1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/ratelimit.h>
25 #include <linux/printk.h>
26 #include <linux/slab.h>
27 #include <linux/list.h>
28 #include <linux/types.h>
29 #include <linux/bitops.h>
30 #include <linux/sched.h>
31 #include "kfd_priv.h"
32 #include "kfd_device_queue_manager.h"
33 #include "kfd_mqd_manager.h"
34 #include "cik_regs.h"
35 #include "kfd_kernel_queue.h"
36 #include "amdgpu_amdkfd.h"
37 
38 /* Size of the per-pipe EOP queue */
39 #define CIK_HPD_EOP_BYTES_LOG2 11
40 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
41 
42 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
43 					unsigned int pasid, unsigned int vmid);
44 
45 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
46 					struct queue *q,
47 					struct qcm_process_device *qpd);
48 
49 static int execute_queues_cpsch(struct device_queue_manager *dqm,
50 				enum kfd_unmap_queues_filter filter,
51 				uint32_t filter_param);
52 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
53 				enum kfd_unmap_queues_filter filter,
54 				uint32_t filter_param);
55 
56 static int map_queues_cpsch(struct device_queue_manager *dqm);
57 
58 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
59 					struct queue *q,
60 					struct qcm_process_device *qpd);
61 
62 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
63 				unsigned int sdma_queue_id);
64 
65 static void kfd_process_hw_exception(struct work_struct *work);
66 
67 static inline
68 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
69 {
70 	if (type == KFD_QUEUE_TYPE_SDMA)
71 		return KFD_MQD_TYPE_SDMA;
72 	return KFD_MQD_TYPE_CP;
73 }
74 
75 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
76 {
77 	int i;
78 	int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec
79 		+ pipe * dqm->dev->shared_resources.num_queue_per_pipe;
80 
81 	/* queue is available for KFD usage if bit is 1 */
82 	for (i = 0; i <  dqm->dev->shared_resources.num_queue_per_pipe; ++i)
83 		if (test_bit(pipe_offset + i,
84 			      dqm->dev->shared_resources.queue_bitmap))
85 			return true;
86 	return false;
87 }
88 
89 unsigned int get_queues_num(struct device_queue_manager *dqm)
90 {
91 	return bitmap_weight(dqm->dev->shared_resources.queue_bitmap,
92 				KGD_MAX_QUEUES);
93 }
94 
95 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
96 {
97 	return dqm->dev->shared_resources.num_queue_per_pipe;
98 }
99 
100 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
101 {
102 	return dqm->dev->shared_resources.num_pipe_per_mec;
103 }
104 
105 static unsigned int get_num_sdma_engines(struct device_queue_manager *dqm)
106 {
107 	return dqm->dev->device_info->num_sdma_engines;
108 }
109 
110 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
111 {
112 	return dqm->dev->device_info->num_sdma_engines
113 			* dqm->dev->device_info->num_sdma_queues_per_engine;
114 }
115 
116 void program_sh_mem_settings(struct device_queue_manager *dqm,
117 					struct qcm_process_device *qpd)
118 {
119 	return dqm->dev->kfd2kgd->program_sh_mem_settings(
120 						dqm->dev->kgd, qpd->vmid,
121 						qpd->sh_mem_config,
122 						qpd->sh_mem_ape1_base,
123 						qpd->sh_mem_ape1_limit,
124 						qpd->sh_mem_bases);
125 }
126 
127 static int allocate_doorbell(struct qcm_process_device *qpd, struct queue *q)
128 {
129 	struct kfd_dev *dev = qpd->dqm->dev;
130 
131 	if (!KFD_IS_SOC15(dev->device_info->asic_family)) {
132 		/* On pre-SOC15 chips we need to use the queue ID to
133 		 * preserve the user mode ABI.
134 		 */
135 		q->doorbell_id = q->properties.queue_id;
136 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
137 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
138 		 * doorbell assignments based on the engine and queue id.
139 		 * The doobell index distance between RLC (2*i) and (2*i+1)
140 		 * for a SDMA engine is 512.
141 		 */
142 		uint32_t *idx_offset =
143 				dev->shared_resources.sdma_doorbell_idx;
144 
145 		q->doorbell_id = idx_offset[q->properties.sdma_engine_id]
146 			+ (q->properties.sdma_queue_id & 1)
147 			* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
148 			+ (q->properties.sdma_queue_id >> 1);
149 	} else {
150 		/* For CP queues on SOC15 reserve a free doorbell ID */
151 		unsigned int found;
152 
153 		found = find_first_zero_bit(qpd->doorbell_bitmap,
154 					    KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
155 		if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
156 			pr_debug("No doorbells available");
157 			return -EBUSY;
158 		}
159 		set_bit(found, qpd->doorbell_bitmap);
160 		q->doorbell_id = found;
161 	}
162 
163 	q->properties.doorbell_off =
164 		kfd_doorbell_id_to_offset(dev, q->process,
165 					  q->doorbell_id);
166 
167 	return 0;
168 }
169 
170 static void deallocate_doorbell(struct qcm_process_device *qpd,
171 				struct queue *q)
172 {
173 	unsigned int old;
174 	struct kfd_dev *dev = qpd->dqm->dev;
175 
176 	if (!KFD_IS_SOC15(dev->device_info->asic_family) ||
177 	    q->properties.type == KFD_QUEUE_TYPE_SDMA)
178 		return;
179 
180 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
181 	WARN_ON(!old);
182 }
183 
184 static int allocate_vmid(struct device_queue_manager *dqm,
185 			struct qcm_process_device *qpd,
186 			struct queue *q)
187 {
188 	int bit, allocated_vmid;
189 
190 	if (dqm->vmid_bitmap == 0)
191 		return -ENOMEM;
192 
193 	bit = ffs(dqm->vmid_bitmap) - 1;
194 	dqm->vmid_bitmap &= ~(1 << bit);
195 
196 	allocated_vmid = bit + dqm->dev->vm_info.first_vmid_kfd;
197 	pr_debug("vmid allocation %d\n", allocated_vmid);
198 	qpd->vmid = allocated_vmid;
199 	q->properties.vmid = allocated_vmid;
200 
201 	set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
202 	program_sh_mem_settings(dqm, qpd);
203 
204 	/* qpd->page_table_base is set earlier when register_process()
205 	 * is called, i.e. when the first queue is created.
