142 { 143 uint32_t xcc_mask = dqm->dev->xcc_mask; 144 int xcc_id; 145 146 for_each_inst(xcc_id, xcc_mask) 147 dqm->dev->kfd2kgd->program_sh_mem_settings( 148 dqm->dev->adev, qpd->vmid, qpd->sh_mem_config, 149 qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit, 150 qpd->sh_mem_bases, xcc_id); 151 } 152 153 static void kfd_hws_hang(struct device_queue_manager *dqm) 154 { 155 /* 156 * Issue a GPU reset if HWS is unresponsive 157 */ 158 dqm->is_hws_hang = true; 159 160 /* It's possible we're detecting a HWS hang in the 161 * middle of a GPU reset. No need to schedule another 162 * reset in this case. 163 */ 164 if (!dqm->is_resetting) 165 schedule_work(&dqm->hw_exception_work); 166 } 167 168 static int convert_to_mes_queue_type(int queue_type) 169 { 170 int mes_queue_type; 171 172 switch (queue_type) { 173 case KFD_QUEUE_TYPE_COMPUTE: 174 mes_queue_type = MES_QUEUE_TYPE_COMPUTE; 175 break; 176 case KFD_QUEUE_TYPE_SDMA: 177 mes_queue_type = MES_QUEUE_TYPE_SDMA; 178 break; 179 default: 180 WARN(1, "Invalid queue type %d", queue_type); 181 mes_queue_type = -EINVAL; 182 break; 183 } 184 185 return mes_queue_type; 186 } 187 188 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q, 189 struct qcm_process_device *qpd) 190 { 191 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 192 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 193 struct mes_add_queue_input queue_input; 194 int r, queue_type; 195 uint64_t wptr_addr_off; 196 197 if (dqm->is_hws_hang) 198 return -EIO; 199 200 memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input)); 201 queue_input.process_id = qpd->pqm->process->pasid; 202 queue_input.page_table_base_addr = qpd->page_table_base; 203 queue_input.process_va_start = 0; 204 queue_input.process_va_end = adev->vm_manager.max_pfn - 1; 205 /* MES unit for quantum is 100ns */ 206 queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM; /* Equivalent to 10ms. */ 207 queue_input.process_context_addr = pdd->proc_ctx_gpu_addr; 208 queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */ 209 queue_input.gang_context_addr = q->gang_ctx_gpu_addr; 210 queue_input.inprocess_gang_priority = q->properties.priority; 211 queue_input.gang_global_priority_level = 212 AMDGPU_MES_PRIORITY_LEVEL_NORMAL; 213 queue_input.doorbell_offset = q->properties.doorbell_off; 214 queue_input.mqd_addr = q->gart_mqd_addr; 215 queue_input.wptr_addr = (uint64_t)q->properties.write_ptr; 216 217 if (q->wptr_bo) { 218 wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1); 219 queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->wptr_bo) + wptr_addr_off; 220 } 221 222 queue_input.is_kfd_process = 1; 223 queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL); 224 queue_input.queue_size = q->properties.queue_size >> 2; 225 226 queue_input.paging = false; 227 queue_input.tba_addr = qpd->tba_addr; 228 queue_input.tma_addr = qpd->tma_addr; 229 queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device); 230 queue_input.skip_process_ctx_clear = qpd->pqm->process->debug_trap_enabled || 231 kfd_dbg_has_ttmps_always_setup(q->device); 232 233 queue_type = convert_to_mes_queue_type(q->properties.type); 234 if (queue_type < 0) { 235 pr_err("Queue type not supported with MES, queue:%d\n", 236 q->properties.type); 237 return -EINVAL; 238 } 239 queue_input.queue_type = (uint32_t)queue_type; 240 241 queue_input.exclusively_scheduled = q->properties.is_gws; 242 243 amdgpu_mes_lock(&adev->mes); 244 r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input); 245 amdgpu_mes_unlock(&adev->mes); 246 if (r) { 247 pr_err("failed to add hardware queue to MES, doorbell=0x%x\n", 248 q->properties.doorbell_off); 249 pr_err("MES might be in unrecoverable state, issue a GPU reset\n"); 250 kfd_hws_hang(dqm); 251 } 252 253 return r; 254 } 255 256 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q, 257 struct qcm_process_device *qpd) 258 { 259 struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev; 260 int r; 261 struct mes_remove_queue_input queue_input; 262 263 if (dqm->is_hws_hang) 264 return -EIO; 265 266 memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input)); 267 queue_input.doorbell_offset = q->properties.doorbell_off; 268 queue_input.gang_context_addr = q->gang_ctx_gpu_addr; 269 270 amdgpu_mes_lock(&adev->mes); 271 r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input); 272 amdgpu_mes_unlock(&adev->mes); 273 274 if (r) { 275 pr_err("failed to remove hardware queue from MES, doorbell=0x%x\n", 276 q->properties.doorbell_off); 277 pr_err("MES might be in unrecoverable state, issue a GPU reset\n"); 278 kfd_hws_hang(dqm); 279 } 280 281 return r; 282 } 283 284 static int remove_all_queues_mes(struct device_queue_manager *dqm) 285 { 286 struct device_process_node *cur; 287 struct qcm_process_device *qpd; 288 struct queue *q; 289 int retval = 0; 290 291 list_for_each_entry(cur, &dqm->queues, list) { 292 qpd = cur->qpd; 293 list_for_each_entry(q, &qpd->queues_list, list) { 294 if (q->properties.is_active) { 295 retval = remove_queue_mes(dqm, q, qpd); 296 if (retval) { 297 pr_err("%s: Failed to remove queue %d for dev %d", 298 __func__, 299 q->properties.queue_id, 300 dqm->dev->id); 301 return retval; 302 } 303 } 304 } 305 } 306 307 return retval; 308 } 309 310 static void increment_queue_count(struct device_queue_manager *dqm, 311 struct qcm_process_device *qpd, 312 struct queue *q) 313 { 314 dqm->active_queue_count++; 315 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 316 q->properties.type == KFD_QUEUE_TYPE_DIQ) 317 dqm->active_cp_queue_count++; 318 319 if (q->properties.is_gws) { 320 dqm->gws_queue_count++; 321 qpd->mapped_gws_queue = true; 322 } 323 } 324 325 static void decrement_queue_count(struct device_queue_manager *dqm, 326 struct qcm_process_device *qpd, 327 struct queue *q) 328 { 329 dqm->active_queue_count--; 330 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 331 q->properties.type == KFD_QUEUE_TYPE_DIQ) 332 dqm->active_cp_queue_count--; 333 334 if (q->properties.is_gws) { 335 dqm->gws_queue_count--; 336 qpd->mapped_gws_queue = false; 337 } 338 } 339 340 /* 341 * Allocate a doorbell ID to this queue. 342 * If doorbell_id is passed in, make sure requested ID is valid then allocate it. 343 */ 344 static int allocate_doorbell(struct qcm_process_device *qpd, 345 struct queue *q, 346 uint32_t const *restore_id) 347 { 348 struct kfd_node *dev = qpd->dqm->dev; 349 350 if (!KFD_IS_SOC15(dev)) { 351 /* On pre-SOC15 chips we need to use the queue ID to 352 * preserve the user mode ABI. 353 */ 354 355 if (restore_id && *restore_id != q->properties.queue_id) 356 return -EINVAL; 357 358 q->doorbell_id = q->properties.queue_id; 359 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 360 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 361 /* For SDMA queues on SOC15 with 8-byte doorbell, use static 362 * doorbell assignments based on the engine and queue id. 363 * The doobell index distance between RLC (2*i) and (2*i+1) 364 * for a SDMA engine is 512. 365 */ 366 367 uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx; 368 369 /* 370 * q->properties.sdma_engine_id corresponds to the virtual 371 * sdma engine number. However, for doorbell allocation, 372 * we need the physical sdma engine id in order to get the 373 * correct doorbell offset. 374 */ 375 uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id * 376 get_num_all_sdma_engines(qpd->dqm) + 377 q->properties.sdma_engine_id] 378 + (q->properties.sdma_queue_id & 1) 379 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET 380 + (q->properties.sdma_queue_id >> 1); 381 382 if (restore_id && *restore_id != valid_id) 383 return -EINVAL; 384 q->doorbell_id = valid_id; 385 } else { 386 /* For CP queues on SOC15 */ 387 if (restore_id) { 388 /* make sure that ID is free */ 389 if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap)) 390 return -EINVAL; 391 392 q->doorbell_id = *restore_id; 393 } else { 394 /* or reserve a free doorbell ID */ 395 unsigned int found; 396 397 found = find_first_zero_bit(qpd->doorbell_bitmap, 398 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 399 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) { 400 pr_debug("No doorbells available"); 401 return -EBUSY; 402 } 403 set_bit(found, qpd->doorbell_bitmap); 404 q->doorbell_id = found; 405 } 406 } 407 408 q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev, 409 qpd->proc_doorbells, 410 q->doorbell_id, 411 dev->kfd->device_info.doorbell_size); 412 return 0; 413 } 414 415 static void deallocate_doorbell(struct qcm_process_device *qpd, 416 struct queue *q) 417 { 418 unsigned int old; 419 struct kfd_node *dev = qpd->dqm->dev; 420 421 if (!KFD_IS_SOC15(dev) || 422 q->properties.type == KFD_QUEUE_TYPE_SDMA || 423 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 424 return; 425 426 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap); 427 WARN_ON(!old); 428 } 429 430 static void program_trap_handler_settings(struct device_queue_manager *dqm, 431 struct qcm_process_device *qpd) 432 { 433 uint32_t xcc_mask = dqm->dev->xcc_mask; 434 int xcc_id; 435 436 if (dqm->dev->kfd2kgd->program_trap_handler_settings) 437 for_each_inst(xcc_id, xcc_mask) 438 dqm->dev->kfd2kgd->program_trap_handler_settings( 439 dqm->dev->adev, qpd->vmid, qpd->tba_addr, 440 qpd->tma_addr, xcc_id); 441 } 442 443 static int allocate_vmid(struct device_queue_manager *dqm, 444 struct qcm_process_device *qpd, 445 struct queue *q) 446 { 447 int allocated_vmid = -1, i; 448 449 for (i = dqm->dev->vm_info.first_vmid_kfd; 450 i <= dqm->dev->vm_info.last_vmid_kfd; i++) { 451 if (!dqm->vmid_pasid[i]) { 452 allocated_vmid = i; 453 break; 454 } 455 } 456 457 if (allocated_vmid < 0) { 458 pr_err("no more vmid to allocate\n"); 459 return -ENOSPC; 460 } 461 462 pr_debug("vmid allocated: %d\n", allocated_vmid); 463 464 dqm->vmid_pasid[allocated_vmid] = q->process->pasid; 465 466 set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid); 467 468 qpd->vmid = allocated_vmid; 469 q->properties.vmid = allocated_vmid; 470 471 program_sh_mem_settings(dqm, qpd); 472 473 if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled) 474 program_trap_handler_settings(dqm, qpd); 475 476 /* qpd->page_table_base is set earlier when register_process() 477 * is called, i.e. when the first queue is created. 