1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 
24 #include <linux/ratelimit.h>
25 #include <linux/printk.h>
26 #include <linux/slab.h>
27 #include <linux/list.h>
28 #include <linux/types.h>
29 #include <linux/bitops.h>
30 #include <linux/sched.h>
31 #include "kfd_priv.h"
32 #include "kfd_device_queue_manager.h"
33 #include "kfd_mqd_manager.h"
34 #include "cik_regs.h"
35 #include "kfd_kernel_queue.h"
36 #include "amdgpu_amdkfd.h"
37 
38 /* Size of the per-pipe EOP queue */
39 #define CIK_HPD_EOP_BYTES_LOG2 11
40 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
41 
42 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
43 					unsigned int pasid, unsigned int vmid);
44 
45 static int execute_queues_cpsch(struct device_queue_manager *dqm,
46 				enum kfd_unmap_queues_filter filter,
47 				uint32_t filter_param);
48 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
49 				enum kfd_unmap_queues_filter filter,
50 				uint32_t filter_param);
51 
52 static int map_queues_cpsch(struct device_queue_manager *dqm);
53 
54 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
55 				struct queue *q);
56 
57 static inline void deallocate_hqd(struct device_queue_manager *dqm,
58 				struct queue *q);
59 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
60 static int allocate_sdma_queue(struct device_queue_manager *dqm,
61 				struct queue *q);
62 static void kfd_process_hw_exception(struct work_struct *work);
63 
64 static inline
65 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
66 {
67 	if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
68 		return KFD_MQD_TYPE_SDMA;
69 	return KFD_MQD_TYPE_CP;
70 }
71 
72 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
73 {
74 	int i;
75 	int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec
76 		+ pipe * dqm->dev->shared_resources.num_queue_per_pipe;
77 
78 	/* queue is available for KFD usage if bit is 1 */
79 	for (i = 0; i <  dqm->dev->shared_resources.num_queue_per_pipe; ++i)
80 		if (test_bit(pipe_offset + i,
81 			      dqm->dev->shared_resources.cp_queue_bitmap))
82 			return true;
83 	return false;
84 }
85 
86 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
87 {
88 	return bitmap_weight(dqm->dev->shared_resources.cp_queue_bitmap,
89 				KGD_MAX_QUEUES);
90 }
91 
92 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
93 {
94 	return dqm->dev->shared_resources.num_queue_per_pipe;
95 }
96 
97 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
98 {
99 	return dqm->dev->shared_resources.num_pipe_per_mec;
100 }
101 
102 static unsigned int get_num_sdma_engines(struct device_queue_manager *dqm)
103 {
104 	return dqm->dev->device_info->num_sdma_engines;
105 }
106 
107 static unsigned int get_num_xgmi_sdma_engines(struct device_queue_manager *dqm)
108 {
109 	return dqm->dev->device_info->num_xgmi_sdma_engines;
110 }
111 
112 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
113 {
114 	return get_num_sdma_engines(dqm) + get_num_xgmi_sdma_engines(dqm);
115 }
116 
117 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
118 {
119 	return dqm->dev->device_info->num_sdma_engines
120 			* dqm->dev->device_info->num_sdma_queues_per_engine;
121 }
122 
123 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
124 {
125 	return dqm->dev->device_info->num_xgmi_sdma_engines
126 			* dqm->dev->device_info->num_sdma_queues_per_engine;
127 }
128 
129 void program_sh_mem_settings(struct device_queue_manager *dqm,
130 					struct qcm_process_device *qpd)
131 {
132 	return dqm->dev->kfd2kgd->program_sh_mem_settings(
133 						dqm->dev->kgd, qpd->vmid,
134 						qpd->sh_mem_config,
135 						qpd->sh_mem_ape1_base,
136 						qpd->sh_mem_ape1_limit,
137 						qpd->sh_mem_bases);
138 }
139 
140 void increment_queue_count(struct device_queue_manager *dqm,
141 			enum kfd_queue_type type)
142 {
143 	dqm->active_queue_count++;
144 	if (type == KFD_QUEUE_TYPE_COMPUTE || type == KFD_QUEUE_TYPE_DIQ)
145 		dqm->active_cp_queue_count++;
146 }
147 
148 void decrement_queue_count(struct device_queue_manager *dqm,
149 			enum kfd_queue_type type)
150 {
151 	dqm->active_queue_count--;
152 	if (type == KFD_QUEUE_TYPE_COMPUTE || type == KFD_QUEUE_TYPE_DIQ)
153 		dqm->active_cp_queue_count--;
154 }
155 
156 static int allocate_doorbell(struct qcm_process_device *qpd, struct queue *q)
157 {
158 	struct kfd_dev *dev = qpd->dqm->dev;
159 
160 	if (!KFD_IS_SOC15(dev->device_info->asic_family)) {
161 		/* On pre-SOC15 chips we need to use the queue ID to
162 		 * preserve the user mode ABI.