206 	 */
207 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->kgd,
208 			qpd->vmid,
209 			qpd->page_table_base);
210 	/* invalidate the VM context after pasid and vmid mapping is set up */
211 	kfd_flush_tlb(qpd_to_pdd(qpd));
212 
213 	return 0;
214 }
215 
216 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev,
217 				struct qcm_process_device *qpd)
218 {
219 	const struct packet_manager_funcs *pmf = qpd->dqm->packets.pmf;
220 	int ret;
221 
222 	if (!qpd->ib_kaddr)
223 		return -ENOMEM;
224 
225 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
226 	if (ret)
227 		return ret;
228 
229 	return amdgpu_amdkfd_submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid,
230 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
231 				pmf->release_mem_size / sizeof(uint32_t));
232 }
233 
234 static void deallocate_vmid(struct device_queue_manager *dqm,
235 				struct qcm_process_device *qpd,
236 				struct queue *q)
237 {
238 	int bit = qpd->vmid - dqm->dev->vm_info.first_vmid_kfd;
239 
240 	/* On GFX v7, CP doesn't flush TC at dequeue */
241 	if (q->device->device_info->asic_family == CHIP_HAWAII)
242 		if (flush_texture_cache_nocpsch(q->device, qpd))
243 			pr_err("Failed to flush TC\n");
244 
245 	kfd_flush_tlb(qpd_to_pdd(qpd));
246 
247 	/* Release the vmid mapping */
248 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
249 
250 	dqm->vmid_bitmap |= (1 << bit);
251 	qpd->vmid = 0;
252 	q->properties.vmid = 0;
253 }
254 
255 static int create_queue_nocpsch(struct device_queue_manager *dqm,
256 				struct queue *q,
257 				struct qcm_process_device *qpd)
258 {
259 	int retval;
260 
261 	print_queue(q);
262 
263 	dqm_lock(dqm);
264 
265 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
266 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
267 				dqm->total_queue_count);
268 		retval = -EPERM;
269 		goto out_unlock;
270 	}
271 
272 	if (list_empty(&qpd->queues_list)) {
273 		retval = allocate_vmid(dqm, qpd, q);
274 		if (retval)
275 			goto out_unlock;
276 	}
277 	q->properties.vmid = qpd->vmid;
278 	/*
279 	 * Eviction state logic: we only mark active queues as evicted
280 	 * to avoid the overhead of restoring inactive queues later
281 	 */
282 	if (qpd->evicted)
283 		q->properties.is_evicted = (q->properties.queue_size > 0 &&
284 					    q->properties.queue_percent > 0 &&
285 					    q->properties.queue_address != 0);
286 
287 	q->properties.tba_addr = qpd->tba_addr;
288 	q->properties.tma_addr = qpd->tma_addr;
289 
290 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
291 		retval = create_compute_queue_nocpsch(dqm, q, qpd);
292 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
293 		retval = create_sdma_queue_nocpsch(dqm, q, qpd);
294 	else
295 		retval = -EINVAL;
296 
297 	if (retval) {
298 		if (list_empty(&qpd->queues_list))
299 			deallocate_vmid(dqm, qpd, q);
300 		goto out_unlock;
301 	}
302 
303 	list_add(&q->list, &qpd->queues_list);
304 	qpd->queue_count++;
305 	if (q->properties.is_active)
306 		dqm->queue_count++;
307 
308 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
309 		dqm->sdma_queue_count++;
310 
311 	/*
312 	 * Unconditionally increment this counter, regardless of the queue's
313 	 * type or whether the queue is active.
314 	 */
315 	dqm->total_queue_count++;
316 	pr_debug("Total of %d queues are accountable so far\n",
317 			dqm->total_queue_count);
318 
319 out_unlock:
320 	dqm_unlock(dqm);
321 	return retval;
322 }
323 
324 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
325 {
326 	bool set;
327 	int pipe, bit, i;
328 
329 	set = false;
330 
331 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
332 			i < get_pipes_per_mec(dqm);
333 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
334 
335 		if (!is_pipe_enabled(dqm, 0, pipe))
336 			continue;
337 
338 		if (dqm->allocated_queues[pipe] != 0) {
339 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
340 			dqm->allocated_queues[pipe] &= ~(1 << bit);
341 			q->pipe = pipe;
342 			q->queue = bit;
343 			set = true;
344 			break;
345 		}
346 	}
347 
348 	if (!set)
349 		return -EBUSY;
350 
351 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
352 	/* horizontal hqd allocation */
353 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
354 
355 	return 0;
356 }
357 
358 static inline void deallocate_hqd(struct device_queue_manager *dqm,
359 				struct queue *q)
360 {
361 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
362 }
363 
364 static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
365 					struct queue *q,
366 					struct qcm_process_device *qpd)
367 {
368 	struct mqd_manager *mqd_mgr;
369 	int retval;
370 
371 	mqd_mgr = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
372 	if (!mqd_mgr)
373 		return -ENOMEM;
374 
375 	retval = allocate_hqd(dqm, q);
376 	if (retval)
377 		return retval;
378 
379 	retval = allocate_doorbell(qpd, q);
380 	if (retval)
381 		goto out_deallocate_hqd;
382 
383 	retval = mqd_mgr->init_mqd(mqd_mgr, &q->mqd, &q->mqd_mem_obj,
384 				&q->gart_mqd_addr, &q->properties);
385 	if (retval)
386 		goto out_deallocate_doorbell;
387 
388 	pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
389 			q->pipe, q->queue);
390 
391 	dqm->dev->kfd2kgd->set_scratch_backing_va(
392 			dqm->dev->kgd, qpd->sh_hidden_private_base, qpd->vmid);
393 
394 	if (!q->properties.is_active)
395 		return 0;
396 
397 	if (WARN(q->process->mm != current->mm,
398 		 "should only run in user thread"))
399 		retval = -EFAULT;
400 	else
401 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, q->queue,
402 					   &q->properties, current->mm);
403 	if (retval)
404 		goto out_uninit_mqd;
405 
406 	return 0;
407 
408 out_uninit_mqd:
409 	mqd_mgr->uninit_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
410 out_deallocate_doorbell:
411 	deallocate_doorbell(qpd, q);
412 out_deallocate_hqd:
413 	deallocate_hqd(dqm, q);
414 
415 	return retval;
416 }
417 
418 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
419  * to avoid asynchronized access
420  */
421 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
422 				struct qcm_process_device *qpd,
423 				struct queue *q)
424 {
425 	int retval;
426 	struct mqd_manager *mqd_mgr;
427 
428 	mqd_mgr = dqm->ops.get_mqd_manager(dqm,
429 		get_mqd_type_from_queue_type(q->properties.type));
430 	if (!mqd_mgr)
431 		return -ENOMEM;
432 
433 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
434 		deallocate_hqd(dqm, q);
435 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
436 		dqm->sdma_queue_count--;
437 		deallocate_sdma_queue(dqm, q->sdma_id);
438 	} else {
439 		pr_debug("q->properties.type %d is invalid\n",
440 				q->properties.type);
441 		return -EINVAL;
442 	}
443 	dqm->total_queue_count--;
444 
445 	deallocate_doorbell(qpd, q);
446 
447 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
448 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
449 				KFD_UNMAP_LATENCY_MS,
450 				q->pipe, q->queue);
451 	if (retval == -ETIME)
452 		qpd->reset_wavefronts = true;
453 
454 	mqd_mgr->uninit_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
455 
456 	list_del(&q->list);
457 	if (list_empty(&qpd->queues_list)) {
458 		if (qpd->reset_wavefronts) {
459 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
460 					dqm->dev);
461 			/* dbgdev_wave_reset_wavefronts has to be called before
462 			 * deallocate_vmid(), i.e. when vmid is still in use.