478 */ 479 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev, 480 qpd->vmid, 481 qpd->page_table_base); 482 /* invalidate the VM context after pasid and vmid mapping is set up */ 483 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY); 484 485 if (dqm->dev->kfd2kgd->set_scratch_backing_va) 486 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev, 487 qpd->sh_hidden_private_base, qpd->vmid); 488 489 return 0; 490 } 491 492 static int flush_texture_cache_nocpsch(struct kfd_node *kdev, 493 struct qcm_process_device *qpd) 494 { 495 const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf; 496 int ret; 497 498 if (!qpd->ib_kaddr) 499 return -ENOMEM; 500 501 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr); 502 if (ret) 503 return ret; 504 505 return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid, 506 qpd->ib_base, (uint32_t *)qpd->ib_kaddr, 507 pmf->release_mem_size / sizeof(uint32_t)); 508 } 509 510 static void deallocate_vmid(struct device_queue_manager *dqm, 511 struct qcm_process_device *qpd, 512 struct queue *q) 513 { 514 /* On GFX v7, CP doesn't flush TC at dequeue */ 515 if (q->device->adev->asic_type == CHIP_HAWAII) 516 if (flush_texture_cache_nocpsch(q->device, qpd)) 517 pr_err("Failed to flush TC\n"); 518 519 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY); 520 521 /* Release the vmid mapping */ 522 set_pasid_vmid_mapping(dqm, 0, qpd->vmid); 523 dqm->vmid_pasid[qpd->vmid] = 0; 524 525 qpd->vmid = 0; 526 q->properties.vmid = 0; 527 } 528 529 static int create_queue_nocpsch(struct device_queue_manager *dqm, 530 struct queue *q, 531 struct qcm_process_device *qpd, 532 const struct kfd_criu_queue_priv_data *qd, 533 const void *restore_mqd, const void *restore_ctl_stack) 534 { 535 struct mqd_manager *mqd_mgr; 536 int retval; 537 538 dqm_lock(dqm); 539 540 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 541 pr_warn("Can't create new usermode queue because %d queues were already created\n", 542 dqm->total_queue_count); 543 retval = -EPERM; 544 goto out_unlock; 545 } 546 547 if (list_empty(&qpd->queues_list)) { 548 retval = allocate_vmid(dqm, qpd, q); 549 if (retval) 550 goto out_unlock; 551 } 552 q->properties.vmid = qpd->vmid; 553 /* 554 * Eviction state logic: mark all queues as evicted, even ones 555 * not currently active. Restoring inactive queues later only 556 * updates the is_evicted flag but is a no-op otherwise. 557 */ 558 q->properties.is_evicted = !!qpd->evicted; 559 560 q->properties.tba_addr = qpd->tba_addr; 561 q->properties.tma_addr = qpd->tma_addr; 562 563 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 564 q->properties.type)]; 565 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) { 566 retval = allocate_hqd(dqm, q); 567 if (retval) 568 goto deallocate_vmid; 569 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n", 570 q->pipe, q->queue); 571 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 572 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 573 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL); 574 if (retval) 575 goto deallocate_vmid; 576 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 577 } 578 579 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL); 580 if (retval) 581 goto out_deallocate_hqd; 582 583 /* Temporarily release dqm lock to avoid a circular lock dependency */ 584 dqm_unlock(dqm); 585 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 586 dqm_lock(dqm); 587 588 if (!q->mqd_mem_obj) { 589 retval = -ENOMEM; 590 goto out_deallocate_doorbell; 591 } 592 593 if (qd) 594 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr, 595 &q->properties, restore_mqd, restore_ctl_stack, 596 qd->ctl_stack_size); 597 else 598 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 599 &q->gart_mqd_addr, &q->properties); 600 601 if (q->properties.is_active) { 602 if (!dqm->sched_running) { 603 WARN_ONCE(1, "Load non-HWS mqd while stopped\n"); 604 goto add_queue_to_list; 605 } 606 607 if (WARN(q->process->mm != current->mm, 608 "should only run in user thread")) 609 retval = -EFAULT; 610 else 611 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 612 q->queue, &q->properties, current->mm); 613 if (retval) 614 goto out_free_mqd; 615 } 616 617 add_queue_to_list: 618 list_add(&q->list, &qpd->queues_list); 619 qpd->queue_count++; 620 if (q->properties.is_active) 621 increment_queue_count(dqm, qpd, q); 622 623 /* 624 * Unconditionally increment this counter, regardless of the queue's 625 * type or whether the queue is active. 626 */ 627 dqm->total_queue_count++; 628 pr_debug("Total of %d queues are accountable so far\n", 629 dqm->total_queue_count); 630 goto out_unlock; 631 632 out_free_mqd: 633 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 634 out_deallocate_doorbell: 635 deallocate_doorbell(qpd, q); 636 out_deallocate_hqd: 637 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 638 deallocate_hqd(dqm, q); 639 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 640 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 641 deallocate_sdma_queue(dqm, q); 642 deallocate_vmid: 643 if (list_empty(&qpd->queues_list)) 644 deallocate_vmid(dqm, qpd, q); 645 out_unlock: 646 dqm_unlock(dqm); 647 return retval; 648 } 649 650 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q) 651 { 652 bool set; 653 int pipe, bit, i; 654 655 set = false; 656 657 for (pipe = dqm->next_pipe_to_allocate, i = 0; 658 i < get_pipes_per_mec(dqm); 659 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) { 660 661 if (!is_pipe_enabled(dqm, 0, pipe)) 662 continue; 663 664 if (dqm->allocated_queues[pipe] != 0) { 665 bit = ffs(dqm->allocated_queues[pipe]) - 1; 666 dqm->allocated_queues[pipe] &= ~(1 << bit); 667 q->pipe = pipe; 668 q->queue = bit; 669 set = true; 670 break; 671 } 672 } 673 674 if (!set) 675 return -EBUSY; 676 677 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue); 678 /* horizontal hqd allocation */ 679 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm); 680 681 return 0; 682 } 683 684 static inline void deallocate_hqd(struct device_queue_manager *dqm, 685 struct queue *q) 686 { 687 dqm->allocated_queues[q->pipe] |= (1 << q->queue); 688 } 689 690 #define SQ_IND_CMD_CMD_KILL 0x00000003 691 #define SQ_IND_CMD_MODE_BROADCAST 0x00000001 692 693 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p) 694 { 695 int status = 0; 696 unsigned int vmid; 697 uint16_t queried_pasid; 698 union SQ_CMD_BITS reg_sq_cmd; 699 union GRBM_GFX_INDEX_BITS reg_gfx_index; 700 struct kfd_process_device *pdd; 701 int first_vmid_to_scan = dev->vm_info.first_vmid_kfd; 702 int last_vmid_to_scan = dev->vm_info.last_vmid_kfd; 703 uint32_t xcc_mask = dev->xcc_mask; 704 int xcc_id; 705 706 reg_sq_cmd.u32All = 0; 707 reg_gfx_index.u32All = 0; 708 709 pr_debug("Killing all process wavefronts\n"); 710 711 if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) { 712 pr_err("no vmid pasid mapping supported \n"); 713 return -EOPNOTSUPP; 714 } 715 716 /* Scan all registers in the range ATC_VMID8_PASID_MAPPING .. 717 * ATC_VMID15_PASID_MAPPING 718 * to check which VMID the current process is mapped to. 719 */ 720 721 for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) { 722 status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info 723 (dev->adev, vmid, &queried_pasid); 724 725 if (status && queried_pasid == p->pasid) { 726 pr_debug("Killing wave fronts of vmid %d and pasid 0x%x\n", 727 vmid, p->pasid); 728 break; 729 } 730 } 731 732 if (vmid > last_vmid_to_scan) { 733 pr_err("Didn't find vmid for pasid 0x%x\n", p->pasid); 734 return -EFAULT; 735 } 736 737 /* taking the VMID for that process on the safe way using PDD */ 738 pdd = kfd_get_process_device_data(dev, p); 739 if (!pdd) 740 return -EFAULT; 741 742 reg_gfx_index.bits.sh_broadcast_writes = 1; 743 reg_gfx_index.bits.se_broadcast_writes = 1; 744 reg_gfx_index.bits.instance_broadcast_writes = 1; 745 reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST; 746 reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL; 747 reg_sq_cmd.bits.vm_id = vmid; 748 749 for_each_inst(xcc_id, xcc_mask) 750 dev->kfd2kgd->wave_control_execute( 751 dev->adev, reg_gfx_index.u32All, 752 reg_sq_cmd.u32All, xcc_id); 753 754 return 0; 755 } 756 757 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked 758 * to avoid asynchronized access 759 */ 760 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm, 761 struct qcm_process_device *qpd, 762 struct queue *q) 763 { 764 int retval; 765 struct mqd_manager *mqd_mgr; 766 767 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 768 q->properties.type)]; 769 770 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 771 deallocate_hqd(dqm, q); 772 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 773 deallocate_sdma_queue(dqm, q); 774 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 775 deallocate_sdma_queue(dqm, q); 776 else { 777 pr_debug("q->properties.type %d is invalid\n", 778 q->properties.type); 779 return -EINVAL; 780 } 781 dqm->total_queue_count--; 782 783 deallocate_doorbell(qpd, q); 784 785 if (!dqm->sched_running) { 786 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n"); 787 return 0; 788 } 789 790 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 791 KFD_PREEMPT_TYPE_WAVEFRONT_RESET, 792 KFD_UNMAP_LATENCY_MS, 793 q->pipe, q->queue); 794 if (retval == -ETIME) 795 qpd->reset_wavefronts = true; 796 797 list_del(&q->list); 798 if (list_empty(&qpd->queues_list)) { 799 if (qpd->reset_wavefronts) { 800 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n", 801 dqm->dev); 802 /* dbgdev_wave_reset_wavefronts has to be called before 803 * deallocate_vmid(), i.e. when vmid is still in use. 804 */ 805 dbgdev_wave_reset_wavefronts(dqm->dev, 806 qpd->pqm->process); 807 qpd->reset_wavefronts = false; 808 } 809 810 deallocate_vmid(dqm, qpd, q); 811 } 812 qpd->queue_count--; 813 if (q->properties.is_active) 814 decrement_queue_count(dqm, qpd, q); 815 816 return retval; 817 } 818 819 static int destroy_queue_nocpsch(struct device_queue_manager *dqm, 820 struct qcm_process_device *qpd, 821 struct queue *q) 822 { 823 int retval; 824 uint64_t sdma_val = 0; 825 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 826 struct mqd_manager *mqd_mgr = 827 dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)]; 828 829 /* Get the SDMA queue stats */ 830 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 831 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 832 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr, 833 &sdma_val); 834 if (retval) 835 pr_err("Failed to read SDMA queue counter for queue: %d\n", 836 q->properties.queue_id); 837 } 838 839 dqm_lock(dqm); 840 retval = destroy_queue_nocpsch_locked(dqm, qpd, q); 841 if (!retval) 842 pdd->sdma_past_activity_counter += sdma_val; 843 dqm_unlock(dqm); 844 845 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 846 847 return retval; 848 } 849 850 static int update_queue(struct device_queue_manager *dqm, struct queue *q, 851 struct mqd_update_info *minfo) 852 { 853 int retval = 0; 854 struct mqd_manager *mqd_mgr; 855 struct kfd_process_device *pdd; 856 bool prev_active = false; 857 858 dqm_lock(dqm); 859 pdd = kfd_get_process_device_data(q->device, q->process); 860 if (!pdd) { 861 retval = -ENODEV; 862 goto out_unlock; 863 } 864 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 865 q->properties.type)]; 866 867 /* Save previous activity state for counters */ 868 prev_active = q->properties.is_active; 869 870 /* Make sure the queue is unmapped before updating the MQD */ 871 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { 872 if (!dqm->dev->kfd->shared_resources.enable_mes) 873 retval = unmap_queues_cpsch(dqm, 874 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false); 875 else if (prev_active) 876 retval = remove_queue_mes(dqm, q, &pdd->qpd); 877 878 if (retval) { 879 pr_err("unmap queue failed\n"); 880 goto out_unlock; 881 } 882 } else if (prev_active && 883 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 884 q->properties.type == KFD_QUEUE_TYPE_SDMA || 885 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 886 887 if (!dqm->sched_running) { 888 WARN_ONCE(1, "Update non-HWS queue while stopped\n"); 889 goto out_unlock; 890 } 891 892 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 893 (dqm->dev->kfd->cwsr_enabled ? 