163 		 */
164 		q->doorbell_id = q->properties.queue_id;
165 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
166 			q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
167 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
168 		 * doorbell assignments based on the engine and queue id.
169 		 * The doobell index distance between RLC (2*i) and (2*i+1)
170 		 * for a SDMA engine is 512.
171 		 */
172 		uint32_t *idx_offset =
173 				dev->shared_resources.sdma_doorbell_idx;
174 
175 		q->doorbell_id = idx_offset[q->properties.sdma_engine_id]
176 			+ (q->properties.sdma_queue_id & 1)
177 			* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
178 			+ (q->properties.sdma_queue_id >> 1);
179 	} else {
180 		/* For CP queues on SOC15 reserve a free doorbell ID */
181 		unsigned int found;
182 
183 		found = find_first_zero_bit(qpd->doorbell_bitmap,
184 					    KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
185 		if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
186 			pr_debug("No doorbells available");
187 			return -EBUSY;
188 		}
189 		set_bit(found, qpd->doorbell_bitmap);
190 		q->doorbell_id = found;
191 	}
192 
193 	q->properties.doorbell_off =
194 		kfd_get_doorbell_dw_offset_in_bar(dev, q->process,
195 					  q->doorbell_id);
196 
197 	return 0;
198 }
199 
200 static void deallocate_doorbell(struct qcm_process_device *qpd,
201 				struct queue *q)
202 {
203 	unsigned int old;
204 	struct kfd_dev *dev = qpd->dqm->dev;
205 
206 	if (!KFD_IS_SOC15(dev->device_info->asic_family) ||
207 	    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
208 	    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
209 		return;
210 
211 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
212 	WARN_ON(!old);
213 }
214 
215 static int allocate_vmid(struct device_queue_manager *dqm,
216 			struct qcm_process_device *qpd,
217 			struct queue *q)
218 {
219 	int allocated_vmid = -1, i;
220 
221 	for (i = dqm->dev->vm_info.first_vmid_kfd;
222 			i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
223 		if (!dqm->vmid_pasid[i]) {
224 			allocated_vmid = i;
225 			break;
226 		}
227 	}
228 
229 	if (allocated_vmid < 0) {
230 		pr_err("no more vmid to allocate\n");
231 		return -ENOSPC;
232 	}
233 
234 	pr_debug("vmid allocated: %d\n", allocated_vmid);
235 
236 	dqm->vmid_pasid[allocated_vmid] = q->process->pasid;
237 
238 	set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid);
239 
240 	qpd->vmid = allocated_vmid;
241 	q->properties.vmid = allocated_vmid;
242 
243 	program_sh_mem_settings(dqm, qpd);
244 
245 	/* qpd->page_table_base is set earlier when register_process()
246 	 * is called, i.e. when the first queue is created.
247 	 */
248 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->kgd,
249 			qpd->vmid,
250 			qpd->page_table_base);
251 	/* invalidate the VM context after pasid and vmid mapping is set up */
252 	kfd_flush_tlb(qpd_to_pdd(qpd));
253 
254 	if (dqm->dev->kfd2kgd->set_scratch_backing_va)
255 		dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->kgd,
256 				qpd->sh_hidden_private_base, qpd->vmid);
257 
258 	return 0;
259 }
260 
261 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev,
262 				struct qcm_process_device *qpd)
263 {
264 	const struct packet_manager_funcs *pmf = qpd->dqm->packets.pmf;
265 	int ret;
266 
267 	if (!qpd->ib_kaddr)
268 		return -ENOMEM;
269 
270 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
271 	if (ret)
272 		return ret;
273 
274 	return amdgpu_amdkfd_submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid,
275 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
276 				pmf->release_mem_size / sizeof(uint32_t));
277 }
278 
279 static void deallocate_vmid(struct device_queue_manager *dqm,
280 				struct qcm_process_device *qpd,
281 				struct queue *q)
282 {
283 	/* On GFX v7, CP doesn't flush TC at dequeue */
284 	if (q->device->device_info->asic_family == CHIP_HAWAII)
285 		if (flush_texture_cache_nocpsch(q->device, qpd))
286 			pr_err("Failed to flush TC\n");
287 
288 	kfd_flush_tlb(qpd_to_pdd(qpd));
289 
290 	/* Release the vmid mapping */
291 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
292 	dqm->vmid_pasid[qpd->vmid] = 0;
293 
294 	qpd->vmid = 0;
295 	q->properties.vmid = 0;
296 }
297 
298 static int create_queue_nocpsch(struct device_queue_manager *dqm,
299 				struct queue *q,
300 				struct qcm_process_device *qpd)
301 {
302 	struct mqd_manager *mqd_mgr;
303 	int retval;
304 
305 	dqm_lock(dqm);
306 
307 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
308 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
309 				dqm->total_queue_count);
310 		retval = -EPERM;
311 		goto out_unlock;
312 	}
313 
314 	if (list_empty(&qpd->queues_list)) {
315 		retval = allocate_vmid(dqm, qpd, q);
316 		if (retval)
317 			goto out_unlock;
318 	}
319 	q->properties.vmid = qpd->vmid;
320 	/*
321 	 * Eviction state logic: mark all queues as evicted, even ones
322 	 * not currently active. Restoring inactive queues later only
323 	 * updates the is_evicted flag but is a no-op otherwise.