463 			 */
464 			dbgdev_wave_reset_wavefronts(dqm->dev,
465 					qpd->pqm->process);
466 			qpd->reset_wavefronts = false;
467 		}
468 
469 		deallocate_vmid(dqm, qpd, q);
470 	}
471 	qpd->queue_count--;
472 	if (q->properties.is_active)
473 		dqm->queue_count--;
474 
475 	return retval;
476 }
477 
478 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
479 				struct qcm_process_device *qpd,
480 				struct queue *q)
481 {
482 	int retval;
483 
484 	dqm_lock(dqm);
485 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
486 	dqm_unlock(dqm);
487 
488 	return retval;
489 }
490 
491 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
492 {
493 	int retval;
494 	struct mqd_manager *mqd_mgr;
495 	struct kfd_process_device *pdd;
496 	bool prev_active = false;
497 
498 	dqm_lock(dqm);
499 	pdd = kfd_get_process_device_data(q->device, q->process);
500 	if (!pdd) {
501 		retval = -ENODEV;
502 		goto out_unlock;
503 	}
504 	mqd_mgr = dqm->ops.get_mqd_manager(dqm,
505 			get_mqd_type_from_queue_type(q->properties.type));
506 	if (!mqd_mgr) {
507 		retval = -ENOMEM;
508 		goto out_unlock;
509 	}
510 	/*
511 	 * Eviction state logic: we only mark active queues as evicted
512 	 * to avoid the overhead of restoring inactive queues later
513 	 */
514 	if (pdd->qpd.evicted)
515 		q->properties.is_evicted = (q->properties.queue_size > 0 &&
516 					    q->properties.queue_percent > 0 &&
517 					    q->properties.queue_address != 0);
518 
519 	/* Save previous activity state for counters */
520 	prev_active = q->properties.is_active;
521 
522 	/* Make sure the queue is unmapped before updating the MQD */
523 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
524 		retval = unmap_queues_cpsch(dqm,
525 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
526 		if (retval) {
527 			pr_err("unmap queue failed\n");
528 			goto out_unlock;
529 		}
530 	} else if (prev_active &&
531 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
532 		    q->properties.type == KFD_QUEUE_TYPE_SDMA)) {
533 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
534 				KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
535 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
536 		if (retval) {
537 			pr_err("destroy mqd failed\n");
538 			goto out_unlock;
539 		}
540 	}
541 
542 	retval = mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties);
543 
544 	/*
545 	 * check active state vs. the previous state and modify
546 	 * counter accordingly. map_queues_cpsch uses the
547 	 * dqm->queue_count to determine whether a new runlist must be
548 	 * uploaded.
549 	 */
550 	if (q->properties.is_active && !prev_active)
551 		dqm->queue_count++;
552 	else if (!q->properties.is_active && prev_active)
553 		dqm->queue_count--;
554 
555 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS)
556 		retval = map_queues_cpsch(dqm);
557 	else if (q->properties.is_active &&
558 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
559 		  q->properties.type == KFD_QUEUE_TYPE_SDMA)) {
560 		if (WARN(q->process->mm != current->mm,
561 			 "should only run in user thread"))
562 			retval = -EFAULT;
563 		else
564 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
565 						   q->pipe, q->queue,
566 						   &q->properties, current->mm);
567 	}
568 
569 out_unlock:
570 	dqm_unlock(dqm);
571 	return retval;
572 }
573 
574 static struct mqd_manager *get_mqd_manager(
575 		struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
576 {
577 	struct mqd_manager *mqd_mgr;
578 
579 	if (WARN_ON(type >= KFD_MQD_TYPE_MAX))
580 		return NULL;
581 
582 	pr_debug("mqd type %d\n", type);
583 
584 	mqd_mgr = dqm->mqd_mgrs[type];
585 	if (!mqd_mgr) {
586 		mqd_mgr = mqd_manager_init(type, dqm->dev);
587 		if (!mqd_mgr)
588 			pr_err("mqd manager is NULL");
589 		dqm->mqd_mgrs[type] = mqd_mgr;
590 	}
591 
592 	return mqd_mgr;
593 }
594 
595 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
596 					struct qcm_process_device *qpd)
597 {
598 	struct queue *q;
599 	struct mqd_manager *mqd_mgr;
600 	struct kfd_process_device *pdd;
601 	int retval = 0;
602 
603 	dqm_lock(dqm);
604 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
605 		goto out;
606 
607 	pdd = qpd_to_pdd(qpd);
608 	pr_info_ratelimited("Evicting PASID %u queues\n",
609 			    pdd->process->pasid);
610 
611 	/* unactivate all active queues on the qpd */
612 	list_for_each_entry(q, &qpd->queues_list, list) {
613 		if (!q->properties.is_active)
614 			continue;
615 		mqd_mgr = dqm->ops.get_mqd_manager(dqm,
616 			get_mqd_type_from_queue_type(q->properties.type));
617 		if (!mqd_mgr) { /* should not be here */
618 			pr_err("Cannot evict queue, mqd mgr is NULL\n");
619 			retval = -ENOMEM;
620 			goto out;
621 		}
622 		q->properties.is_evicted = true;
623 		q->properties.is_active = false;
624 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
625 				KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
626 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
627 		if (retval)
628 			goto out;
629 		dqm->queue_count--;
630 	}
631 
632 out:
633 	dqm_unlock(dqm);
634 	return retval;
635 }
636 
637 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
638 				      struct qcm_process_device *qpd)
639 {
640 	struct queue *q;
641 	struct kfd_process_device *pdd;
642 	int retval = 0;
643 
644 	dqm_lock(dqm);
645 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
646 		goto out;
647 
648 	pdd = qpd_to_pdd(qpd);
649 	pr_info_ratelimited("Evicting PASID %u queues\n",
650 			    pdd->process->pasid);
651 
652 	/* unactivate all active queues on the qpd */
653 	list_for_each_entry(q, &qpd->queues_list, list) {
654 		if (!q->properties.is_active)
655 			continue;
656 		q->properties.is_evicted = true;
657 		q->properties.is_active = false;
658 		dqm->queue_count--;
659 	}
660 	retval = execute_queues_cpsch(dqm,
661 				qpd->is_debug ?
662 				KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
663 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
664 
665 out:
666 	dqm_unlock(dqm);
667 	return retval;
668 }
669 
670 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
671 					  struct qcm_process_device *qpd)
672 {
673 	struct mm_struct *mm = NULL;
674 	struct queue *q;
675 	struct mqd_manager *mqd_mgr;
676 	struct kfd_process_device *pdd;
677 	uint64_t pd_base;
678 	int retval = 0;
679 
680 	pdd = qpd_to_pdd(qpd);
681 	/* Retrieve PD base */
682 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
683 
684 	dqm_lock(dqm);
685 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
686 		goto out;
687 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
688 		qpd->evicted--;
689 		goto out;
690 	}
691 
692 	pr_info_ratelimited("Restoring PASID %u queues\n",
693 			    pdd->process->pasid);
694 
695 	/* Update PD Base in QPD */
696 	qpd->page_table_base = pd_base;
697 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
698 
699 	if (!list_empty(&qpd->queues_list)) {
700 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
701 				dqm->dev->kgd,
702 				qpd->vmid,
703 				qpd->page_table_base);
704 		kfd_flush_tlb(pdd);
705 	}
706 
707 	/* Take a safe reference to the mm_struct, which may otherwise
708 	 * disappear even while the kfd_process is still referenced.