894 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE : 895 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN), 896 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 897 if (retval) { 898 pr_err("destroy mqd failed\n"); 899 goto out_unlock; 900 } 901 } 902 903 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo); 904 905 /* 906 * check active state vs. the previous state and modify 907 * counter accordingly. map_queues_cpsch uses the 908 * dqm->active_queue_count to determine whether a new runlist must be 909 * uploaded. 910 */ 911 if (q->properties.is_active && !prev_active) { 912 increment_queue_count(dqm, &pdd->qpd, q); 913 } else if (!q->properties.is_active && prev_active) { 914 decrement_queue_count(dqm, &pdd->qpd, q); 915 } else if (q->gws && !q->properties.is_gws) { 916 if (q->properties.is_active) { 917 dqm->gws_queue_count++; 918 pdd->qpd.mapped_gws_queue = true; 919 } 920 q->properties.is_gws = true; 921 } else if (!q->gws && q->properties.is_gws) { 922 if (q->properties.is_active) { 923 dqm->gws_queue_count--; 924 pdd->qpd.mapped_gws_queue = false; 925 } 926 q->properties.is_gws = false; 927 } 928 929 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { 930 if (!dqm->dev->kfd->shared_resources.enable_mes) 931 retval = map_queues_cpsch(dqm); 932 else if (q->properties.is_active) 933 retval = add_queue_mes(dqm, q, &pdd->qpd); 934 } else if (q->properties.is_active && 935 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 936 q->properties.type == KFD_QUEUE_TYPE_SDMA || 937 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 938 if (WARN(q->process->mm != current->mm, 939 "should only run in user thread")) 940 retval = -EFAULT; 941 else 942 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, 943 q->pipe, q->queue, 944 &q->properties, current->mm); 945 } 946 947 out_unlock: 948 dqm_unlock(dqm); 949 return retval; 950 } 951 952 /* suspend_single_queue does not lock the dqm like the 953 * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should 954 * lock the dqm before calling, and unlock after calling. 955 * 956 * The reason we don't lock the dqm is because this function may be 957 * called on multiple queues in a loop, so rather than locking/unlocking 958 * multiple times, we will just keep the dqm locked for all of the calls. 959 */ 960 static int suspend_single_queue(struct device_queue_manager *dqm, 961 struct kfd_process_device *pdd, 962 struct queue *q) 963 { 964 bool is_new; 965 966 if (q->properties.is_suspended) 967 return 0; 968 969 pr_debug("Suspending PASID %u queue [%i]\n", 970 pdd->process->pasid, 971 q->properties.queue_id); 972 973 is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW); 974 975 if (is_new || q->properties.is_being_destroyed) { 976 pr_debug("Suspend: skip %s queue id %i\n", 977 is_new ? "new" : "destroyed", 978 q->properties.queue_id); 979 return -EBUSY; 980 } 981 982 q->properties.is_suspended = true; 983 if (q->properties.is_active) { 984 if (dqm->dev->kfd->shared_resources.enable_mes) { 985 int r = remove_queue_mes(dqm, q, &pdd->qpd); 986 987 if (r) 988 return r; 989 } 990 991 decrement_queue_count(dqm, &pdd->qpd, q); 992 q->properties.is_active = false; 993 } 994 995 return 0; 996 } 997 998 /* resume_single_queue does not lock the dqm like the functions 999 * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should 1000 * lock the dqm before calling, and unlock after calling. 1001 * 1002 * The reason we don't lock the dqm is because this function may be 1003 * called on multiple queues in a loop, so rather than locking/unlocking 1004 * multiple times, we will just keep the dqm locked for all of the calls. 1005 */ 1006 static int resume_single_queue(struct device_queue_manager *dqm, 1007 struct qcm_process_device *qpd, 1008 struct queue *q) 1009 { 1010 struct kfd_process_device *pdd; 1011 1012 if (!q->properties.is_suspended) 1013 return 0; 1014 1015 pdd = qpd_to_pdd(qpd); 1016 1017 pr_debug("Restoring from suspend PASID %u queue [%i]\n", 1018 pdd->process->pasid, 1019 q->properties.queue_id); 1020 1021 q->properties.is_suspended = false; 1022 1023 if (QUEUE_IS_ACTIVE(q->properties)) { 1024 if (dqm->dev->kfd->shared_resources.enable_mes) { 1025 int r = add_queue_mes(dqm, q, &pdd->qpd); 1026 1027 if (r) 1028 return r; 1029 } 1030 1031 q->properties.is_active = true; 1032 increment_queue_count(dqm, qpd, q); 1033 } 1034 1035 return 0; 1036 } 1037 1038 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm, 1039 struct qcm_process_device *qpd) 1040 { 1041 struct queue *q; 1042 struct mqd_manager *mqd_mgr; 1043 struct kfd_process_device *pdd; 1044 int retval, ret = 0; 1045 1046 dqm_lock(dqm); 1047 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 1048 goto out; 1049 1050 pdd = qpd_to_pdd(qpd); 1051 pr_debug_ratelimited("Evicting PASID 0x%x queues\n", 1052 pdd->process->pasid); 1053 1054 pdd->last_evict_timestamp = get_jiffies_64(); 1055 /* Mark all queues as evicted. Deactivate all active queues on 1056 * the qpd. 1057 */ 1058 list_for_each_entry(q, &qpd->queues_list, list) { 1059 q->properties.is_evicted = true; 1060 if (!q->properties.is_active) 1061 continue; 1062 1063 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1064 q->properties.type)]; 1065 q->properties.is_active = false; 1066 decrement_queue_count(dqm, qpd, q); 1067 1068 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n")) 1069 continue; 1070 1071 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 1072 (dqm->dev->kfd->cwsr_enabled ? 1073 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE : 1074 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN), 1075 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 1076 if (retval && !ret) 1077 /* Return the first error, but keep going to 1078 * maintain a consistent eviction state 1079 */ 1080 ret = retval; 1081 } 1082 1083 out: 1084 dqm_unlock(dqm); 1085 return ret; 1086 } 1087 1088 static int evict_process_queues_cpsch(struct device_queue_manager *dqm, 1089 struct qcm_process_device *qpd) 1090 { 1091 struct queue *q; 1092 struct kfd_process_device *pdd; 1093 int retval = 0; 1094 1095 dqm_lock(dqm); 1096 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 1097 goto out; 1098 1099 pdd = qpd_to_pdd(qpd); 1100 1101 /* The debugger creates processes that temporarily have not acquired 1102 * all VMs for all devices and has no VMs itself. 1103 * Skip queue eviction on process eviction. 1104 */ 1105 if (!pdd->drm_priv) 1106 goto out; 1107 1108 pr_debug_ratelimited("Evicting PASID 0x%x queues\n", 1109 pdd->process->pasid); 1110 1111 /* Mark all queues as evicted. Deactivate all active queues on 1112 * the qpd. 1113 */ 1114 list_for_each_entry(q, &qpd->queues_list, list) { 1115 q->properties.is_evicted = true; 1116 if (!q->properties.is_active) 1117 continue; 1118 1119 q->properties.is_active = false; 1120 decrement_queue_count(dqm, qpd, q); 1121 1122 if (dqm->dev->kfd->shared_resources.enable_mes) { 1123 retval = remove_queue_mes(dqm, q, qpd); 1124 if (retval) { 1125 pr_err("Failed to evict queue %d\n", 1126 q->properties.queue_id); 1127 goto out; 1128 } 1129 } 1130 } 1131 pdd->last_evict_timestamp = get_jiffies_64(); 1132 if (!dqm->dev->kfd->shared_resources.enable_mes) 1133 retval = execute_queues_cpsch(dqm, 1134 qpd->is_debug ? 1135 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES : 1136 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 1137 USE_DEFAULT_GRACE_PERIOD); 1138 1139 out: 1140 dqm_unlock(dqm); 1141 return retval; 1142 } 1143 1144 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm, 1145 struct qcm_process_device *qpd) 1146 { 1147 struct mm_struct *mm = NULL; 1148 struct queue *q; 1149 struct mqd_manager *mqd_mgr; 1150 struct kfd_process_device *pdd; 1151 uint64_t pd_base; 1152 uint64_t eviction_duration; 1153 int retval, ret = 0; 1154 1155 pdd = qpd_to_pdd(qpd); 1156 /* Retrieve PD base */ 1157 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1158 1159 dqm_lock(dqm); 1160 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 1161 goto out; 1162 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 1163 qpd->evicted--; 1164 goto out; 1165 } 1166 1167 pr_debug_ratelimited("Restoring PASID 0x%x queues\n", 1168 pdd->process->pasid); 1169 1170 /* Update PD Base in QPD */ 1171 qpd->page_table_base = pd_base; 1172 pr_debug("Updated PD address to 0x%llx\n", pd_base); 1173 1174 if (!list_empty(&qpd->queues_list)) { 1175 dqm->dev->kfd2kgd->set_vm_context_page_table_base( 1176 dqm->dev->adev, 1177 qpd->vmid, 1178 qpd->page_table_base); 1179 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY); 1180 } 1181 1182 /* Take a safe reference to the mm_struct, which may otherwise 1183 * disappear even while the kfd_process is still referenced. 1184 */ 1185 mm = get_task_mm(pdd->process->lead_thread); 1186 if (!mm) { 1187 ret = -EFAULT; 1188 goto out; 1189 } 1190 1191 /* Remove the eviction flags. Activate queues that are not 1192 * inactive for other reasons. 1193 */ 1194 list_for_each_entry(q, &qpd->queues_list, list) { 1195 q->properties.is_evicted = false; 1196 if (!QUEUE_IS_ACTIVE(q->properties)) 1197 continue; 1198 1199 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1200 q->properties.type)]; 1201 q->properties.is_active = true; 1202 increment_queue_count(dqm, qpd, q); 1203 1204 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n")) 1205 continue; 1206 1207 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 1208 q->queue, &q->properties, mm); 1209 if (retval && !ret) 1210 /* Return the first error, but keep going to 1211 * maintain a consistent eviction state 1212 */ 1213 ret = retval; 1214 } 1215 qpd->evicted = 0; 1216 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp; 1217 atomic64_add(eviction_duration, &pdd->evict_duration_counter); 1218 out: 1219 if (mm) 1220 mmput(mm); 1221 dqm_unlock(dqm); 1222 return ret; 1223 } 1224 1225 static int restore_process_queues_cpsch(struct device_queue_manager *dqm, 1226 struct qcm_process_device *qpd) 1227 { 1228 struct queue *q; 1229 struct kfd_process_device *pdd; 1230 uint64_t eviction_duration; 1231 int retval = 0; 1232 1233 pdd = qpd_to_pdd(qpd); 1234 1235 dqm_lock(dqm); 1236 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 1237 goto out; 1238 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 1239 qpd->evicted--; 1240 goto out; 1241 } 1242 1243 /* The debugger creates processes that temporarily have not acquired 1244 * all VMs for all devices and has no VMs itself. 1245 * Skip queue restore on process restore. 