324 	 */
325 	q->properties.is_evicted = !!qpd->evicted;
326 
327 	q->properties.tba_addr = qpd->tba_addr;
328 	q->properties.tma_addr = qpd->tma_addr;
329 
330 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
331 			q->properties.type)];
332 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
333 		retval = allocate_hqd(dqm, q);
334 		if (retval)
335 			goto deallocate_vmid;
336 		pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
337 			q->pipe, q->queue);
338 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
339 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
340 		retval = allocate_sdma_queue(dqm, q);
341 		if (retval)
342 			goto deallocate_vmid;
343 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
344 	}
345 
346 	retval = allocate_doorbell(qpd, q);
347 	if (retval)
348 		goto out_deallocate_hqd;
349 
350 	/* Temporarily release dqm lock to avoid a circular lock dependency */
351 	dqm_unlock(dqm);
352 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
353 	dqm_lock(dqm);
354 
355 	if (!q->mqd_mem_obj) {
356 		retval = -ENOMEM;
357 		goto out_deallocate_doorbell;
358 	}
359 	mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
360 				&q->gart_mqd_addr, &q->properties);
361 	if (q->properties.is_active) {
362 		if (!dqm->sched_running) {
363 			WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
364 			goto add_queue_to_list;
365 		}
366 
367 		if (WARN(q->process->mm != current->mm,
368 					"should only run in user thread"))
369 			retval = -EFAULT;
370 		else
371 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
372 					q->queue, &q->properties, current->mm);
373 		if (retval)
374 			goto out_free_mqd;
375 	}
376 
377 add_queue_to_list:
378 	list_add(&q->list, &qpd->queues_list);
379 	qpd->queue_count++;
380 	if (q->properties.is_active)
381 		increment_queue_count(dqm, q->properties.type);
382 
383 	/*
384 	 * Unconditionally increment this counter, regardless of the queue's
385 	 * type or whether the queue is active.
386 	 */
387 	dqm->total_queue_count++;
388 	pr_debug("Total of %d queues are accountable so far\n",
389 			dqm->total_queue_count);
390 	goto out_unlock;
391 
392 out_free_mqd:
393 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
394 out_deallocate_doorbell:
395 	deallocate_doorbell(qpd, q);
396 out_deallocate_hqd:
397 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
398 		deallocate_hqd(dqm, q);
399 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
400 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
401 		deallocate_sdma_queue(dqm, q);
402 deallocate_vmid:
403 	if (list_empty(&qpd->queues_list))
404 		deallocate_vmid(dqm, qpd, q);
405 out_unlock:
406 	dqm_unlock(dqm);
407 	return retval;
408 }
409 
410 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
411 {
412 	bool set;
413 	int pipe, bit, i;
414 
415 	set = false;
416 
417 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
418 			i < get_pipes_per_mec(dqm);
419 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
420 
421 		if (!is_pipe_enabled(dqm, 0, pipe))
422 			continue;
423 
424 		if (dqm->allocated_queues[pipe] != 0) {
425 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
426 			dqm->allocated_queues[pipe] &= ~(1 << bit);
427 			q->pipe = pipe;
428 			q->queue = bit;
429 			set = true;
430 			break;
431 		}
432 	}
433 
434 	if (!set)
435 		return -EBUSY;
436 
437 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
438 	/* horizontal hqd allocation */
439 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
440 
441 	return 0;
442 }
443 
444 static inline void deallocate_hqd(struct device_queue_manager *dqm,
445 				struct queue *q)
446 {
447 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
448 }
449 
450 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
451  * to avoid asynchronized access
452  */
453 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
454 				struct qcm_process_device *qpd,
455 				struct queue *q)
456 {
457 	int retval;
458 	struct mqd_manager *mqd_mgr;
459 
460 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
461 			q->properties.type)];
462 
463 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
464 		deallocate_hqd(dqm, q);
465 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
466 		deallocate_sdma_queue(dqm, q);
467 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
468 		deallocate_sdma_queue(dqm, q);
469 	else {
470 		pr_debug("q->properties.type %d is invalid\n",
471 				q->properties.type);
472 		return -EINVAL;
473 	}
474 	dqm->total_queue_count--;
475 
476 	deallocate_doorbell(qpd, q);
477 
478 	if (!dqm->sched_running) {
479 		WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
480 		return 0;
481 	}
482 
483 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
484 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
485 				KFD_UNMAP_LATENCY_MS,
486 				q->pipe, q->queue);
487 	if (retval == -ETIME)
488 		qpd->reset_wavefronts = true;
489 
490 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
491 
492 	list_del(&q->list);
493 	if (list_empty(&qpd->queues_list)) {
494 		if (qpd->reset_wavefronts) {
495 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
496 					dqm->dev);
497 			/* dbgdev_wave_reset_wavefronts has to be called before
498 			 * deallocate_vmid(), i.e. when vmid is still in use.