709 	 */
710 	mm = get_task_mm(pdd->process->lead_thread);
711 	if (!mm) {
712 		retval = -EFAULT;
713 		goto out;
714 	}
715 
716 	/* activate all active queues on the qpd */
717 	list_for_each_entry(q, &qpd->queues_list, list) {
718 		if (!q->properties.is_evicted)
719 			continue;
720 		mqd_mgr = dqm->ops.get_mqd_manager(dqm,
721 			get_mqd_type_from_queue_type(q->properties.type));
722 		if (!mqd_mgr) { /* should not be here */
723 			pr_err("Cannot restore queue, mqd mgr is NULL\n");
724 			retval = -ENOMEM;
725 			goto out;
726 		}
727 		q->properties.is_evicted = false;
728 		q->properties.is_active = true;
729 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
730 				       q->queue, &q->properties, mm);
731 		if (retval)
732 			goto out;
733 		dqm->queue_count++;
734 	}
735 	qpd->evicted = 0;
736 out:
737 	if (mm)
738 		mmput(mm);
739 	dqm_unlock(dqm);
740 	return retval;
741 }
742 
743 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
744 					struct qcm_process_device *qpd)
745 {
746 	struct queue *q;
747 	struct kfd_process_device *pdd;
748 	uint64_t pd_base;
749 	int retval = 0;
750 
751 	pdd = qpd_to_pdd(qpd);
752 	/* Retrieve PD base */
753 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
754 
755 	dqm_lock(dqm);
756 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
757 		goto out;
758 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
759 		qpd->evicted--;
760 		goto out;
761 	}
762 
763 	pr_info_ratelimited("Restoring PASID %u queues\n",
764 			    pdd->process->pasid);
765 
766 	/* Update PD Base in QPD */
767 	qpd->page_table_base = pd_base;
768 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
769 
770 	/* activate all active queues on the qpd */
771 	list_for_each_entry(q, &qpd->queues_list, list) {
772 		if (!q->properties.is_evicted)
773 			continue;
774 		q->properties.is_evicted = false;
775 		q->properties.is_active = true;
776 		dqm->queue_count++;
777 	}
778 	retval = execute_queues_cpsch(dqm,
779 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
780 	if (!retval)
781 		qpd->evicted = 0;
782 out:
783 	dqm_unlock(dqm);
784 	return retval;
785 }
786 
787 static int register_process(struct device_queue_manager *dqm,
788 					struct qcm_process_device *qpd)
789 {
790 	struct device_process_node *n;
791 	struct kfd_process_device *pdd;
792 	uint64_t pd_base;
793 	int retval;
794 
795 	n = kzalloc(sizeof(*n), GFP_KERNEL);
796 	if (!n)
797 		return -ENOMEM;
798 
799 	n->qpd = qpd;
800 
801 	pdd = qpd_to_pdd(qpd);
802 	/* Retrieve PD base */
803 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
804 
805 	dqm_lock(dqm);
806 	list_add(&n->list, &dqm->queues);
807 
808 	/* Update PD Base in QPD */
809 	qpd->page_table_base = pd_base;
810 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
811 
812 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
813 
814 	dqm->processes_count++;
815 	kfd_inc_compute_active(dqm->dev);
816 
817 	dqm_unlock(dqm);
818 
819 	return retval;
820 }
821 
822 static int unregister_process(struct device_queue_manager *dqm,
823 					struct qcm_process_device *qpd)
824 {
825 	int retval;
826 	struct device_process_node *cur, *next;
827 
828 	pr_debug("qpd->queues_list is %s\n",
829 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
830 
831 	retval = 0;
832 	dqm_lock(dqm);
833 
834 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
835 		if (qpd == cur->qpd) {
836 			list_del(&cur->list);
837 			kfree(cur);
838 			dqm->processes_count--;
839 			kfd_dec_compute_active(dqm->dev);
840 			goto out;
841 		}
842 	}
843 	/* qpd not found in dqm list */
844 	retval = 1;
845 out:
846 	dqm_unlock(dqm);
847 	return retval;
848 }
849 
850 static int
851 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
852 			unsigned int vmid)
853 {
854 	return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
855 						dqm->dev->kgd, pasid, vmid);
856 }
857 
858 static void init_interrupts(struct device_queue_manager *dqm)
859 {
860 	unsigned int i;
861 
862 	for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
863 		if (is_pipe_enabled(dqm, 0, i))
864 			dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i);
865 }
866 
867 static int initialize_nocpsch(struct device_queue_manager *dqm)
868 {
869 	int pipe, queue;
870 
871 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
872 
873 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
874 					sizeof(unsigned int), GFP_KERNEL);
875 	if (!dqm->allocated_queues)
876 		return -ENOMEM;
877 
878 	mutex_init(&dqm->lock_hidden);
879 	INIT_LIST_HEAD(&dqm->queues);
880 	dqm->queue_count = dqm->next_pipe_to_allocate = 0;
881 	dqm->sdma_queue_count = 0;
882 
883 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
884 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
885 
886 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
887 			if (test_bit(pipe_offset + queue,
888 				     dqm->dev->shared_resources.queue_bitmap))
889 				dqm->allocated_queues[pipe] |= 1 << queue;
890 	}
891 
892 	dqm->vmid_bitmap = (1 << dqm->dev->vm_info.vmid_num_kfd) - 1;
893 	dqm->sdma_bitmap = (1 << get_num_sdma_queues(dqm)) - 1;
894 
895 	return 0;
896 }
897 
898 static void uninitialize(struct device_queue_manager *dqm)
899 {
900 	int i;
901 
902 	WARN_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
903 
904 	kfree(dqm->allocated_queues);
905 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
906 		kfree(dqm->mqd_mgrs[i]);
907 	mutex_destroy(&dqm->lock_hidden);
908 	kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
909 }
910 
911 static int start_nocpsch(struct device_queue_manager *dqm)
912 {
913 	init_interrupts(dqm);
914 	return pm_init(&dqm->packets, dqm);
915 }
916 
917 static int stop_nocpsch(struct device_queue_manager *dqm)
918 {
919 	pm_uninit(&dqm->packets);
920 	return 0;
921 }
922 
923 static int allocate_sdma_queue(struct device_queue_manager *dqm,
924 				unsigned int *sdma_queue_id)
925 {
926 	int bit;
927 
928 	if (dqm->sdma_bitmap == 0)
929 		return -ENOMEM;
930 
931 	bit = ffs(dqm->sdma_bitmap) - 1;
932 	dqm->sdma_bitmap &= ~(1 << bit);
933 	*sdma_queue_id = bit;
934 
935 	return 0;
936 }
937 
938 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
939 				unsigned int sdma_queue_id)
940 {
941 	if (sdma_queue_id >= get_num_sdma_queues(dqm))
942 		return;
943 	dqm->sdma_bitmap |= (1 << sdma_queue_id);
944 }
945 
946 static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
947 					struct queue *q,
948 					struct qcm_process_device *qpd)
949 {
950 	struct mqd_manager *mqd_mgr;
951 	int retval;
952 
953 	mqd_mgr = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
954 	if (!mqd_mgr)
955 		return -ENOMEM;
956 
957 	retval = allocate_sdma_queue(dqm, &q->sdma_id);
958 	if (retval)
959 		return retval;
960 
961 	q->properties.sdma_queue_id = q->sdma_id / get_num_sdma_engines(dqm);
962 	q->properties.sdma_engine_id = q->sdma_id % get_num_sdma_engines(dqm);
963 
964 	retval = allocate_doorbell(qpd, q);
965 	if (retval)
966 		goto out_deallocate_sdma_queue;
967 
968 	pr_debug("SDMA id is:    %d\n", q->sdma_id);
969 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
970 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
971 
972 	dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
973 	retval = mqd_mgr->init_mqd(mqd_mgr, &q->mqd, &q->mqd_mem_obj,
974 				&q->gart_mqd_addr, &q->properties);
975 	if (retval)