1246 */ 1247 if (!pdd->drm_priv) 1248 goto vm_not_acquired; 1249 1250 pr_debug_ratelimited("Restoring PASID 0x%x queues\n", 1251 pdd->process->pasid); 1252 1253 /* Update PD Base in QPD */ 1254 qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1255 pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base); 1256 1257 /* activate all active queues on the qpd */ 1258 list_for_each_entry(q, &qpd->queues_list, list) { 1259 q->properties.is_evicted = false; 1260 if (!QUEUE_IS_ACTIVE(q->properties)) 1261 continue; 1262 1263 q->properties.is_active = true; 1264 increment_queue_count(dqm, &pdd->qpd, q); 1265 1266 if (dqm->dev->kfd->shared_resources.enable_mes) { 1267 retval = add_queue_mes(dqm, q, qpd); 1268 if (retval) { 1269 pr_err("Failed to restore queue %d\n", 1270 q->properties.queue_id); 1271 goto out; 1272 } 1273 } 1274 } 1275 if (!dqm->dev->kfd->shared_resources.enable_mes) 1276 retval = execute_queues_cpsch(dqm, 1277 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); 1278 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp; 1279 atomic64_add(eviction_duration, &pdd->evict_duration_counter); 1280 vm_not_acquired: 1281 qpd->evicted = 0; 1282 out: 1283 dqm_unlock(dqm); 1284 return retval; 1285 } 1286 1287 static int register_process(struct device_queue_manager *dqm, 1288 struct qcm_process_device *qpd) 1289 { 1290 struct device_process_node *n; 1291 struct kfd_process_device *pdd; 1292 uint64_t pd_base; 1293 int retval; 1294 1295 n = kzalloc(sizeof(*n), GFP_KERNEL); 1296 if (!n) 1297 return -ENOMEM; 1298 1299 n->qpd = qpd; 1300 1301 pdd = qpd_to_pdd(qpd); 1302 /* Retrieve PD base */ 1303 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv); 1304 1305 dqm_lock(dqm); 1306 list_add(&n->list, &dqm->queues); 1307 1308 /* Update PD Base in QPD */ 1309 qpd->page_table_base = pd_base; 1310 pr_debug("Updated PD address to 0x%llx\n", pd_base); 1311 1312 retval = dqm->asic_ops.update_qpd(dqm, qpd); 1313 1314 dqm->processes_count++; 1315 1316 dqm_unlock(dqm); 1317 1318 /* Outside the DQM lock because under the DQM lock we can't do 1319 * reclaim or take other locks that others hold while reclaiming. 1320 */ 1321 kfd_inc_compute_active(dqm->dev); 1322 1323 return retval; 1324 } 1325 1326 static int unregister_process(struct device_queue_manager *dqm, 1327 struct qcm_process_device *qpd) 1328 { 1329 int retval; 1330 struct device_process_node *cur, *next; 1331 1332 pr_debug("qpd->queues_list is %s\n", 1333 list_empty(&qpd->queues_list) ? "empty" : "not empty"); 1334 1335 retval = 0; 1336 dqm_lock(dqm); 1337 1338 list_for_each_entry_safe(cur, next, &dqm->queues, list) { 1339 if (qpd == cur->qpd) { 1340 list_del(&cur->list); 1341 kfree(cur); 1342 dqm->processes_count--; 1343 goto out; 1344 } 1345 } 1346 /* qpd not found in dqm list */ 1347 retval = 1; 1348 out: 1349 dqm_unlock(dqm); 1350 1351 /* Outside the DQM lock because under the DQM lock we can't do 1352 * reclaim or take other locks that others hold while reclaiming. 1353 */ 1354 if (!retval) 1355 kfd_dec_compute_active(dqm->dev); 1356 1357 return retval; 1358 } 1359 1360 static int 1361 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid, 1362 unsigned int vmid) 1363 { 1364 uint32_t xcc_mask = dqm->dev->xcc_mask; 1365 int xcc_id, ret; 1366 1367 for_each_inst(xcc_id, xcc_mask) { 1368 ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping( 1369 dqm->dev->adev, pasid, vmid, xcc_id); 1370 if (ret) 1371 break; 1372 } 1373 1374 return ret; 1375 } 1376 1377 static void init_interrupts(struct device_queue_manager *dqm) 1378 { 1379 uint32_t xcc_mask = dqm->dev->xcc_mask; 1380 unsigned int i, xcc_id; 1381 1382 for_each_inst(xcc_id, xcc_mask) { 1383 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) { 1384 if (is_pipe_enabled(dqm, 0, i)) { 1385 dqm->dev->kfd2kgd->init_interrupts( 1386 dqm->dev->adev, i, xcc_id); 1387 } 1388 } 1389 } 1390 } 1391 1392 static int initialize_nocpsch(struct device_queue_manager *dqm) 1393 { 1394 int pipe, queue; 1395 1396 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 1397 1398 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm), 1399 sizeof(unsigned int), GFP_KERNEL); 1400 if (!dqm->allocated_queues) 1401 return -ENOMEM; 1402 1403 mutex_init(&dqm->lock_hidden); 1404 INIT_LIST_HEAD(&dqm->queues); 1405 dqm->active_queue_count = dqm->next_pipe_to_allocate = 0; 1406 dqm->active_cp_queue_count = 0; 1407 dqm->gws_queue_count = 0; 1408 1409 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 1410 int pipe_offset = pipe * get_queues_per_pipe(dqm); 1411 1412 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) 1413 if (test_bit(pipe_offset + queue, 1414 dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 1415 dqm->allocated_queues[pipe] |= 1 << queue; 1416 } 1417 1418 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid)); 1419 1420 init_sdma_bitmaps(dqm); 1421 1422 return 0; 1423 } 1424 1425 static void uninitialize(struct device_queue_manager *dqm) 1426 { 1427 int i; 1428 1429 WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0); 1430 1431 kfree(dqm->allocated_queues); 1432 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++) 1433 kfree(dqm->mqd_mgrs[i]); 1434 mutex_destroy(&dqm->lock_hidden); 1435 } 1436 1437 static int start_nocpsch(struct device_queue_manager *dqm) 1438 { 1439 int r = 0; 1440 1441 pr_info("SW scheduler is used"); 1442 init_interrupts(dqm); 1443 1444 if (dqm->dev->adev->asic_type == CHIP_HAWAII) 1445 r = pm_init(&dqm->packet_mgr, dqm); 1446 if (!r) 1447 dqm->sched_running = true; 1448 1449 return r; 1450 } 1451 1452 static int stop_nocpsch(struct device_queue_manager *dqm) 1453 { 1454 dqm_lock(dqm); 1455 if (!dqm->sched_running) { 1456 dqm_unlock(dqm); 1457 return 0; 1458 } 1459 1460 if (dqm->dev->adev->asic_type == CHIP_HAWAII) 1461 pm_uninit(&dqm->packet_mgr, false); 1462 dqm->sched_running = false; 1463 dqm_unlock(dqm); 1464 1465 return 0; 1466 } 1467 1468 static void pre_reset(struct device_queue_manager *dqm) 1469 { 1470 dqm_lock(dqm); 1471 dqm->is_resetting = true; 1472 dqm_unlock(dqm); 1473 } 1474 1475 static int allocate_sdma_queue(struct device_queue_manager *dqm, 1476 struct queue *q, const uint32_t *restore_sdma_id) 1477 { 1478 int bit; 1479 1480 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1481 if (bitmap_empty(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES)) { 1482 pr_err("No more SDMA queue to allocate\n"); 1483 return -ENOMEM; 1484 } 1485 1486 if (restore_sdma_id) { 1487 /* Re-use existing sdma_id */ 1488 if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) { 1489 pr_err("SDMA queue already in use\n"); 1490 return -EBUSY; 1491 } 1492 clear_bit(*restore_sdma_id, dqm->sdma_bitmap); 1493 q->sdma_id = *restore_sdma_id; 1494 } else { 1495 /* Find first available sdma_id */ 1496 bit = find_first_bit(dqm->sdma_bitmap, 1497 get_num_sdma_queues(dqm)); 1498 clear_bit(bit, dqm->sdma_bitmap); 1499 q->sdma_id = bit; 1500 } 1501 1502 q->properties.sdma_engine_id = 1503 q->sdma_id % kfd_get_num_sdma_engines(dqm->dev); 1504 q->properties.sdma_queue_id = q->sdma_id / 1505 kfd_get_num_sdma_engines(dqm->dev); 1506 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1507 if (bitmap_empty(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES)) { 1508 pr_err("No more XGMI SDMA queue to allocate\n"); 1509 return -ENOMEM; 1510 } 1511 if (restore_sdma_id) { 1512 /* Re-use existing sdma_id */ 1513 if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) { 1514 pr_err("SDMA queue already in use\n"); 1515 return -EBUSY; 1516 } 1517 clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap); 1518 q->sdma_id = *restore_sdma_id; 1519 } else { 1520 bit = find_first_bit(dqm->xgmi_sdma_bitmap, 1521 get_num_xgmi_sdma_queues(dqm)); 1522 clear_bit(bit, dqm->xgmi_sdma_bitmap); 1523 q->sdma_id = bit; 1524 } 1525 /* sdma_engine_id is sdma id including 1526 * both PCIe-optimized SDMAs and XGMI- 1527 * optimized SDMAs. The calculation below 1528 * assumes the first N engines are always 1529 * PCIe-optimized ones 1530 */ 1531 q->properties.sdma_engine_id = 1532 kfd_get_num_sdma_engines(dqm->dev) + 1533 q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev); 1534 q->properties.sdma_queue_id = q->sdma_id / 1535 kfd_get_num_xgmi_sdma_engines(dqm->dev); 1536 } 1537 1538 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id); 1539 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id); 1540 1541 return 0; 1542 } 1543 1544 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 1545 struct queue *q) 1546 { 1547 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1548 if (q->sdma_id >= get_num_sdma_queues(dqm)) 1549 return; 1550 set_bit(q->sdma_id, dqm->sdma_bitmap); 1551 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1552 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm)) 1553 return; 1554 set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap); 1555 } 1556 } 1557 1558 /* 1559 * Device Queue Manager implementation for cp scheduler 1560 */ 1561 1562 static int set_sched_resources(struct device_queue_manager *dqm) 1563 { 1564 int i, mec; 1565 struct scheduling_resources res; 1566 1567 res.vmid_mask = dqm->dev->compute_vmid_bitmap; 1568 1569 res.queue_mask = 0; 1570 for (i = 0; i < KGD_MAX_QUEUES; ++i) { 1571 mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe) 1572 / dqm->dev->kfd->shared_resources.num_pipe_per_mec; 1573 1574 if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 1575 continue; 1576 1577 /* only acquire queues from the first MEC */ 1578 if (mec > 0) 1579 continue; 1580 1581 /* This situation may be hit in the future if a new HW 1582 * generation exposes more than 64 queues. If so, the 1583 * definition of res.queue_mask needs updating 1584 */ 1585 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) { 1586 pr_err("Invalid queue enabled by amdgpu: %d\n", i); 1587 break; 1588 } 1589 1590 res.queue_mask |= 1ull 1591 << amdgpu_queue_mask_bit_to_set_resource_bit( 1592 dqm->dev->adev, i); 1593 } 1594 res.gws_mask = ~0ull; 1595 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0; 1596 1597 pr_debug("Scheduling resources:\n" 1598 "vmid mask: 0x%8X\n" 1599 "queue mask: 0x%8llX\n", 1600 res.vmid_mask, res.queue_mask); 1601 1602 return pm_send_set_resources(&dqm->packet_mgr, &res); 1603 } 1604 1605 static int initialize_cpsch(struct device_queue_manager *dqm) 1606 { 1607 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 1608 1609 mutex_init(&dqm->lock_hidden); 1610 INIT_LIST_HEAD(&dqm->queues); 1611 dqm->active_queue_count = dqm->processes_count = 0; 1612 dqm->active_cp_queue_count = 0; 1613 dqm->gws_queue_count = 0; 1614 dqm->active_runlist = false; 1615 INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception); 1616 dqm->trap_debug_vmid = 0; 1617 1618 init_sdma_bitmaps(dqm); 1619 1620 if (dqm->dev->kfd2kgd->get_iq_wait_times) 1621 dqm->dev->kfd2kgd->get_iq_wait_times(dqm->dev->adev, 1622 &dqm->wait_times, 1623 ffs(dqm->dev->xcc_mask) - 1); 1624 return 0; 1625 } 1626 1627 static int start_cpsch(struct device_queue_manager *dqm) 1628 { 1629 int retval; 1630 1631 retval = 0; 1632 1633 dqm_lock(dqm); 1634 1635 if (!dqm->dev->kfd->shared_resources.enable_mes) { 1636 retval = pm_init(&dqm->packet_mgr, dqm); 1637 if (retval) 1638 goto fail_packet_manager_init; 1639 1640 retval = set_sched_resources(dqm); 1641 if (retval) 1642 goto fail_set_sched_resources; 1643 } 1644 pr_debug("Allocating fence memory\n"); 1645 1646 /* allocate fence memory on the gart */ 1647 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr), 1648 &dqm->fence_mem); 1649 1650 if (retval) 1651 goto fail_allocate_vidmem; 1652 1653 dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr; 1654 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr; 1655 1656 init_interrupts(dqm); 1657 1658 /* clear hang status when driver try to start the hw scheduler */ 1659 dqm->is_hws_hang = false; 1660 dqm->is_resetting = false; 1661 dqm->sched_running = true; 1662 1663 if (!dqm->dev->kfd->shared_resources.enable_mes) 1664 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); 1665 1666 /* Set CWSR grace period to 1x1000 cycle for GFX9.4.3 APU */ 1667 if (amdgpu_emu_mode == 0 && dqm->dev->adev->gmc.is_app_apu && 1668 (KFD_GC_VERSION(dqm->dev) == IP_VERSION(9, 4, 3))) { 1669 uint32_t reg_offset = 0; 1670 uint32_t grace_period = 1; 1671 1672 retval = pm_update_grace_period(&dqm->packet_mgr, 1673 grace_period); 1674 if (retval) 1675 pr_err("Setting grace timeout failed\n"); 1676 else if (dqm->dev->kfd2kgd->build_grace_period_packet_info) 1677 /* Update dqm->wait_times maintained in software */ 1678 dqm->dev->kfd2kgd->build_grace_period_packet_info( 1679 dqm->dev->adev, dqm->wait_times, 1680 grace_period, ®_offset, 1681 &dqm->wait_times); 1682 } 1683 1684 dqm_unlock(dqm); 1685 1686 return 0; 1687 fail_allocate_vidmem: 1688 fail_set_sched_resources: 1689 if (!dqm->dev->kfd->shared_resources.enable_mes) 1690 pm_uninit(&dqm->packet_mgr, false); 1691 fail_packet_manager_init: 1692 dqm_unlock(dqm); 1693 return retval; 1694 } 1695 1696 static int stop_cpsch(struct device_queue_manager *dqm) 1697 { 1698 bool hanging; 1699 1700 dqm_lock(dqm); 1701 if (!dqm->sched_running) { 1702 dqm_unlock(dqm); 1703 return 0; 1704 } 1705 1706 if (!dqm->is_hws_hang) { 1707 if (!dqm->dev->kfd->shared_resources.enable_mes) 1708 unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false); 1709 else 1710 remove_all_queues_mes(dqm); 1711 } 1712 1713 hanging = dqm->is_hws_hang || dqm->is_resetting; 1714 dqm->sched_running = false; 1715 1716 if (!dqm->dev->kfd->shared_resources.enable_mes) 1717 pm_release_ib(&dqm->packet_mgr); 1718 1719 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); 1720 if (!dqm->dev->kfd->shared_resources.enable_mes) 1721 pm_uninit(&dqm->packet_mgr, hanging); 1722 dqm_unlock(dqm); 1723 1724 return 0; 1725 } 1726 1727 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm, 1728 struct kernel_queue *kq, 1729 struct qcm_process_device *qpd) 1730 { 1731 dqm_lock(dqm); 1732 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1733 pr_warn("Can't create new kernel queue because %d queues were already created\n", 1734 dqm->total_queue_count); 1735 dqm_unlock(dqm); 1736 return -EPERM; 1737 } 1738 1739 /* 1740 * Unconditionally increment this counter, regardless of the queue's 1741 * type or whether the queue is active. 1742 */ 1743 dqm->total_queue_count++; 1744 pr_debug("Total of %d queues are accountable so far\n", 1745 dqm->total_queue_count); 1746 1747 list_add(&kq->list, &qpd->priv_queue_list); 1748 increment_queue_count(dqm, qpd, kq->queue); 1749 qpd->is_debug = true; 1750 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 1751 USE_DEFAULT_GRACE_PERIOD); 1752 dqm_unlock(dqm); 1753 1754 return 0; 1755 } 1756 1757 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm, 1758 struct kernel_queue *kq, 1759 struct qcm_process_device *qpd) 1760 { 1761 dqm_lock(dqm); 1762 list_del(&kq->list); 1763 decrement_queue_count(dqm, qpd, kq->queue); 1764 qpd->is_debug = false; 1765 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 1766 USE_DEFAULT_GRACE_PERIOD); 1767 /* 1768 * Unconditionally decrement this counter, regardless of the queue's 1769 * type. 1770 */ 1771 dqm->total_queue_count--; 1772 pr_debug("Total of %d queues are accountable so far\n", 1773 dqm->total_queue_count); 1774 dqm_unlock(dqm); 1775 } 1776 1777 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q, 1778 struct qcm_process_device *qpd, 1779 const struct kfd_criu_queue_priv_data *qd, 1780 const void *restore_mqd, const void *restore_ctl_stack) 1781 { 1782 int retval; 1783 struct mqd_manager *mqd_mgr; 1784 1785 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1786 pr_warn("Can't create new usermode queue because %d queues were already created\n", 1787 dqm->total_queue_count); 1788 retval = -EPERM; 1789 goto out; 1790 } 1791 1792 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1793 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1794 dqm_lock(dqm); 1795 retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL); 1796 dqm_unlock(dqm); 1797 if (retval) 1798 goto out; 1799 } 1800 1801 retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL); 1802 if (retval) 1803 goto out_deallocate_sdma_queue; 1804 1805 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1806 q->properties.type)]; 1807 1808 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1809 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 1810 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 1811 q->properties.tba_addr = qpd->tba_addr; 1812 q->properties.tma_addr = qpd->tma_addr; 1813 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 1814 if (!q->mqd_mem_obj) { 1815 retval = -ENOMEM; 1816 goto out_deallocate_doorbell; 1817 } 1818 1819 dqm_lock(dqm); 1820 /* 1821 * Eviction state logic: mark all queues as evicted, even ones 1822 * not currently active. Restoring inactive queues later only 1823 * updates the is_evicted flag but is a no-op otherwise. 1824 */ 1825 q->properties.is_evicted = !!qpd->evicted; 1826 q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled && 1827 kfd_dbg_has_cwsr_workaround(q->device); 1828 1829 if (qd) 1830 mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr, 1831 &q->properties, restore_mqd, restore_ctl_stack, 1832 qd->ctl_stack_size); 1833 else 1834 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 1835 &q->gart_mqd_addr, &q->properties); 1836 1837 list_add(&q->list, &qpd->queues_list); 1838 qpd->queue_count++; 1839 1840 if (q->properties.is_active) { 1841 increment_queue_count(dqm, qpd, q); 1842 1843 if (!dqm->dev->kfd->shared_resources.enable_mes) 1844 retval = execute_queues_cpsch(dqm, 1845 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD); 1846 else 1847 retval = add_queue_mes(dqm, q, qpd); 1848 if (retval) 1849 goto cleanup_queue; 1850 } 1851 1852 /* 1853 * Unconditionally increment this counter, regardless of the queue's 1854 * type or whether the queue is active. 1855 */ 1856 dqm->total_queue_count++; 1857 1858 pr_debug("Total of %d queues are accountable so far\n", 1859 dqm->total_queue_count); 1860 1861 dqm_unlock(dqm); 1862 return retval; 1863 1864 cleanup_queue: 1865 qpd->queue_count--; 1866 list_del(&q->list); 1867 if (q->properties.is_active) 1868 decrement_queue_count(dqm, qpd, q); 1869 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 1870 dqm_unlock(dqm); 1871 out_deallocate_doorbell: 1872 deallocate_doorbell(qpd, q); 1873 out_deallocate_sdma_queue: 1874 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1875 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1876 dqm_lock(dqm); 1877 deallocate_sdma_queue(dqm, q); 1878 dqm_unlock(dqm); 1879 } 1880 out: 1881 return retval; 1882 } 1883 1884 int amdkfd_fence_wait_timeout(uint64_t *fence_addr, 1885 uint64_t fence_value, 1886 unsigned int timeout_ms) 1887 { 1888 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies; 1889 1890 while (*fence_addr != fence_value) { 1891 if (time_after(jiffies, end_jiffies)) { 1892 pr_err("qcm fence wait loop timeout expired\n"); 1893 /* In HWS case, this is used to halt the driver thread 1894 * in order not to mess up CP states before doing 1895 * scandumps for FW debugging. 1896 */ 1897 while (halt_if_hws_hang) 1898 schedule(); 1899 1900 return -ETIME; 1901 } 1902 schedule(); 1903 } 1904 1905 return 0; 1906 } 1907 1908 /* dqm->lock mutex has to be locked before calling this function */ 1909 static int map_queues_cpsch(struct device_queue_manager *dqm) 1910 { 1911 int retval; 1912 1913 if (!dqm->sched_running) 1914 return 0; 1915 if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0) 1916 return 0; 1917 if (dqm->active_runlist) 1918 return 0; 1919 1920 retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues); 1921 pr_debug("%s sent runlist\n", __func__); 1922 if (retval) { 1923 pr_err("failed to execute runlist\n"); 1924 return retval; 1925 } 1926 dqm->active_runlist = true; 1927 1928 return retval; 1929 } 1930 1931 /* dqm->lock mutex has to be locked before calling this function */ 1932 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 1933 enum kfd_unmap_queues_filter filter, 1934 uint32_t filter_param, 1935 uint32_t grace_period, 1936 bool reset) 1937 { 1938 int retval = 0; 1939 struct mqd_manager *mqd_mgr; 1940 1941 if (!dqm->sched_running) 1942 return 0; 1943 if (dqm->is_hws_hang || dqm->is_resetting) 1944 return -EIO; 1945 if (!dqm->active_runlist) 1946 return retval; 1947 1948 if (grace_period != USE_DEFAULT_GRACE_PERIOD) { 1949 retval = pm_update_grace_period(&dqm->packet_mgr, grace_period); 1950 if (retval) 1951 return retval; 1952 } 1953 1954 retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset); 1955 if (retval) 1956 return retval; 1957 1958 *dqm->fence_addr = KFD_FENCE_INIT; 1959 pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr, 1960 KFD_FENCE_COMPLETED); 1961 /* should be timed out */ 1962 retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED, 1963 queue_preemption_timeout_ms); 1964 if (retval) { 1965 pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n"); 1966 kfd_hws_hang(dqm); 1967 return retval; 1968 } 1969 1970 /* In the current MEC firmware implementation, if compute queue 1971 * doesn't response to the preemption request in time, HIQ will 1972 * abandon the unmap request without returning any timeout error 1973 * to driver. Instead, MEC firmware will log the doorbell of the 1974 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields. 1975 * To make sure the queue unmap was successful, driver need to 1976 * check those fields 1977 */ 1978 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]; 1979 if (mqd_mgr->read_doorbell_id(dqm->packet_mgr.priv_queue->queue->mqd)) { 1980 pr_err("HIQ MQD's queue_doorbell_id0 is not 0, Queue preemption time out\n"); 1981 while (halt_if_hws_hang) 1982 schedule(); 1983 return -ETIME; 1984 } 1985 1986 /* We need to reset the grace period value for this device */ 1987 if (grace_period != USE_DEFAULT_GRACE_PERIOD) { 1988 if (pm_update_grace_period(&dqm->packet_mgr, 1989 USE_DEFAULT_GRACE_PERIOD)) 1990 pr_err("Failed to reset grace period\n"); 1991 } 1992 1993 pm_release_ib(&dqm->packet_mgr); 1994 dqm->active_runlist = false; 1995 1996 return retval; 1997 } 1998 1999 /* only for compute queue */ 2000 static int reset_queues_cpsch(struct device_queue_manager *dqm, 2001 uint16_t pasid) 2002 { 2003 int retval; 2004 2005 dqm_lock(dqm); 2006 2007 retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID, 2008 pasid, USE_DEFAULT_GRACE_PERIOD, true); 2009 2010 dqm_unlock(dqm); 2011 return retval; 2012 } 2013 2014 /* dqm->lock mutex has to be locked before calling this function */ 2015 static int execute_queues_cpsch(struct device_queue_manager *dqm, 2016 enum kfd_unmap_queues_filter filter, 2017 uint32_t filter_param, 2018 uint32_t grace_period) 2019 { 2020 int retval; 2021 2022 if (dqm->is_hws_hang) 2023 return -EIO; 2024 retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false); 2025 if (retval) 2026 return retval; 2027 2028 return map_queues_cpsch(dqm); 2029 } 2030 2031 static int wait_on_destroy_queue(struct device_queue_manager *dqm, 2032 struct queue *q) 2033 { 2034 struct kfd_process_device *pdd = kfd_get_process_device_data(q->device, 2035 q->process); 2036 int ret = 0; 2037 2038 if (pdd->qpd.is_debug) 2039 return ret; 2040 2041 q->properties.is_being_destroyed = true; 2042 2043 if (pdd->process->debug_trap_enabled && q->properties.is_suspended) { 2044 dqm_unlock(dqm); 2045 mutex_unlock(&q->process->mutex); 