499 			 */
500 			dbgdev_wave_reset_wavefronts(dqm->dev,
501 					qpd->pqm->process);
502 			qpd->reset_wavefronts = false;
503 		}
504 
505 		deallocate_vmid(dqm, qpd, q);
506 	}
507 	qpd->queue_count--;
508 	if (q->properties.is_active)
509 		decrement_queue_count(dqm, q->properties.type);
510 
511 	return retval;
512 }
513 
514 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
515 				struct qcm_process_device *qpd,
516 				struct queue *q)
517 {
518 	int retval;
519 
520 	dqm_lock(dqm);
521 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
522 	dqm_unlock(dqm);
523 
524 	return retval;
525 }
526 
527 static int update_queue(struct device_queue_manager *dqm, struct queue *q)
528 {
529 	int retval = 0;
530 	struct mqd_manager *mqd_mgr;
531 	struct kfd_process_device *pdd;
532 	bool prev_active = false;
533 
534 	dqm_lock(dqm);
535 	pdd = kfd_get_process_device_data(q->device, q->process);
536 	if (!pdd) {
537 		retval = -ENODEV;
538 		goto out_unlock;
539 	}
540 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
541 			q->properties.type)];
542 
543 	/* Save previous activity state for counters */
544 	prev_active = q->properties.is_active;
545 
546 	/* Make sure the queue is unmapped before updating the MQD */
547 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
548 		retval = unmap_queues_cpsch(dqm,
549 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
550 		if (retval) {
551 			pr_err("unmap queue failed\n");
552 			goto out_unlock;
553 		}
554 	} else if (prev_active &&
555 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
556 		    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
557 		    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
558 
559 		if (!dqm->sched_running) {
560 			WARN_ONCE(1, "Update non-HWS queue while stopped\n");
561 			goto out_unlock;
562 		}
563 
564 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
565 				KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
566 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
567 		if (retval) {
568 			pr_err("destroy mqd failed\n");
569 			goto out_unlock;
570 		}
571 	}
572 
573 	mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties);
574 
575 	/*
576 	 * check active state vs. the previous state and modify
577 	 * counter accordingly. map_queues_cpsch uses the
578 	 * dqm->active_queue_count to determine whether a new runlist must be
579 	 * uploaded.
580 	 */
581 	if (q->properties.is_active && !prev_active)
582 		increment_queue_count(dqm, q->properties.type);
583 	else if (!q->properties.is_active && prev_active)
584 		decrement_queue_count(dqm, q->properties.type);
585 
586 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS)
587 		retval = map_queues_cpsch(dqm);
588 	else if (q->properties.is_active &&
589 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
590 		  q->properties.type == KFD_QUEUE_TYPE_SDMA ||
591 		  q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
592 		if (WARN(q->process->mm != current->mm,
593 			 "should only run in user thread"))
594 			retval = -EFAULT;
595 		else
596 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
597 						   q->pipe, q->queue,
598 						   &q->properties, current->mm);
599 	}
600 
601 out_unlock:
602 	dqm_unlock(dqm);
603 	return retval;
604 }
605 
606 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
607 					struct qcm_process_device *qpd)
608 {
609 	struct queue *q;
610 	struct mqd_manager *mqd_mgr;
611 	struct kfd_process_device *pdd;
612 	int retval, ret = 0;
613 
614 	dqm_lock(dqm);
615 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
616 		goto out;
617 
618 	pdd = qpd_to_pdd(qpd);
619 	pr_info_ratelimited("Evicting PASID 0x%x queues\n",
620 			    pdd->process->pasid);
621 
622 	/* Mark all queues as evicted. Deactivate all active queues on
623 	 * the qpd.
624 	 */
625 	list_for_each_entry(q, &qpd->queues_list, list) {
626 		q->properties.is_evicted = true;
627 		if (!q->properties.is_active)
628 			continue;
629 
630 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
631 				q->properties.type)];
632 		q->properties.is_active = false;
633 		decrement_queue_count(dqm, q->properties.type);
634 
635 		if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
636 			continue;
637 
638 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
639 				KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
640 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
641 		if (retval && !ret)
642 			/* Return the first error, but keep going to
643 			 * maintain a consistent eviction state
644 			 */
645 			ret = retval;
646 	}
647 
648 out:
649 	dqm_unlock(dqm);
650 	return ret;
651 }
652 
653 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
654 				      struct qcm_process_device *qpd)
655 {
656 	struct queue *q;
657 	struct kfd_process_device *pdd;
658 	int retval = 0;
659 
660 	dqm_lock(dqm);
661 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
662 		goto out;
663 
664 	pdd = qpd_to_pdd(qpd);
665 	pr_info_ratelimited("Evicting PASID 0x%x queues\n",
666 			    pdd->process->pasid);
667 
668 	/* Mark all queues as evicted. Deactivate all active queues on
669 	 * the qpd.