976 		goto out_deallocate_doorbell;
977 
978 	retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, 0, 0, &q->properties,
979 				NULL);
980 	if (retval)
981 		goto out_uninit_mqd;
982 
983 	return 0;
984 
985 out_uninit_mqd:
986 	mqd_mgr->uninit_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
987 out_deallocate_doorbell:
988 	deallocate_doorbell(qpd, q);
989 out_deallocate_sdma_queue:
990 	deallocate_sdma_queue(dqm, q->sdma_id);
991 
992 	return retval;
993 }
994 
995 /*
996  * Device Queue Manager implementation for cp scheduler
997  */
998 
999 static int set_sched_resources(struct device_queue_manager *dqm)
1000 {
1001 	int i, mec;
1002 	struct scheduling_resources res;
1003 
1004 	res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap;
1005 
1006 	res.queue_mask = 0;
1007 	for (i = 0; i < KGD_MAX_QUEUES; ++i) {
1008 		mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
1009 			/ dqm->dev->shared_resources.num_pipe_per_mec;
1010 
1011 		if (!test_bit(i, dqm->dev->shared_resources.queue_bitmap))
1012 			continue;
1013 
1014 		/* only acquire queues from the first MEC */
1015 		if (mec > 0)
1016 			continue;
1017 
1018 		/* This situation may be hit in the future if a new HW
1019 		 * generation exposes more than 64 queues. If so, the
1020 		 * definition of res.queue_mask needs updating
1021 		 */
1022 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1023 			pr_err("Invalid queue enabled by amdgpu: %d\n", i);
1024 			break;
1025 		}
1026 
1027 		res.queue_mask |= (1ull << i);
1028 	}
1029 	res.gws_mask = res.oac_mask = res.gds_heap_base =
1030 						res.gds_heap_size = 0;
1031 
1032 	pr_debug("Scheduling resources:\n"
1033 			"vmid mask: 0x%8X\n"
1034 			"queue mask: 0x%8llX\n",
1035 			res.vmid_mask, res.queue_mask);
1036 
1037 	return pm_send_set_resources(&dqm->packets, &res);
1038 }
1039 
1040 static int initialize_cpsch(struct device_queue_manager *dqm)
1041 {
1042 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1043 
1044 	mutex_init(&dqm->lock_hidden);
1045 	INIT_LIST_HEAD(&dqm->queues);
1046 	dqm->queue_count = dqm->processes_count = 0;
1047 	dqm->sdma_queue_count = 0;
1048 	dqm->active_runlist = false;
1049 	dqm->sdma_bitmap = (1 << get_num_sdma_queues(dqm)) - 1;
1050 
1051 	INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1052 
1053 	return 0;
1054 }
1055 
1056 static int start_cpsch(struct device_queue_manager *dqm)
1057 {
1058 	int retval;
1059 
1060 	retval = 0;
1061 
1062 	retval = pm_init(&dqm->packets, dqm);
1063 	if (retval)
1064 		goto fail_packet_manager_init;
1065 
1066 	retval = set_sched_resources(dqm);
1067 	if (retval)
1068 		goto fail_set_sched_resources;
1069 
1070 	pr_debug("Allocating fence memory\n");
1071 
1072 	/* allocate fence memory on the gart */
1073 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1074 					&dqm->fence_mem);
1075 
1076 	if (retval)
1077 		goto fail_allocate_vidmem;
1078 
1079 	dqm->fence_addr = dqm->fence_mem->cpu_ptr;
1080 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1081 
1082 	init_interrupts(dqm);
1083 
1084 	dqm_lock(dqm);
1085 	/* clear hang status when driver try to start the hw scheduler */
1086 	dqm->is_hws_hang = false;
1087 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1088 	dqm_unlock(dqm);
1089 
1090 	return 0;
1091 fail_allocate_vidmem:
1092 fail_set_sched_resources:
1093 	pm_uninit(&dqm->packets);
1094 fail_packet_manager_init:
1095 	return retval;
1096 }
1097 
1098 static int stop_cpsch(struct device_queue_manager *dqm)
1099 {
1100 	dqm_lock(dqm);
1101 	unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1102 	dqm_unlock(dqm);
1103 
1104 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1105 	pm_uninit(&dqm->packets);
1106 
1107 	return 0;
1108 }
1109 
1110 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1111 					struct kernel_queue *kq,
1112 					struct qcm_process_device *qpd)
1113 {
1114 	dqm_lock(dqm);
1115 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1116 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1117 				dqm->total_queue_count);
1118 		dqm_unlock(dqm);
1119 		return -EPERM;
1120 	}
1121 
1122 	/*
1123 	 * Unconditionally increment this counter, regardless of the queue's
1124 	 * type or whether the queue is active.
1125 	 */
1126 	dqm->total_queue_count++;
1127 	pr_debug("Total of %d queues are accountable so far\n",
1128 			dqm->total_queue_count);
1129 
1130 	list_add(&kq->list, &qpd->priv_queue_list);
1131 	dqm->queue_count++;
1132 	qpd->is_debug = true;
1133 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1134 	dqm_unlock(dqm);
1135 
1136 	return 0;
1137 }
1138 
1139 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1140 					struct kernel_queue *kq,
1141 					struct qcm_process_device *qpd)
1142 {
1143 	dqm_lock(dqm);
1144 	list_del(&kq->list);
1145 	dqm->queue_count--;
1146 	qpd->is_debug = false;
1147 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1148 	/*
1149 	 * Unconditionally decrement this counter, regardless of the queue's
1150 	 * type.
1151 	 */
1152 	dqm->total_queue_count--;
1153 	pr_debug("Total of %d queues are accountable so far\n",
1154 			dqm->total_queue_count);
1155 	dqm_unlock(dqm);
1156 }
1157 
1158 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1159 			struct qcm_process_device *qpd)
1160 {
1161 	int retval;
1162 	struct mqd_manager *mqd_mgr;
1163 
1164 	retval = 0;
1165 
1166 	dqm_lock(dqm);
1167 
1168 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1169 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1170 				dqm->total_queue_count);
1171 		retval = -EPERM;
1172 		goto out_unlock;
1173 	}
1174 
1175 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1176 		retval = allocate_sdma_queue(dqm, &q->sdma_id);
1177 		if (retval)
1178 			goto out_unlock;
1179 		q->properties.sdma_queue_id =
1180 			q->sdma_id / get_num_sdma_engines(dqm);
1181 		q->properties.sdma_engine_id =
1182 			q->sdma_id % get_num_sdma_engines(dqm);
1183 	}
1184 
1185 	retval = allocate_doorbell(qpd, q);
1186 	if (retval)
1187 		goto out_deallocate_sdma_queue;
1188 
1189 	mqd_mgr = dqm->ops.get_mqd_manager(dqm,
1190 			get_mqd_type_from_queue_type(q->properties.type));
1191 
1192 	if (!mqd_mgr) {
1193 		retval = -ENOMEM;
1194 		goto out_deallocate_doorbell;
1195 	}
1196 	/*
1197 	 * Eviction state logic: we only mark active queues as evicted
1198 	 * to avoid the overhead of restoring inactive queues later
1199 	 */
1200 	if (qpd->evicted)
1201 		q->properties.is_evicted = (q->properties.queue_size > 0 &&
1202 					    q->properties.queue_percent > 0 &&
1203 					    q->properties.queue_address != 0);
1204 
1205 	dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1206 
1207 	q->properties.tba_addr = qpd->tba_addr;
1208 	q->properties.tma_addr = qpd->tma_addr;
1209 	retval = mqd_mgr->init_mqd(mqd_mgr, &q->mqd, &q->mqd_mem_obj,
1210 				&q->gart_mqd_addr, &q->properties);
1211 	if (retval)
1212 		goto out_deallocate_doorbell;
1213 
1214 	list_add(&q->list, &qpd->queues_list);
1215 	qpd->queue_count++;
1216 	if (q->properties.is_active) {
1217 		dqm->queue_count++;
1218 		retval = execute_queues_cpsch(dqm,
1219 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1220 	}
1221 
1222 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1223 		dqm->sdma_queue_count++;
1224 	/*
1225 	 * Unconditionally increment this counter, regardless of the queue's
1226 	 * type or whether the queue is active.