2046 ret = wait_event_interruptible(dqm->destroy_wait, 2047 !q->properties.is_suspended); 2048 2049 mutex_lock(&q->process->mutex); 2050 dqm_lock(dqm); 2051 } 2052 2053 return ret; 2054 } 2055 2056 static int destroy_queue_cpsch(struct device_queue_manager *dqm, 2057 struct qcm_process_device *qpd, 2058 struct queue *q) 2059 { 2060 int retval; 2061 struct mqd_manager *mqd_mgr; 2062 uint64_t sdma_val = 0; 2063 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 2064 2065 /* Get the SDMA queue stats */ 2066 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 2067 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 2068 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr, 2069 &sdma_val); 2070 if (retval) 2071 pr_err("Failed to read SDMA queue counter for queue: %d\n", 2072 q->properties.queue_id); 2073 } 2074 2075 /* remove queue from list to prevent rescheduling after preemption */ 2076 dqm_lock(dqm); 2077 2078 retval = wait_on_destroy_queue(dqm, q); 2079 2080 if (retval) { 2081 dqm_unlock(dqm); 2082 return retval; 2083 } 2084 2085 if (qpd->is_debug) { 2086 /* 2087 * error, currently we do not allow to destroy a queue 2088 * of a currently debugged process 2089 */ 2090 retval = -EBUSY; 2091 goto failed_try_destroy_debugged_queue; 2092 2093 } 2094 2095 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2096 q->properties.type)]; 2097 2098 deallocate_doorbell(qpd, q); 2099 2100 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 2101 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 2102 deallocate_sdma_queue(dqm, q); 2103 pdd->sdma_past_activity_counter += sdma_val; 2104 } 2105 2106 list_del(&q->list); 2107 qpd->queue_count--; 2108 if (q->properties.is_active) { 2109 decrement_queue_count(dqm, qpd, q); 2110 if (!dqm->dev->kfd->shared_resources.enable_mes) { 2111 retval = execute_queues_cpsch(dqm, 2112 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 2113 USE_DEFAULT_GRACE_PERIOD); 2114 if (retval == -ETIME) 2115 qpd->reset_wavefronts = true; 2116 } else { 2117 retval = remove_queue_mes(dqm, q, qpd); 2118 } 2119 } 2120 2121 /* 2122 * Unconditionally decrement this counter, regardless of the queue's 2123 * type 2124 */ 2125 dqm->total_queue_count--; 2126 pr_debug("Total of %d queues are accountable so far\n", 2127 dqm->total_queue_count); 2128 2129 dqm_unlock(dqm); 2130 2131 /* 2132 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid 2133 * circular locking 2134 */ 2135 kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE), 2136 qpd->pqm->process, q->device, 2137 -1, false, NULL, 0); 2138 2139 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2140 2141 return retval; 2142 2143 failed_try_destroy_debugged_queue: 2144 2145 dqm_unlock(dqm); 2146 return retval; 2147 } 2148 2149 /* 2150 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to 2151 * stay in user mode. 2152 */ 2153 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL 2154 /* APE1 limit is inclusive and 64K aligned. */ 2155 #define APE1_LIMIT_ALIGNMENT 0xFFFF 2156 2157 static bool set_cache_memory_policy(struct device_queue_manager *dqm, 2158 struct qcm_process_device *qpd, 2159 enum cache_policy default_policy, 2160 enum cache_policy alternate_policy, 2161 void __user *alternate_aperture_base, 2162 uint64_t alternate_aperture_size) 2163 { 2164 bool retval = true; 2165 2166 if (!dqm->asic_ops.set_cache_memory_policy) 2167 return retval; 2168 2169 dqm_lock(dqm); 2170 2171 if (alternate_aperture_size == 0) { 2172 /* base > limit disables APE1 */ 2173 qpd->sh_mem_ape1_base = 1; 2174 qpd->sh_mem_ape1_limit = 0; 2175 } else { 2176 /* 2177 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]}, 2178 * SH_MEM_APE1_BASE[31:0], 0x0000 } 2179 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]}, 2180 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF } 2181 * Verify that the base and size parameters can be 2182 * represented in this format and convert them. 2183 * Additionally restrict APE1 to user-mode addresses. 2184 */ 2185 2186 uint64_t base = (uintptr_t)alternate_aperture_base; 2187 uint64_t limit = base + alternate_aperture_size - 1; 2188 2189 if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 || 2190 (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) { 2191 retval = false; 2192 goto out; 2193 } 2194 2195 qpd->sh_mem_ape1_base = base >> 16; 2196 qpd->sh_mem_ape1_limit = limit >> 16; 2197 } 2198 2199 retval = dqm->asic_ops.set_cache_memory_policy( 2200 dqm, 2201 qpd, 2202 default_policy, 2203 alternate_policy, 2204 alternate_aperture_base, 2205 alternate_aperture_size); 2206 2207 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0)) 2208 program_sh_mem_settings(dqm, qpd); 2209 2210 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n", 2211 qpd->sh_mem_config, qpd->sh_mem_ape1_base, 2212 qpd->sh_mem_ape1_limit); 2213 2214 out: 2215 dqm_unlock(dqm); 2216 return retval; 2217 } 2218 2219 static int process_termination_nocpsch(struct device_queue_manager *dqm, 2220 struct qcm_process_device *qpd) 2221 { 2222 struct queue *q; 2223 struct device_process_node *cur, *next_dpn; 2224 int retval = 0; 2225 bool found = false; 2226 2227 dqm_lock(dqm); 2228 2229 /* Clear all user mode queues */ 2230 while (!list_empty(&qpd->queues_list)) { 2231 struct mqd_manager *mqd_mgr; 2232 int ret; 2233 2234 q = list_first_entry(&qpd->queues_list, struct queue, list); 2235 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2236 q->properties.type)]; 2237 ret = destroy_queue_nocpsch_locked(dqm, qpd, q); 2238 if (ret) 2239 retval = ret; 2240 dqm_unlock(dqm); 2241 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2242 dqm_lock(dqm); 2243 } 2244 2245 /* Unregister process */ 2246 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 2247 if (qpd == cur->qpd) { 2248 list_del(&cur->list); 2249 kfree(cur); 2250 dqm->processes_count--; 2251 found = true; 2252 break; 2253 } 2254 } 2255 2256 dqm_unlock(dqm); 2257 2258 /* Outside the DQM lock because under the DQM lock we can't do 2259 * reclaim or take other locks that others hold while reclaiming. 2260 */ 2261 if (found) 2262 kfd_dec_compute_active(dqm->dev); 2263 2264 return retval; 2265 } 2266 2267 static int get_wave_state(struct device_queue_manager *dqm, 2268 struct queue *q, 2269 void __user *ctl_stack, 2270 u32 *ctl_stack_used_size, 2271 u32 *save_area_used_size) 2272 { 2273 struct mqd_manager *mqd_mgr; 2274 2275 dqm_lock(dqm); 2276 2277 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP]; 2278 2279 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE || 2280 q->properties.is_active || !q->device->kfd->cwsr_enabled || 2281 !mqd_mgr->get_wave_state) { 2282 dqm_unlock(dqm); 2283 return -EINVAL; 2284 } 2285 2286 dqm_unlock(dqm); 2287 2288 /* 2289 * get_wave_state is outside the dqm lock to prevent circular locking 2290 * and the queue should be protected against destruction by the process 2291 * lock. 2292 */ 2293 return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties, 2294 ctl_stack, ctl_stack_used_size, save_area_used_size); 2295 } 2296 2297 static void get_queue_checkpoint_info(struct device_queue_manager *dqm, 2298 const struct queue *q, 2299 u32 *mqd_size, 2300 u32 *ctl_stack_size) 2301 { 2302 struct mqd_manager *mqd_mgr; 2303 enum KFD_MQD_TYPE mqd_type = 2304 get_mqd_type_from_queue_type(q->properties.type); 2305 2306 dqm_lock(dqm); 2307 mqd_mgr = dqm->mqd_mgrs[mqd_type]; 2308 *mqd_size = mqd_mgr->mqd_size; 2309 *ctl_stack_size = 0; 2310 2311 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info) 2312 mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size); 2313 2314 dqm_unlock(dqm); 2315 } 2316 2317 static int checkpoint_mqd(struct device_queue_manager *dqm, 2318 const struct queue *q, 2319 void *mqd, 2320 void *ctl_stack) 2321 { 2322 struct mqd_manager *mqd_mgr; 2323 int r = 0; 2324 enum KFD_MQD_TYPE mqd_type = 2325 get_mqd_type_from_queue_type(q->properties.type); 2326 2327 dqm_lock(dqm); 2328 2329 if (q->properties.is_active || !q->device->kfd->cwsr_enabled) { 2330 r = -EINVAL; 2331 goto dqm_unlock; 2332 } 2333 2334 mqd_mgr = dqm->mqd_mgrs[mqd_type]; 2335 if (!mqd_mgr->checkpoint_mqd) { 2336 r = -EOPNOTSUPP; 2337 goto dqm_unlock; 2338 } 2339 2340 mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack); 2341 2342 dqm_unlock: 2343 dqm_unlock(dqm); 2344 return r; 2345 } 2346 2347 static int process_termination_cpsch(struct device_queue_manager *dqm, 2348 struct qcm_process_device *qpd) 2349 { 2350 int retval; 2351 struct queue *q; 2352 struct kernel_queue *kq, *kq_next; 2353 struct mqd_manager *mqd_mgr; 2354 struct device_process_node *cur, *next_dpn; 2355 enum kfd_unmap_queues_filter filter = 2356 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES; 2357 bool found = false; 2358 2359 retval = 0; 2360 2361 dqm_lock(dqm); 2362 2363 /* Clean all kernel queues */ 2364 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) { 2365 list_del(&kq->list); 2366 decrement_queue_count(dqm, qpd, kq->queue); 2367 qpd->is_debug = false; 2368 dqm->total_queue_count--; 2369 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES; 2370 } 2371 2372 /* Clear all user mode queues */ 2373 list_for_each_entry(q, &qpd->queues_list, list) { 2374 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 2375 deallocate_sdma_queue(dqm, q); 2376 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 2377 deallocate_sdma_queue(dqm, q); 2378 2379 if (q->properties.is_active) { 2380 decrement_queue_count(dqm, qpd, q); 2381 2382 if (dqm->dev->kfd->shared_resources.enable_mes) { 2383 retval = remove_queue_mes(dqm, q, qpd); 2384 if (retval) 2385 pr_err("Failed to remove queue %d\n", 2386 q->properties.queue_id); 2387 } 2388 } 2389 2390 dqm->total_queue_count--; 2391 } 2392 2393 /* Unregister process */ 2394 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 2395 if (qpd == cur->qpd) { 2396 list_del(&cur->list); 2397 kfree(cur); 2398 dqm->processes_count--; 2399 found = true; 2400 break; 2401 } 2402 } 2403 2404 if (!dqm->dev->kfd->shared_resources.enable_mes) 2405 retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD); 2406 2407 if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) { 2408 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev); 2409 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process); 2410 qpd->reset_wavefronts = false; 2411 } 2412 2413 /* Lastly, free mqd resources. 2414 * Do free_mqd() after dqm_unlock to avoid circular locking. 2415 */ 2416 while (!list_empty(&qpd->queues_list)) { 2417 q = list_first_entry(&qpd->queues_list, struct queue, list); 2418 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 2419 q->properties.type)]; 2420 list_del(&q->list); 2421 qpd->queue_count--; 2422 dqm_unlock(dqm); 2423 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 2424 dqm_lock(dqm); 2425 } 2426 dqm_unlock(dqm); 2427 2428 /* Outside the DQM lock because under the DQM lock we can't do 2429 * reclaim or take other locks that others hold while reclaiming. 