670 	 */
671 	list_for_each_entry(q, &qpd->queues_list, list) {
672 		q->properties.is_evicted = true;
673 		if (!q->properties.is_active)
674 			continue;
675 
676 		q->properties.is_active = false;
677 		decrement_queue_count(dqm, q->properties.type);
678 	}
679 	retval = execute_queues_cpsch(dqm,
680 				qpd->is_debug ?
681 				KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
682 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
683 
684 out:
685 	dqm_unlock(dqm);
686 	return retval;
687 }
688 
689 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
690 					  struct qcm_process_device *qpd)
691 {
692 	struct mm_struct *mm = NULL;
693 	struct queue *q;
694 	struct mqd_manager *mqd_mgr;
695 	struct kfd_process_device *pdd;
696 	uint64_t pd_base;
697 	int retval, ret = 0;
698 
699 	pdd = qpd_to_pdd(qpd);
700 	/* Retrieve PD base */
701 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
702 
703 	dqm_lock(dqm);
704 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
705 		goto out;
706 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
707 		qpd->evicted--;
708 		goto out;
709 	}
710 
711 	pr_info_ratelimited("Restoring PASID 0x%x queues\n",
712 			    pdd->process->pasid);
713 
714 	/* Update PD Base in QPD */
715 	qpd->page_table_base = pd_base;
716 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
717 
718 	if (!list_empty(&qpd->queues_list)) {
719 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
720 				dqm->dev->kgd,
721 				qpd->vmid,
722 				qpd->page_table_base);
723 		kfd_flush_tlb(pdd);
724 	}
725 
726 	/* Take a safe reference to the mm_struct, which may otherwise
727 	 * disappear even while the kfd_process is still referenced.
728 	 */
729 	mm = get_task_mm(pdd->process->lead_thread);
730 	if (!mm) {
731 		ret = -EFAULT;
732 		goto out;
733 	}
734 
735 	/* Remove the eviction flags. Activate queues that are not
736 	 * inactive for other reasons.
737 	 */
738 	list_for_each_entry(q, &qpd->queues_list, list) {
739 		q->properties.is_evicted = false;
740 		if (!QUEUE_IS_ACTIVE(q->properties))
741 			continue;
742 
743 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
744 				q->properties.type)];
745 		q->properties.is_active = true;
746 		increment_queue_count(dqm, q->properties.type);
747 
748 		if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
749 			continue;
750 
751 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
752 				       q->queue, &q->properties, mm);
753 		if (retval && !ret)
754 			/* Return the first error, but keep going to
755 			 * maintain a consistent eviction state
756 			 */
757 			ret = retval;
758 	}
759 	qpd->evicted = 0;
760 out:
761 	if (mm)
762 		mmput(mm);
763 	dqm_unlock(dqm);
764 	return ret;
765 }
766 
767 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
768 					struct qcm_process_device *qpd)
769 {
770 	struct queue *q;
771 	struct kfd_process_device *pdd;
772 	uint64_t pd_base;
773 	int retval = 0;
774 
775 	pdd = qpd_to_pdd(qpd);
776 	/* Retrieve PD base */
777 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
778 
779 	dqm_lock(dqm);
780 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
781 		goto out;
782 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
783 		qpd->evicted--;
784 		goto out;
785 	}
786 
787 	pr_info_ratelimited("Restoring PASID 0x%x queues\n",
788 			    pdd->process->pasid);
789 
790 	/* Update PD Base in QPD */
791 	qpd->page_table_base = pd_base;
792 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
793 
794 	/* activate all active queues on the qpd */
795 	list_for_each_entry(q, &qpd->queues_list, list) {
796 		q->properties.is_evicted = false;
797 		if (!QUEUE_IS_ACTIVE(q->properties))
798 			continue;
799 
800 		q->properties.is_active = true;
801 		increment_queue_count(dqm, q->properties.type);
802 	}
803 	retval = execute_queues_cpsch(dqm,
804 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
805 	qpd->evicted = 0;
806 out:
807 	dqm_unlock(dqm);
808 	return retval;
809 }
810 
811 static int register_process(struct device_queue_manager *dqm,
812 					struct qcm_process_device *qpd)
813 {
814 	struct device_process_node *n;
815 	struct kfd_process_device *pdd;
816 	uint64_t pd_base;
817 	int retval;
818 
819 	n = kzalloc(sizeof(*n), GFP_KERNEL);
820 	if (!n)
821 		return -ENOMEM;
822 
823 	n->qpd = qpd;
824 
825 	pdd = qpd_to_pdd(qpd);
826 	/* Retrieve PD base */
827 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm);
828 
829 	dqm_lock(dqm);
830 	list_add(&n->list, &dqm->queues);
831 
832 	/* Update PD Base in QPD */
833 	qpd->page_table_base = pd_base;
834 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
835 
836 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
837 
838 	dqm->processes_count++;
839 
840 	dqm_unlock(dqm);
841 
842 	/* Outside the DQM lock because under the DQM lock we can't do
843 	 * reclaim or take other locks that others hold while reclaiming.