1227 	 */
1228 	dqm->total_queue_count++;
1229 
1230 	pr_debug("Total of %d queues are accountable so far\n",
1231 			dqm->total_queue_count);
1232 
1233 	dqm_unlock(dqm);
1234 	return retval;
1235 
1236 out_deallocate_doorbell:
1237 	deallocate_doorbell(qpd, q);
1238 out_deallocate_sdma_queue:
1239 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1240 		deallocate_sdma_queue(dqm, q->sdma_id);
1241 out_unlock:
1242 	dqm_unlock(dqm);
1243 
1244 	return retval;
1245 }
1246 
1247 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
1248 				unsigned int fence_value,
1249 				unsigned int timeout_ms)
1250 {
1251 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1252 
1253 	while (*fence_addr != fence_value) {
1254 		if (time_after(jiffies, end_jiffies)) {
1255 			pr_err("qcm fence wait loop timeout expired\n");
1256 			/* In HWS case, this is used to halt the driver thread
1257 			 * in order not to mess up CP states before doing
1258 			 * scandumps for FW debugging.
1259 			 */
1260 			while (halt_if_hws_hang)
1261 				schedule();
1262 
1263 			return -ETIME;
1264 		}
1265 		schedule();
1266 	}
1267 
1268 	return 0;
1269 }
1270 
1271 static int unmap_sdma_queues(struct device_queue_manager *dqm,
1272 				unsigned int sdma_engine)
1273 {
1274 	return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
1275 			KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, false,
1276 			sdma_engine);
1277 }
1278 
1279 /* dqm->lock mutex has to be locked before calling this function */
1280 static int map_queues_cpsch(struct device_queue_manager *dqm)
1281 {
1282 	int retval;
1283 
1284 	if (dqm->queue_count <= 0 || dqm->processes_count <= 0)
1285 		return 0;
1286 
1287 	if (dqm->active_runlist)
1288 		return 0;
1289 
1290 	retval = pm_send_runlist(&dqm->packets, &dqm->queues);
1291 	if (retval) {
1292 		pr_err("failed to execute runlist\n");
1293 		return retval;
1294 	}
1295 	dqm->active_runlist = true;
1296 
1297 	return retval;
1298 }
1299 
1300 /* dqm->lock mutex has to be locked before calling this function */
1301 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1302 				enum kfd_unmap_queues_filter filter,
1303 				uint32_t filter_param)
1304 {
1305 	int retval = 0;
1306 
1307 	if (dqm->is_hws_hang)
1308 		return -EIO;
1309 	if (!dqm->active_runlist)
1310 		return retval;
1311 
1312 	pr_debug("Before destroying queues, sdma queue count is : %u\n",
1313 		dqm->sdma_queue_count);
1314 
1315 	if (dqm->sdma_queue_count > 0) {
1316 		unmap_sdma_queues(dqm, 0);
1317 		unmap_sdma_queues(dqm, 1);
1318 	}
1319 
1320 	retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
1321 			filter, filter_param, false, 0);
1322 	if (retval)
1323 		return retval;
1324 
1325 	*dqm->fence_addr = KFD_FENCE_INIT;
1326 	pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
1327 				KFD_FENCE_COMPLETED);
1328 	/* should be timed out */
1329 	retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
1330 				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
1331 	if (retval)
1332 		return retval;
1333 
1334 	pm_release_ib(&dqm->packets);
1335 	dqm->active_runlist = false;
1336 
1337 	return retval;
1338 }
1339 
1340 /* dqm->lock mutex has to be locked before calling this function */
1341 static int execute_queues_cpsch(struct device_queue_manager *dqm,
1342 				enum kfd_unmap_queues_filter filter,
1343 				uint32_t filter_param)
1344 {
1345 	int retval;
1346 
1347 	if (dqm->is_hws_hang)
1348 		return -EIO;
1349 	retval = unmap_queues_cpsch(dqm, filter, filter_param);
1350 	if (retval) {
1351 		pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1352 		dqm->is_hws_hang = true;
1353 		schedule_work(&dqm->hw_exception_work);
1354 		return retval;
1355 	}
1356 
1357 	return map_queues_cpsch(dqm);
1358 }
1359 
1360 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1361 				struct qcm_process_device *qpd,
1362 				struct queue *q)
1363 {
1364 	int retval;
1365 	struct mqd_manager *mqd_mgr;
1366 
1367 	retval = 0;
1368 
1369 	/* remove queue from list to prevent rescheduling after preemption */
1370 	dqm_lock(dqm);
1371 
1372 	if (qpd->is_debug) {
1373 		/*
1374 		 * error, currently we do not allow to destroy a queue
1375 		 * of a currently debugged process
1376 		 */
1377 		retval = -EBUSY;
1378 		goto failed_try_destroy_debugged_queue;
1379 
1380 	}
1381 
1382 	mqd_mgr = dqm->ops.get_mqd_manager(dqm,
1383 			get_mqd_type_from_queue_type(q->properties.type));
1384 	if (!mqd_mgr) {
1385 		retval = -ENOMEM;
1386 		goto failed;
1387 	}
1388 
1389 	deallocate_doorbell(qpd, q);
1390 
1391 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1392 		dqm->sdma_queue_count--;
1393 		deallocate_sdma_queue(dqm, q->sdma_id);
1394 	}
1395 
1396 	list_del(&q->list);
1397 	qpd->queue_count--;
1398 	if (q->properties.is_active) {
1399 		dqm->queue_count--;
1400 		retval = execute_queues_cpsch(dqm,
1401 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1402 		if (retval == -ETIME)
1403 			qpd->reset_wavefronts = true;
1404 	}
1405 
1406 	mqd_mgr->uninit_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1407 
1408 	/*
1409 	 * Unconditionally decrement this counter, regardless of the queue's
1410 	 * type
1411 	 */
1412 	dqm->total_queue_count--;
1413 	pr_debug("Total of %d queues are accountable so far\n",
1414 			dqm->total_queue_count);
1415 
1416 	dqm_unlock(dqm);
1417 
1418 	return retval;
1419 
1420 failed:
1421 failed_try_destroy_debugged_queue:
1422 
1423 	dqm_unlock(dqm);
1424 	return retval;
1425 }
1426 
1427 /*
1428  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1429  * stay in user mode.
1430  */
1431 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1432 /* APE1 limit is inclusive and 64K aligned. */
1433 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1434 
1435 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1436 				   struct qcm_process_device *qpd,
1437 				   enum cache_policy default_policy,
1438 				   enum cache_policy alternate_policy,
1439 				   void __user *alternate_aperture_base,
1440 				   uint64_t alternate_aperture_size)
1441 {
1442 	bool retval = true;
1443 
1444 	if (!dqm->asic_ops.set_cache_memory_policy)
1445 		return retval;
1446 
1447 	dqm_lock(dqm);
1448 
1449 	if (alternate_aperture_size == 0) {
1450 		/* base > limit disables APE1 */
1451 		qpd->sh_mem_ape1_base = 1;
1452 		qpd->sh_mem_ape1_limit = 0;
1453 	} else {
1454 		/*
1455 		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1456 		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
1457 		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1458 		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1459 		 * Verify that the base and size parameters can be
1460 		 * represented in this format and convert them.