2430 */ 2431 if (found) 2432 kfd_dec_compute_active(dqm->dev); 2433 2434 return retval; 2435 } 2436 2437 static int init_mqd_managers(struct device_queue_manager *dqm) 2438 { 2439 int i, j; 2440 struct mqd_manager *mqd_mgr; 2441 2442 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) { 2443 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev); 2444 if (!mqd_mgr) { 2445 pr_err("mqd manager [%d] initialization failed\n", i); 2446 goto out_free; 2447 } 2448 dqm->mqd_mgrs[i] = mqd_mgr; 2449 } 2450 2451 return 0; 2452 2453 out_free: 2454 for (j = 0; j < i; j++) { 2455 kfree(dqm->mqd_mgrs[j]); 2456 dqm->mqd_mgrs[j] = NULL; 2457 } 2458 2459 return -ENOMEM; 2460 } 2461 2462 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/ 2463 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm) 2464 { 2465 int retval; 2466 struct kfd_node *dev = dqm->dev; 2467 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd; 2468 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size * 2469 get_num_all_sdma_engines(dqm) * 2470 dev->kfd->device_info.num_sdma_queues_per_engine + 2471 (dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size * 2472 NUM_XCC(dqm->dev->xcc_mask)); 2473 2474 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size, 2475 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr), 2476 (void *)&(mem_obj->cpu_ptr), false); 2477 2478 return retval; 2479 } 2480 2481 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev) 2482 { 2483 struct device_queue_manager *dqm; 2484 2485 pr_debug("Loading device queue manager\n"); 2486 2487 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL); 2488 if (!dqm) 2489 return NULL; 2490 2491 switch (dev->adev->asic_type) { 2492 /* HWS is not available on Hawaii. */ 2493 case CHIP_HAWAII: 2494 /* HWS depends on CWSR for timely dequeue. CWSR is not 2495 * available on Tonga. 2496 * 2497 * FIXME: This argument also applies to Kaveri. 2498 */ 2499 case CHIP_TONGA: 2500 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS; 2501 break; 2502 default: 2503 dqm->sched_policy = sched_policy; 2504 break; 2505 } 2506 2507 dqm->dev = dev; 2508 switch (dqm->sched_policy) { 2509 case KFD_SCHED_POLICY_HWS: 2510 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: 2511 /* initialize dqm for cp scheduling */ 2512 dqm->ops.create_queue = create_queue_cpsch; 2513 dqm->ops.initialize = initialize_cpsch; 2514 dqm->ops.start = start_cpsch; 2515 dqm->ops.stop = stop_cpsch; 2516 dqm->ops.pre_reset = pre_reset; 2517 dqm->ops.destroy_queue = destroy_queue_cpsch; 2518 dqm->ops.update_queue = update_queue; 2519 dqm->ops.register_process = register_process; 2520 dqm->ops.unregister_process = unregister_process; 2521 dqm->ops.uninitialize = uninitialize; 2522 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch; 2523 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch; 2524 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 2525 dqm->ops.process_termination = process_termination_cpsch; 2526 dqm->ops.evict_process_queues = evict_process_queues_cpsch; 2527 dqm->ops.restore_process_queues = restore_process_queues_cpsch; 2528 dqm->ops.get_wave_state = get_wave_state; 2529 dqm->ops.reset_queues = reset_queues_cpsch; 2530 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info; 2531 dqm->ops.checkpoint_mqd = checkpoint_mqd; 2532 break; 2533 case KFD_SCHED_POLICY_NO_HWS: 2534 /* initialize dqm for no cp scheduling */ 2535 dqm->ops.start = start_nocpsch; 2536 dqm->ops.stop = stop_nocpsch; 2537 dqm->ops.pre_reset = pre_reset; 2538 dqm->ops.create_queue = create_queue_nocpsch; 2539 dqm->ops.destroy_queue = destroy_queue_nocpsch; 2540 dqm->ops.update_queue = update_queue; 2541 dqm->ops.register_process = register_process; 2542 dqm->ops.unregister_process = unregister_process; 2543 dqm->ops.initialize = initialize_nocpsch; 2544 dqm->ops.uninitialize = uninitialize; 2545 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 2546 dqm->ops.process_termination = process_termination_nocpsch; 2547 dqm->ops.evict_process_queues = evict_process_queues_nocpsch; 2548 dqm->ops.restore_process_queues = 2549 restore_process_queues_nocpsch; 2550 dqm->ops.get_wave_state = get_wave_state; 2551 dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info; 2552 dqm->ops.checkpoint_mqd = checkpoint_mqd; 2553 break; 2554 default: 2555 pr_err("Invalid scheduling policy %d\n", dqm->sched_policy); 2556 goto out_free; 2557 } 2558 2559 switch (dev->adev->asic_type) { 2560 case CHIP_KAVERI: 2561 case CHIP_HAWAII: 2562 device_queue_manager_init_cik(&dqm->asic_ops); 2563 break; 2564 2565 case CHIP_CARRIZO: 2566 case CHIP_TONGA: 2567 case CHIP_FIJI: 2568 case CHIP_POLARIS10: 2569 case CHIP_POLARIS11: 2570 case CHIP_POLARIS12: 2571 case CHIP_VEGAM: 2572 device_queue_manager_init_vi(&dqm->asic_ops); 2573 break; 2574 2575 default: 2576 if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0)) 2577 device_queue_manager_init_v11(&dqm->asic_ops); 2578 else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1)) 2579 device_queue_manager_init_v10(&dqm->asic_ops); 2580 else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1)) 2581 device_queue_manager_init_v9(&dqm->asic_ops); 2582 else { 2583 WARN(1, "Unexpected ASIC family %u", 2584 dev->adev->asic_type); 2585 goto out_free; 2586 } 2587 } 2588 2589 if (init_mqd_managers(dqm)) 2590 goto out_free; 2591 2592 if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) { 2593 pr_err("Failed to allocate hiq sdma mqd trunk buffer\n"); 2594 goto out_free; 2595 } 2596 2597 if (!dqm->ops.initialize(dqm)) { 2598 init_waitqueue_head(&dqm->destroy_wait); 2599 return dqm; 2600 } 2601 2602 out_free: 2603 kfree(dqm); 2604 return NULL; 2605 } 2606 2607 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev, 2608 struct kfd_mem_obj *mqd) 2609 { 2610 WARN(!mqd, "No hiq sdma mqd trunk to free"); 2611 2612 amdgpu_amdkfd_free_gtt_mem(dev->adev, mqd->gtt_mem); 2613 } 2614 2615 void device_queue_manager_uninit(struct device_queue_manager *dqm) 2616 { 2617 dqm->ops.stop(dqm); 2618 dqm->ops.uninitialize(dqm); 2619 if (!dqm->dev->kfd->shared_resources.enable_mes) 2620 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd); 2621 kfree(dqm); 2622 } 2623 2624 int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid) 2625 { 2626 struct kfd_process_device *pdd; 2627 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 2628 int ret = 0; 2629 2630 if (!p) 2631 return -EINVAL; 2632 WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid); 2633 pdd = kfd_get_process_device_data(dqm->dev, p); 2634 if (pdd) 2635 ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd); 2636 kfd_unref_process(p); 2637 2638 return ret; 2639 } 2640 2641 static void kfd_process_hw_exception(struct work_struct *work) 2642 { 2643 struct device_queue_manager *dqm = container_of(work, 2644 struct device_queue_manager, hw_exception_work); 2645 amdgpu_amdkfd_gpu_reset(dqm->dev->adev); 2646 } 2647 2648 int reserve_debug_trap_vmid(struct device_queue_manager *dqm, 2649 struct qcm_process_device *qpd) 2650 { 2651 int r; 2652 int updated_vmid_mask; 2653 2654 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 2655 pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy); 2656 return -EINVAL; 2657 } 2658 2659 dqm_lock(dqm); 2660 2661 if (dqm->trap_debug_vmid != 0) { 2662 pr_err("Trap debug id already reserved\n"); 2663 r = -EBUSY; 2664 goto out_unlock; 2665 } 2666 2667 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 2668 USE_DEFAULT_GRACE_PERIOD, false); 2669 if (r) 2670 goto out_unlock; 2671 2672 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap; 2673 updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd); 2674 2675 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask; 2676 dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd; 2677 r = set_sched_resources(dqm); 2678 if (r) 2679 goto out_unlock; 2680 2681 r = map_queues_cpsch(dqm); 2682 if (r) 2683 goto out_unlock; 2684 2685 pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid); 2686 2687 out_unlock: 2688 dqm_unlock(dqm); 2689 return r; 2690 } 2691 2692 /* 2693 * Releases vmid for the trap debugger 2694 */ 2695 int release_debug_trap_vmid(struct device_queue_manager *dqm, 2696 struct qcm_process_device *qpd) 2697 { 2698 int r; 2699 int updated_vmid_mask; 2700 uint32_t trap_debug_vmid; 2701 2702 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 2703 pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy); 2704 return -EINVAL; 2705 } 2706 2707 dqm_lock(dqm); 2708 trap_debug_vmid = dqm->trap_debug_vmid; 2709 if (dqm->trap_debug_vmid == 0) { 2710 pr_err("Trap debug id is not reserved\n"); 2711 r = -EINVAL; 2712 goto out_unlock; 2713 } 2714 2715 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 2716 USE_DEFAULT_GRACE_PERIOD, false); 2717 if (r) 2718 goto out_unlock; 2719 2720 updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap; 2721 updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd); 2722 2723 dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask; 2724 dqm->trap_debug_vmid = 0; 2725 r = set_sched_resources(dqm); 2726 if (r) 2727 goto out_unlock; 2728 2729 r = map_queues_cpsch(dqm); 2730 if (r) 2731 goto out_unlock; 2732 2733 pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid); 2734 2735 out_unlock: 2736 dqm_unlock(dqm); 2737 return r; 2738 } 2739 2740 #define QUEUE_NOT_FOUND -1 2741 /* invalidate queue operation in array */ 2742 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids) 2743 { 2744 int i; 2745 2746 for (i = 0; i < num_queues; i++) 2747 queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK; 2748 } 2749 2750 /* find queue index in array */ 2751 static int q_array_get_index(unsigned int queue_id, 2752 uint32_t num_queues, 2753 uint32_t *queue_ids) 2754 { 2755 int i; 2756 2757 for (i = 0; i < num_queues; i++) 2758 if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK)) 2759 return i; 2760 2761 return QUEUE_NOT_FOUND; 2762 } 2763 2764 struct copy_context_work_handler_workarea { 2765 struct work_struct copy_context_work; 2766 struct kfd_process *p; 2767 }; 2768 2769 static void copy_context_work_handler (struct work_struct *work) 2770 { 2771 struct copy_context_work_handler_workarea *workarea; 2772 struct mqd_manager *mqd_mgr; 2773 struct queue *q; 2774 struct mm_struct *mm; 2775 struct kfd_process *p; 2776 uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size; 2777 int i; 2778 2779 workarea = container_of(work, 2780 struct copy_context_work_handler_workarea, 2781 copy_context_work); 2782 2783 p = workarea->p; 2784 mm = get_task_mm(p->lead_thread); 2785 2786 if (!mm) 2787 return; 2788 2789 kthread_use_mm(mm); 2790 for (i = 0; i < p->n_pdds; i++) { 2791 struct kfd_process_device *pdd = p->pdds[i]; 2792 struct device_queue_manager *dqm = pdd->dev->dqm; 2793 struct qcm_process_device *qpd = &pdd->qpd; 2794 2795 list_for_each_entry(q, &qpd->queues_list, list) { 2796 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP]; 2797 2798 /* We ignore the return value from get_wave_state 2799 * because 2800 * i) right now, it always returns 0, and 2801 * ii) if we hit an error, we would continue to the 2802 * next queue anyway. 