844 	 */
845 	kfd_inc_compute_active(dqm->dev);
846 
847 	return retval;
848 }
849 
850 static int unregister_process(struct device_queue_manager *dqm,
851 					struct qcm_process_device *qpd)
852 {
853 	int retval;
854 	struct device_process_node *cur, *next;
855 
856 	pr_debug("qpd->queues_list is %s\n",
857 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
858 
859 	retval = 0;
860 	dqm_lock(dqm);
861 
862 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
863 		if (qpd == cur->qpd) {
864 			list_del(&cur->list);
865 			kfree(cur);
866 			dqm->processes_count--;
867 			goto out;
868 		}
869 	}
870 	/* qpd not found in dqm list */
871 	retval = 1;
872 out:
873 	dqm_unlock(dqm);
874 
875 	/* Outside the DQM lock because under the DQM lock we can't do
876 	 * reclaim or take other locks that others hold while reclaiming.
877 	 */
878 	if (!retval)
879 		kfd_dec_compute_active(dqm->dev);
880 
881 	return retval;
882 }
883 
884 static int
885 set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
886 			unsigned int vmid)
887 {
888 	return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
889 						dqm->dev->kgd, pasid, vmid);
890 }
891 
892 static void init_interrupts(struct device_queue_manager *dqm)
893 {
894 	unsigned int i;
895 
896 	for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
897 		if (is_pipe_enabled(dqm, 0, i))
898 			dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i);
899 }
900 
901 static int initialize_nocpsch(struct device_queue_manager *dqm)
902 {
903 	int pipe, queue;
904 
905 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
906 
907 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
908 					sizeof(unsigned int), GFP_KERNEL);
909 	if (!dqm->allocated_queues)
910 		return -ENOMEM;
911 
912 	mutex_init(&dqm->lock_hidden);
913 	INIT_LIST_HEAD(&dqm->queues);
914 	dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
915 	dqm->active_cp_queue_count = 0;
916 
917 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
918 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
919 
920 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
921 			if (test_bit(pipe_offset + queue,
922 				     dqm->dev->shared_resources.cp_queue_bitmap))
923 				dqm->allocated_queues[pipe] |= 1 << queue;
924 	}
925 
926 	memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
927 
928 	dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm));
929 	dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm));
930 
931 	return 0;
932 }
933 
934 static void uninitialize(struct device_queue_manager *dqm)
935 {
936 	int i;
937 
938 	WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
939 
940 	kfree(dqm->allocated_queues);
941 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
942 		kfree(dqm->mqd_mgrs[i]);
943 	mutex_destroy(&dqm->lock_hidden);
944 }
945 
946 static int start_nocpsch(struct device_queue_manager *dqm)
947 {
948 	pr_info("SW scheduler is used");
949 	init_interrupts(dqm);
950 
951 	if (dqm->dev->device_info->asic_family == CHIP_HAWAII)
952 		return pm_init(&dqm->packets, dqm);
953 	dqm->sched_running = true;
954 
955 	return 0;
956 }
957 
958 static int stop_nocpsch(struct device_queue_manager *dqm)
959 {
960 	if (dqm->dev->device_info->asic_family == CHIP_HAWAII)
961 		pm_uninit(&dqm->packets, false);
962 	dqm->sched_running = false;
963 
964 	return 0;
965 }
966 
967 static void pre_reset(struct device_queue_manager *dqm)
968 {
969 	dqm_lock(dqm);
970 	dqm->is_resetting = true;
971 	dqm_unlock(dqm);
972 }
973 
974 static int allocate_sdma_queue(struct device_queue_manager *dqm,
975 				struct queue *q)
976 {
977 	int bit;
978 
979 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
980 		if (dqm->sdma_bitmap == 0) {
981 			pr_err("No more SDMA queue to allocate\n");
982 			return -ENOMEM;
983 		}
984 
985 		bit = __ffs64(dqm->sdma_bitmap);
986 		dqm->sdma_bitmap &= ~(1ULL << bit);
987 		q->sdma_id = bit;
988 		q->properties.sdma_engine_id = q->sdma_id %
989 				get_num_sdma_engines(dqm);
990 		q->properties.sdma_queue_id = q->sdma_id /
991 				get_num_sdma_engines(dqm);
992 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
993 		if (dqm->xgmi_sdma_bitmap == 0) {
994 			pr_err("No more XGMI SDMA queue to allocate\n");
995 			return -ENOMEM;
996 		}
997 		bit = __ffs64(dqm->xgmi_sdma_bitmap);
998 		dqm->xgmi_sdma_bitmap &= ~(1ULL << bit);
999 		q->sdma_id = bit;
1000 		/* sdma_engine_id is sdma id including
1001 		 * both PCIe-optimized SDMAs and XGMI-
1002 		 * optimized SDMAs. The calculation below
1003 		 * assumes the first N engines are always
1004 		 * PCIe-optimized ones
1005 		 */
1006 		q->properties.sdma_engine_id = get_num_sdma_engines(dqm) +
1007 				q->sdma_id % get_num_xgmi_sdma_engines(dqm);
1008 		q->properties.sdma_queue_id = q->sdma_id /