1461 		 * Additionally restrict APE1 to user-mode addresses.
1462 		 */
1463 
1464 		uint64_t base = (uintptr_t)alternate_aperture_base;
1465 		uint64_t limit = base + alternate_aperture_size - 1;
1466 
1467 		if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
1468 		   (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
1469 			retval = false;
1470 			goto out;
1471 		}
1472 
1473 		qpd->sh_mem_ape1_base = base >> 16;
1474 		qpd->sh_mem_ape1_limit = limit >> 16;
1475 	}
1476 
1477 	retval = dqm->asic_ops.set_cache_memory_policy(
1478 			dqm,
1479 			qpd,
1480 			default_policy,
1481 			alternate_policy,
1482 			alternate_aperture_base,
1483 			alternate_aperture_size);
1484 
1485 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1486 		program_sh_mem_settings(dqm, qpd);
1487 
1488 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1489 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1490 		qpd->sh_mem_ape1_limit);
1491 
1492 out:
1493 	dqm_unlock(dqm);
1494 	return retval;
1495 }
1496 
1497 static int set_trap_handler(struct device_queue_manager *dqm,
1498 				struct qcm_process_device *qpd,
1499 				uint64_t tba_addr,
1500 				uint64_t tma_addr)
1501 {
1502 	uint64_t *tma;
1503 
1504 	if (dqm->dev->cwsr_enabled) {
1505 		/* Jump from CWSR trap handler to user trap */
1506 		tma = (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1507 		tma[0] = tba_addr;
1508 		tma[1] = tma_addr;
1509 	} else {
1510 		qpd->tba_addr = tba_addr;
1511 		qpd->tma_addr = tma_addr;
1512 	}
1513 
1514 	return 0;
1515 }
1516 
1517 static int process_termination_nocpsch(struct device_queue_manager *dqm,
1518 		struct qcm_process_device *qpd)
1519 {
1520 	struct queue *q, *next;
1521 	struct device_process_node *cur, *next_dpn;
1522 	int retval = 0;
1523 
1524 	dqm_lock(dqm);
1525 
1526 	/* Clear all user mode queues */
1527 	list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1528 		int ret;
1529 
1530 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
1531 		if (ret)
1532 			retval = ret;
1533 	}
1534 
1535 	/* Unregister process */
1536 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1537 		if (qpd == cur->qpd) {
1538 			list_del(&cur->list);
1539 			kfree(cur);
1540 			dqm->processes_count--;
1541 			kfd_dec_compute_active(dqm->dev);
1542 			break;
1543 		}
1544 	}
1545 
1546 	dqm_unlock(dqm);
1547 	return retval;
1548 }
1549 
1550 static int get_wave_state(struct device_queue_manager *dqm,
1551 			  struct queue *q,
1552 			  void __user *ctl_stack,
1553 			  u32 *ctl_stack_used_size,
1554 			  u32 *save_area_used_size)
1555 {
1556 	struct mqd_manager *mqd_mgr;
1557 	int r;
1558 
1559 	dqm_lock(dqm);
1560 
1561 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
1562 	    q->properties.is_active || !q->device->cwsr_enabled) {
1563 		r = -EINVAL;
1564 		goto dqm_unlock;
1565 	}
1566 
1567 	mqd_mgr = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
1568 	if (!mqd_mgr) {
1569 		r = -ENOMEM;
1570 		goto dqm_unlock;
1571 	}
1572 
1573 	if (!mqd_mgr->get_wave_state) {
1574 		r = -EINVAL;
1575 		goto dqm_unlock;
1576 	}
1577 
1578 	r = mqd_mgr->get_wave_state(mqd_mgr, q->mqd, ctl_stack,
1579 			ctl_stack_used_size, save_area_used_size);
1580 
1581 dqm_unlock:
1582 	dqm_unlock(dqm);
1583 	return r;
1584 }
1585 
1586 static int process_termination_cpsch(struct device_queue_manager *dqm,
1587 		struct qcm_process_device *qpd)
1588 {
1589 	int retval;
1590 	struct queue *q, *next;
1591 	struct kernel_queue *kq, *kq_next;
1592 	struct mqd_manager *mqd_mgr;
1593 	struct device_process_node *cur, *next_dpn;
1594 	enum kfd_unmap_queues_filter filter =
1595 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
1596 
1597 	retval = 0;
1598 
1599 	dqm_lock(dqm);
1600 
1601 	/* Clean all kernel queues */
1602 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
1603 		list_del(&kq->list);
1604 		dqm->queue_count--;
1605 		qpd->is_debug = false;
1606 		dqm->total_queue_count--;
1607 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
1608 	}
1609 
1610 	/* Clear all user mode queues */
1611 	list_for_each_entry(q, &qpd->queues_list, list) {
1612 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1613 			dqm->sdma_queue_count--;
1614 			deallocate_sdma_queue(dqm, q->sdma_id);
1615 		}
1616 
1617 		if (q->properties.is_active)
1618 			dqm->queue_count--;
1619 
1620 		dqm->total_queue_count--;
1621 	}
1622 
1623 	/* Unregister process */
1624 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1625 		if (qpd == cur->qpd) {
1626 			list_del(&cur->list);
1627 			kfree(cur);
1628 			dqm->processes_count--;
1629 			kfd_dec_compute_active(dqm->dev);
1630 			break;
1631 		}
1632 	}
1633 
1634 	retval = execute_queues_cpsch(dqm, filter, 0);
1635 	if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
1636 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
1637 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
1638 		qpd->reset_wavefronts = false;
1639 	}
1640 
1641 	/* lastly, free mqd resources */
1642 	list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1643 		mqd_mgr = dqm->ops.get_mqd_manager(dqm,
1644 			get_mqd_type_from_queue_type(q->properties.type));
1645 		if (!mqd_mgr) {
1646 			retval = -ENOMEM;
1647 			goto out;
1648 		}
1649 		list_del(&q->list);
1650 		qpd->queue_count--;
1651 		mqd_mgr->uninit_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1652 	}
1653 
1654 out:
1655 	dqm_unlock(dqm);
1656 	return retval;
1657 }
1658 
1659 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1660 {
1661 	struct device_queue_manager *dqm;
1662 
1663 	pr_debug("Loading device queue manager\n");
1664 
1665 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
1666 	if (!dqm)
1667 		return NULL;
1668 
1669 	switch (dev->device_info->asic_family) {
1670 	/* HWS is not available on Hawaii. */
1671 	case CHIP_HAWAII:
1672 	/* HWS depends on CWSR for timely dequeue. CWSR is not
1673 	 * available on Tonga.
1674 	 *
1675 	 * FIXME: This argument also applies to Kaveri.