2803 */ 2804 mqd_mgr->get_wave_state(mqd_mgr, 2805 q->mqd, 2806 &q->properties, 2807 (void __user *) q->properties.ctx_save_restore_area_address, 2808 &tmp_ctl_stack_used_size, 2809 &tmp_save_area_used_size); 2810 } 2811 } 2812 kthread_unuse_mm(mm); 2813 mmput(mm); 2814 } 2815 2816 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array) 2817 { 2818 size_t array_size = num_queues * sizeof(uint32_t); 2819 2820 if (!usr_queue_id_array) 2821 return NULL; 2822 2823 return memdup_user(usr_queue_id_array, array_size); 2824 } 2825 2826 int resume_queues(struct kfd_process *p, 2827 uint32_t num_queues, 2828 uint32_t *usr_queue_id_array) 2829 { 2830 uint32_t *queue_ids = NULL; 2831 int total_resumed = 0; 2832 int i; 2833 2834 if (usr_queue_id_array) { 2835 queue_ids = get_queue_ids(num_queues, usr_queue_id_array); 2836 2837 if (IS_ERR(queue_ids)) 2838 return PTR_ERR(queue_ids); 2839 2840 /* mask all queues as invalid. unmask per successful request */ 2841 q_array_invalidate(num_queues, queue_ids); 2842 } 2843 2844 for (i = 0; i < p->n_pdds; i++) { 2845 struct kfd_process_device *pdd = p->pdds[i]; 2846 struct device_queue_manager *dqm = pdd->dev->dqm; 2847 struct qcm_process_device *qpd = &pdd->qpd; 2848 struct queue *q; 2849 int r, per_device_resumed = 0; 2850 2851 dqm_lock(dqm); 2852 2853 /* unmask queues that resume or already resumed as valid */ 2854 list_for_each_entry(q, &qpd->queues_list, list) { 2855 int q_idx = QUEUE_NOT_FOUND; 2856 2857 if (queue_ids) 2858 q_idx = q_array_get_index( 2859 q->properties.queue_id, 2860 num_queues, 2861 queue_ids); 2862 2863 if (!queue_ids || q_idx != QUEUE_NOT_FOUND) { 2864 int err = resume_single_queue(dqm, &pdd->qpd, q); 2865 2866 if (queue_ids) { 2867 if (!err) { 2868 queue_ids[q_idx] &= 2869 ~KFD_DBG_QUEUE_INVALID_MASK; 2870 } else { 2871 queue_ids[q_idx] |= 2872 KFD_DBG_QUEUE_ERROR_MASK; 2873 break; 2874 } 2875 } 2876 2877 if (dqm->dev->kfd->shared_resources.enable_mes) { 2878 wake_up_all(&dqm->destroy_wait); 2879 if (!err) 2880 total_resumed++; 2881 } else { 2882 per_device_resumed++; 2883 } 2884 } 2885 } 2886 2887 if (!per_device_resumed) { 2888 dqm_unlock(dqm); 2889 continue; 2890 } 2891 2892 r = execute_queues_cpsch(dqm, 2893 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 2894 0, 2895 USE_DEFAULT_GRACE_PERIOD); 2896 if (r) { 2897 pr_err("Failed to resume process queues\n"); 2898 if (queue_ids) { 2899 list_for_each_entry(q, &qpd->queues_list, list) { 2900 int q_idx = q_array_get_index( 2901 q->properties.queue_id, 2902 num_queues, 2903 queue_ids); 2904 2905 /* mask queue as error on resume fail */ 2906 if (q_idx != QUEUE_NOT_FOUND) 2907 queue_ids[q_idx] |= 2908 KFD_DBG_QUEUE_ERROR_MASK; 2909 } 2910 } 2911 } else { 2912 wake_up_all(&dqm->destroy_wait); 2913 total_resumed += per_device_resumed; 2914 } 2915 2916 dqm_unlock(dqm); 2917 } 2918 2919 if (queue_ids) { 2920 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids, 2921 num_queues * sizeof(uint32_t))) 2922 pr_err("copy_to_user failed on queue resume\n"); 2923 2924 kfree(queue_ids); 2925 } 2926 2927 return total_resumed; 2928 } 2929 2930 int suspend_queues(struct kfd_process *p, 2931 uint32_t num_queues, 2932 uint32_t grace_period, 2933 uint64_t exception_clear_mask, 2934 uint32_t *usr_queue_id_array) 2935 { 2936 uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array); 2937 int total_suspended = 0; 2938 int i; 2939 2940 if (IS_ERR(queue_ids)) 2941 return PTR_ERR(queue_ids); 2942 2943 /* mask all queues as invalid. umask on successful request */ 2944 q_array_invalidate(num_queues, queue_ids); 2945 2946 for (i = 0; i < p->n_pdds; i++) { 2947 struct kfd_process_device *pdd = p->pdds[i]; 2948 struct device_queue_manager *dqm = pdd->dev->dqm; 2949 struct qcm_process_device *qpd = &pdd->qpd; 2950 struct queue *q; 2951 int r, per_device_suspended = 0; 2952 2953 mutex_lock(&p->event_mutex); 2954 dqm_lock(dqm); 2955 2956 /* unmask queues that suspend or already suspended */ 2957 list_for_each_entry(q, &qpd->queues_list, list) { 2958 int q_idx = q_array_get_index(q->properties.queue_id, 2959 num_queues, 2960 queue_ids); 2961 2962 if (q_idx != QUEUE_NOT_FOUND) { 2963 int err = suspend_single_queue(dqm, pdd, q); 2964 bool is_mes = dqm->dev->kfd->shared_resources.enable_mes; 2965 2966 if (!err) { 2967 queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK; 2968 if (exception_clear_mask && is_mes) 2969 q->properties.exception_status &= 2970 ~exception_clear_mask; 2971 2972 if (is_mes) 2973 total_suspended++; 2974 else 2975 per_device_suspended++; 2976 } else if (err != -EBUSY) { 2977 r = err; 2978 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK; 2979 break; 2980 } 2981 } 2982 } 2983 2984 if (!per_device_suspended) { 2985 dqm_unlock(dqm); 2986 mutex_unlock(&p->event_mutex); 2987 if (total_suspended) 2988 amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev); 2989 continue; 2990 } 2991 2992 r = execute_queues_cpsch(dqm, 2993 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, 2994 grace_period); 2995 2996 if (r) 2997 pr_err("Failed to suspend process queues.\n"); 2998 else 2999 total_suspended += per_device_suspended; 3000 3001 list_for_each_entry(q, &qpd->queues_list, list) { 3002 int q_idx = q_array_get_index(q->properties.queue_id, 3003 num_queues, queue_ids); 3004 3005 if (q_idx == QUEUE_NOT_FOUND) 3006 continue; 3007 3008 /* mask queue as error on suspend fail */ 3009 if (r) 3010 queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK; 3011 else if (exception_clear_mask) 3012 q->properties.exception_status &= 3013 ~exception_clear_mask; 3014 } 3015 3016 dqm_unlock(dqm); 3017 mutex_unlock(&p->event_mutex); 3018 amdgpu_device_flush_hdp(dqm->dev->adev, NULL); 3019 } 3020 3021 if (total_suspended) { 3022 struct copy_context_work_handler_workarea copy_context_worker; 3023 3024 INIT_WORK_ONSTACK( 3025 ©_context_worker.copy_context_work, 3026 copy_context_work_handler); 3027 3028 copy_context_worker.p = p; 3029 3030 schedule_work(©_context_worker.copy_context_work); 3031 3032 3033 flush_work(©_context_worker.copy_context_work); 3034 destroy_work_on_stack(©_context_worker.copy_context_work); 3035 } 3036 3037 if (copy_to_user((void __user *)usr_queue_id_array, queue_ids, 3038 num_queues * sizeof(uint32_t))) 3039 pr_err("copy_to_user failed on queue suspend\n"); 3040 3041 kfree(queue_ids); 3042 3043 return total_suspended; 3044 } 3045 3046 static uint32_t set_queue_type_for_user(struct queue_properties *q_props) 3047 { 3048 switch (q_props->type) { 3049 case KFD_QUEUE_TYPE_COMPUTE: 3050 return q_props->format == KFD_QUEUE_FORMAT_PM4 3051 ? KFD_IOC_QUEUE_TYPE_COMPUTE 3052 : KFD_IOC_QUEUE_TYPE_COMPUTE_AQL; 3053 case KFD_QUEUE_TYPE_SDMA: 3054 return KFD_IOC_QUEUE_TYPE_SDMA; 3055 case KFD_QUEUE_TYPE_SDMA_XGMI: 3056 return KFD_IOC_QUEUE_TYPE_SDMA_XGMI; 3057 default: 3058 WARN_ONCE(true, "queue type not recognized!"); 3059 return 0xffffffff; 3060 }; 3061 } 3062 3063 void set_queue_snapshot_entry(struct queue *q, 3064 uint64_t exception_clear_mask, 3065 struct kfd_queue_snapshot_entry *qss_entry) 3066 { 3067 qss_entry->ring_base_address = q->properties.queue_address; 3068 qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr; 3069 qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr; 3070 qss_entry->ctx_save_restore_address = 3071 q->properties.ctx_save_restore_area_address; 3072 qss_entry->ctx_save_restore_area_size = 3073 q->properties.ctx_save_restore_area_size; 3074 qss_entry->exception_status = q->properties.exception_status; 3075 qss_entry->queue_id = q->properties.queue_id; 3076 qss_entry->gpu_id = q->device->id; 3077 qss_entry->ring_size = (uint32_t)q->properties.queue_size; 3078 qss_entry->queue_type = set_queue_type_for_user(&q->properties); 3079 q->properties.exception_status &= ~exception_clear_mask; 3080 } 3081 3082 int debug_lock_and_unmap(struct device_queue_manager *dqm) 3083 { 3084 int r; 3085 3086 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 3087 pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy); 3088 return -EINVAL; 3089 } 3090 3091 if (!kfd_dbg_is_per_vmid_supported(dqm->dev)) 3092 return 0; 3093 3094 dqm_lock(dqm); 3095 3096 r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false); 3097 if (r) 3098 dqm_unlock(dqm); 3099 3100 return r; 3101 } 3102 3103 int debug_map_and_unlock(struct device_queue_manager *dqm) 3104 { 3105 int r; 3106 3107 if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) { 3108 pr_err("Unsupported on sched_policy: %i\n", dqm->sched_policy); 3109 return -EINVAL; 3110 } 3111 3112 if (!kfd_dbg_is_per_vmid_supported(dqm->dev)) 3113 return 0; 3114 3115 r = map_queues_cpsch(dqm); 3116 3117 dqm_unlock(dqm); 3118 3119 return r; 3120 } 3121 3122 int debug_refresh_runlist(struct device_queue_manager *dqm) 3123 { 3124 int r = debug_lock_and_unmap(dqm); 3125 3126 if (r) 3127 return r; 3128 3129 return debug_map_and_unlock(dqm); 3130 } 3131 3132 #if defined(CONFIG_DEBUG_FS) 3133 3134 static void seq_reg_dump(struct seq_file *m, 3135 uint32_t (*dump)[2], uint32_t n_regs) 3136 { 3137 uint32_t i, count; 3138 3139 for (i = 0, count = 0; i < n_regs; i++) { 3140 if (count == 0 || 3141 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) { 3142 seq_printf(m, "%s %08x: %08x", 3143 i ? "\n" : "", 3144 dump[i][0], dump[i][1]); 3145 count = 7; 3146 } else { 3147 seq_printf(m, " %08x", dump[i][1]); 3148 count--; 3149 } 3150 } 3151 3152 seq_puts(m, "\n"); 3153 } 3154 3155 int dqm_debugfs_hqds(struct seq_file *m, void *data) 3156 { 3157 struct device_queue_manager *dqm = data; 3158 uint32_t xcc_mask = dqm->dev->xcc_mask; 3159 uint32_t (*dump)[2], n_regs; 3160 int pipe, queue; 3161 int r = 0, xcc_id; 3162 uint32_t sdma_engine_start; 3163 3164 if (!dqm->sched_running) { 3165 seq_puts(m, " Device is stopped\n"); 3166 return 0; 3167 } 3168 3169 for_each_inst(xcc_id, xcc_mask) { 3170 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev, 3171 KFD_CIK_HIQ_PIPE, 3172 KFD_CIK_HIQ_QUEUE, &dump, 3173 &n_regs, xcc_id); 3174 if (!r) { 3175 seq_printf( 3176 m, 3177 " Inst %d, HIQ on MEC %d Pipe %d Queue %d\n", 3178 xcc_id, 3179 KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1, 3180 KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm), 3181 KFD_CIK_HIQ_QUEUE); 3182 seq_reg_dump(m, dump, n_regs); 3183 3184 kfree(dump); 3185 } 3186 3187 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 3188 int pipe_offset = pipe * get_queues_per_pipe(dqm); 3189 3190 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) { 3191 if (!test_bit(pipe_offset + queue, 3192 dqm->dev->kfd->shared_resources.cp_queue_bitmap)) 3193 continue; 3194 3195 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev, 3196 pipe, queue, 3197 &dump, &n_regs, 3198 xcc_id); 3199 if (r) 3200 break; 3201 3202 seq_printf(m, 3203 " Inst %d, CP Pipe %d, Queue %d\n", 3204 xcc_id, pipe, queue); 3205 seq_reg_dump(m, dump, n_regs); 3206 3207 kfree(dump); 3208 } 3209 } 3210 } 3211 3212 sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm); 3213 for (pipe = sdma_engine_start; 3214 pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm)); 3215 pipe++) { 3216 for (queue = 0; 3217 queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine; 3218 queue++) { 3219 r = dqm->dev->kfd2kgd->hqd_sdma_dump( 3220 dqm->dev->adev, pipe, queue, &dump, &n_regs); 3221 if (r) 3222 break; 3223 3224 seq_printf(m, " SDMA Engine %d, RLC %d\n", 3225 pipe, queue); 3226 seq_reg_dump(m, dump, n_regs); 3227 3228 kfree(dump); 3229 } 3230 } 3231 3232 return r; 3233 } 3234 3235 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm) 3236 { 3237 int r = 0; 3238 3239 dqm_lock(dqm); 3240 r = pm_debugfs_hang_hws(&dqm->packet_mgr); 3241 if (r) { 3242 dqm_unlock(dqm); 3243 return r; 3244 } 3245 dqm->active_runlist = true; 3246 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 3247 0, USE_DEFAULT_GRACE_PERIOD); 3248 dqm_unlock(dqm); 3249 3250 return r; 3251 } 3252 3253 #endif 3254