1009 				get_num_xgmi_sdma_engines(dqm);
1010 	}
1011 
1012 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1013 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1014 
1015 	return 0;
1016 }
1017 
1018 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1019 				struct queue *q)
1020 {
1021 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1022 		if (q->sdma_id >= get_num_sdma_queues(dqm))
1023 			return;
1024 		dqm->sdma_bitmap |= (1ULL << q->sdma_id);
1025 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1026 		if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1027 			return;
1028 		dqm->xgmi_sdma_bitmap |= (1ULL << q->sdma_id);
1029 	}
1030 }
1031 
1032 /*
1033  * Device Queue Manager implementation for cp scheduler
1034  */
1035 
1036 static int set_sched_resources(struct device_queue_manager *dqm)
1037 {
1038 	int i, mec;
1039 	struct scheduling_resources res;
1040 
1041 	res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap;
1042 
1043 	res.queue_mask = 0;
1044 	for (i = 0; i < KGD_MAX_QUEUES; ++i) {
1045 		mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
1046 			/ dqm->dev->shared_resources.num_pipe_per_mec;
1047 
1048 		if (!test_bit(i, dqm->dev->shared_resources.cp_queue_bitmap))
1049 			continue;
1050 
1051 		/* only acquire queues from the first MEC */
1052 		if (mec > 0)
1053 			continue;
1054 
1055 		/* This situation may be hit in the future if a new HW
1056 		 * generation exposes more than 64 queues. If so, the
1057 		 * definition of res.queue_mask needs updating
1058 		 */
1059 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1060 			pr_err("Invalid queue enabled by amdgpu: %d\n", i);
1061 			break;
1062 		}
1063 
1064 		res.queue_mask |= (1ull << i);
1065 	}
1066 	res.gws_mask = ~0ull;
1067 	res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1068 
1069 	pr_debug("Scheduling resources:\n"
1070 			"vmid mask: 0x%8X\n"
1071 			"queue mask: 0x%8llX\n",
1072 			res.vmid_mask, res.queue_mask);
1073 
1074 	return pm_send_set_resources(&dqm->packets, &res);
1075 }
1076 
1077 static int initialize_cpsch(struct device_queue_manager *dqm)
1078 {
1079 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1080 
1081 	mutex_init(&dqm->lock_hidden);
1082 	INIT_LIST_HEAD(&dqm->queues);
1083 	dqm->active_queue_count = dqm->processes_count = 0;
1084 	dqm->active_cp_queue_count = 0;
1085 
1086 	dqm->active_runlist = false;
1087 	dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm));
1088 	dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm));
1089 
1090 	INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1091 
1092 	return 0;
1093 }
1094 
1095 static int start_cpsch(struct device_queue_manager *dqm)
1096 {
1097 	int retval;
1098 
1099 	retval = 0;
1100 
1101 	retval = pm_init(&dqm->packets, dqm);
1102 	if (retval)
1103 		goto fail_packet_manager_init;
1104 
1105 	retval = set_sched_resources(dqm);
1106 	if (retval)
1107 		goto fail_set_sched_resources;
1108 
1109 	pr_debug("Allocating fence memory\n");
1110 
1111 	/* allocate fence memory on the gart */
1112 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1113 					&dqm->fence_mem);
1114 
1115 	if (retval)
1116 		goto fail_allocate_vidmem;
1117 
1118 	dqm->fence_addr = dqm->fence_mem->cpu_ptr;
1119 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1120 
1121 	init_interrupts(dqm);
1122 
1123 	dqm_lock(dqm);
1124 	/* clear hang status when driver try to start the hw scheduler */
1125 	dqm->is_hws_hang = false;
1126 	dqm->is_resetting = false;
1127 	dqm->sched_running = true;
1128 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1129 	dqm_unlock(dqm);
1130 
1131 	return 0;
1132 fail_allocate_vidmem:
1133 fail_set_sched_resources:
1134 	pm_uninit(&dqm->packets, false);
1135 fail_packet_manager_init:
1136 	return retval;
1137 }
1138 
1139 static int stop_cpsch(struct device_queue_manager *dqm)
1140 {
1141 	bool hanging;
1142 
1143 	dqm_lock(dqm);
1144 	if (!dqm->is_hws_hang)
1145 		unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1146 	hanging = dqm->is_hws_hang || dqm->is_resetting;
1147 	dqm->sched_running = false;
1148 	dqm_unlock(dqm);
1149 
1150 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1151 	pm_uninit(&dqm->packets, hanging);
1152 
1153 	return 0;
1154 }
1155 
1156 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1157 					struct kernel_queue *kq,
1158 					struct qcm_process_device *qpd)
1159 {
1160 	dqm_lock(dqm);
1161 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1162 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1163 				dqm->total_queue_count);
1164 		dqm_unlock(dqm);
1165 		return -EPERM;
1166 	}
1167 
1168 	/*
1169 	 * Unconditionally increment this counter, regardless of the queue's
1170 	 * type or whether the queue is active.