1676 	 */
1677 	case CHIP_TONGA:
1678 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
1679 		break;
1680 	default:
1681 		dqm->sched_policy = sched_policy;
1682 		break;
1683 	}
1684 
1685 	dqm->dev = dev;
1686 	switch (dqm->sched_policy) {
1687 	case KFD_SCHED_POLICY_HWS:
1688 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1689 		/* initialize dqm for cp scheduling */
1690 		dqm->ops.create_queue = create_queue_cpsch;
1691 		dqm->ops.initialize = initialize_cpsch;
1692 		dqm->ops.start = start_cpsch;
1693 		dqm->ops.stop = stop_cpsch;
1694 		dqm->ops.destroy_queue = destroy_queue_cpsch;
1695 		dqm->ops.update_queue = update_queue;
1696 		dqm->ops.get_mqd_manager = get_mqd_manager;
1697 		dqm->ops.register_process = register_process;
1698 		dqm->ops.unregister_process = unregister_process;
1699 		dqm->ops.uninitialize = uninitialize;
1700 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1701 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1702 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1703 		dqm->ops.set_trap_handler = set_trap_handler;
1704 		dqm->ops.process_termination = process_termination_cpsch;
1705 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
1706 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
1707 		dqm->ops.get_wave_state = get_wave_state;
1708 		break;
1709 	case KFD_SCHED_POLICY_NO_HWS:
1710 		/* initialize dqm for no cp scheduling */
1711 		dqm->ops.start = start_nocpsch;
1712 		dqm->ops.stop = stop_nocpsch;
1713 		dqm->ops.create_queue = create_queue_nocpsch;
1714 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
1715 		dqm->ops.update_queue = update_queue;
1716 		dqm->ops.get_mqd_manager = get_mqd_manager;
1717 		dqm->ops.register_process = register_process;
1718 		dqm->ops.unregister_process = unregister_process;
1719 		dqm->ops.initialize = initialize_nocpsch;
1720 		dqm->ops.uninitialize = uninitialize;
1721 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1722 		dqm->ops.set_trap_handler = set_trap_handler;
1723 		dqm->ops.process_termination = process_termination_nocpsch;
1724 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
1725 		dqm->ops.restore_process_queues =
1726 			restore_process_queues_nocpsch;
1727 		dqm->ops.get_wave_state = get_wave_state;
1728 		break;
1729 	default:
1730 		pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
1731 		goto out_free;
1732 	}
1733 
1734 	switch (dev->device_info->asic_family) {
1735 	case CHIP_CARRIZO:
1736 		device_queue_manager_init_vi(&dqm->asic_ops);
1737 		break;
1738 
1739 	case CHIP_KAVERI:
1740 		device_queue_manager_init_cik(&dqm->asic_ops);
1741 		break;
1742 
1743 	case CHIP_HAWAII:
1744 		device_queue_manager_init_cik_hawaii(&dqm->asic_ops);
1745 		break;
1746 
1747 	case CHIP_TONGA:
1748 	case CHIP_FIJI:
1749 	case CHIP_POLARIS10:
1750 	case CHIP_POLARIS11:
1751 	case CHIP_POLARIS12:
1752 		device_queue_manager_init_vi_tonga(&dqm->asic_ops);
1753 		break;
1754 
1755 	case CHIP_VEGA10:
1756 	case CHIP_VEGA12:
1757 	case CHIP_VEGA20:
1758 	case CHIP_RAVEN:
1759 		device_queue_manager_init_v9(&dqm->asic_ops);
1760 		break;
1761 	default:
1762 		WARN(1, "Unexpected ASIC family %u",
1763 		     dev->device_info->asic_family);
1764 		goto out_free;
1765 	}
1766 
1767 	if (!dqm->ops.initialize(dqm))
1768 		return dqm;
1769 
1770 out_free:
1771 	kfree(dqm);
1772 	return NULL;
1773 }
1774 
1775 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1776 {
1777 	dqm->ops.uninitialize(dqm);
1778 	kfree(dqm);
1779 }
1780 
1781 int kfd_process_vm_fault(struct device_queue_manager *dqm,
1782 			 unsigned int pasid)
1783 {
1784 	struct kfd_process_device *pdd;
1785 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1786 	int ret = 0;
1787 
1788 	if (!p)
1789 		return -EINVAL;
1790 	pdd = kfd_get_process_device_data(dqm->dev, p);
1791 	if (pdd)
1792 		ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
1793 	kfd_unref_process(p);
1794 
1795 	return ret;
1796 }
1797 
1798 static void kfd_process_hw_exception(struct work_struct *work)
1799 {
1800 	struct device_queue_manager *dqm = container_of(work,
1801 			struct device_queue_manager, hw_exception_work);
1802 	amdgpu_amdkfd_gpu_reset(dqm->dev->kgd);
1803 }
1804 
1805 #if defined(CONFIG_DEBUG_FS)
1806 
1807 static void seq_reg_dump(struct seq_file *m,
1808 			 uint32_t (*dump)[2], uint32_t n_regs)
1809 {
1810 	uint32_t i, count;
1811 
1812 	for (i = 0, count = 0; i < n_regs; i++) {
1813 		if (count == 0 ||
1814 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
1815 			seq_printf(m, "%s    %08x: %08x",
1816 				   i ? "\n" : "",
1817 				   dump[i][0], dump[i][1]);
1818 			count = 7;
1819 		} else {
1820 			seq_printf(m, " %08x", dump[i][1]);
1821 			count--;
1822 		}
1823 	}
1824 
1825 	seq_puts(m, "\n");
1826 }
1827 
1828 int dqm_debugfs_hqds(struct seq_file *m, void *data)
1829 {
1830 	struct device_queue_manager *dqm = data;
1831 	uint32_t (*dump)[2], n_regs;
1832 	int pipe, queue;
1833 	int r = 0;
1834 
1835 	r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->kgd,
1836 		KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE, &dump, &n_regs);
1837 	if (!r) {
1838 		seq_printf(m, "  HIQ on MEC %d Pipe %d Queue %d\n",
1839 				KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1,
1840 				KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm),
1841 				KFD_CIK_HIQ_QUEUE);
1842 		seq_reg_dump(m, dump, n_regs);
1843 
1844 		kfree(dump);
1845 	}
1846 
1847 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1848 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1849 
1850 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
1851 			if (!test_bit(pipe_offset + queue,
1852 				      dqm->dev->shared_resources.queue_bitmap))
1853 				continue;
1854 
1855 			r = dqm->dev->kfd2kgd->hqd_dump(
1856 				dqm->dev->kgd, pipe, queue, &dump, &n_regs);
1857 			if (r)
1858 				break;
1859 
1860 			seq_printf(m, "  CP Pipe %d, Queue %d\n",
1861 				  pipe, queue);
1862 			seq_reg_dump(m, dump, n_regs);
1863 
1864 			kfree(dump);
1865 		}
1866 	}
1867 
1868 	for (pipe = 0; pipe < get_num_sdma_engines(dqm); pipe++) {
1869 		for (queue = 0;
1870 		     queue < dqm->dev->device_info->num_sdma_queues_per_engine;
1871 		     queue++) {
1872 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
1873 				dqm->dev->kgd, pipe, queue, &dump, &n_regs);
1874 			if (r)
1875 				break;
1876 
1877 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
1878 				  pipe, queue);
1879 			seq_reg_dump(m, dump, n_regs);
1880 
1881 			kfree(dump);
1882 		}
1883 	}
1884 
1885 	return r;
1886 }
1887 
1888 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm)
1889 {
1890 	int r = 0;
1891 
1892 	dqm_lock(dqm);
1893 	dqm->active_runlist = true;
1894 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1895 	dqm_unlock(dqm);
1896 
1897 	return r;
1898 }
1899 
1900 #endif
1901