1171 	 */
1172 	dqm->total_queue_count++;
1173 	pr_debug("Total of %d queues are accountable so far\n",
1174 			dqm->total_queue_count);
1175 
1176 	list_add(&kq->list, &qpd->priv_queue_list);
1177 	increment_queue_count(dqm, kq->queue->properties.type);
1178 	qpd->is_debug = true;
1179 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1180 	dqm_unlock(dqm);
1181 
1182 	return 0;
1183 }
1184 
1185 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1186 					struct kernel_queue *kq,
1187 					struct qcm_process_device *qpd)
1188 {
1189 	dqm_lock(dqm);
1190 	list_del(&kq->list);
1191 	decrement_queue_count(dqm, kq->queue->properties.type);
1192 	qpd->is_debug = false;
1193 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1194 	/*
1195 	 * Unconditionally decrement this counter, regardless of the queue's
1196 	 * type.
1197 	 */
1198 	dqm->total_queue_count--;
1199 	pr_debug("Total of %d queues are accountable so far\n",
1200 			dqm->total_queue_count);
1201 	dqm_unlock(dqm);
1202 }
1203 
1204 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1205 			struct qcm_process_device *qpd)
1206 {
1207 	int retval;
1208 	struct mqd_manager *mqd_mgr;
1209 
1210 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1211 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1212 				dqm->total_queue_count);
1213 		retval = -EPERM;
1214 		goto out;
1215 	}
1216 
1217 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1218 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1219 		dqm_lock(dqm);
1220 		retval = allocate_sdma_queue(dqm, q);
1221 		dqm_unlock(dqm);
1222 		if (retval)
1223 			goto out;
1224 	}
1225 
1226 	retval = allocate_doorbell(qpd, q);
1227 	if (retval)
1228 		goto out_deallocate_sdma_queue;
1229 
1230 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1231 			q->properties.type)];
1232 
1233 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1234 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1235 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1236 	q->properties.tba_addr = qpd->tba_addr;
1237 	q->properties.tma_addr = qpd->tma_addr;
1238 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
1239 	if (!q->mqd_mem_obj) {
1240 		retval = -ENOMEM;
1241 		goto out_deallocate_doorbell;
1242 	}
1243 
1244 	dqm_lock(dqm);
1245 	/*
1246 	 * Eviction state logic: mark all queues as evicted, even ones
1247 	 * not currently active. Restoring inactive queues later only
1248 	 * updates the is_evicted flag but is a no-op otherwise.
1249 	 */
1250 	q->properties.is_evicted = !!qpd->evicted;
1251 	mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
1252 				&q->gart_mqd_addr, &q->properties);
1253 
1254 	list_add(&q->list, &qpd->queues_list);
1255 	qpd->queue_count++;
1256 
1257 	if (q->properties.is_active) {
1258 		increment_queue_count(dqm, q->properties.type);
1259 
1260 		retval = execute_queues_cpsch(dqm,
1261 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1262 	}
1263 
1264 	/*
1265 	 * Unconditionally increment this counter, regardless of the queue's
1266 	 * type or whether the queue is active.
1267 	 */
1268 	dqm->total_queue_count++;
1269 
1270 	pr_debug("Total of %d queues are accountable so far\n",
1271 			dqm->total_queue_count);
1272 
1273 	dqm_unlock(dqm);
1274 	return retval;
1275 
1276 out_deallocate_doorbell:
1277 	deallocate_doorbell(qpd, q);
1278 out_deallocate_sdma_queue:
1279 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1280 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1281 		dqm_lock(dqm);
1282 		deallocate_sdma_queue(dqm, q);
1283 		dqm_unlock(dqm);
1284 	}
1285 out:
1286 	return retval;
1287 }
1288 
1289 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
1290 				unsigned int fence_value,
1291 				unsigned int timeout_ms)
1292 {
1293 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1294 
1295 	while (*fence_addr != fence_value) {
1296 		if (time_after(jiffies, end_jiffies)) {
1297 			pr_err("qcm fence wait loop timeout expired\n");
1298 			/* In HWS case, this is used to halt the driver thread
1299 			 * in order not to mess up CP states before doing
1300 			 * scandumps for FW debugging.
1301 			 */
1302 			while (halt_if_hws_hang)
1303 				schedule();
1304 
1305 			return -ETIME;
1306 		}
1307 		schedule();
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 /* dqm->lock mutex has to be locked before calling this function */
1314 static int map_queues_cpsch(struct device_queue_manager *dqm)
1315 {
1316 	int retval;
1317 
1318 	if (!dqm->sched_running)
1319 		return 0;
1320 	if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
1321 		return 0;
1322 	if (dqm->active_runlist)
1323 		return 0;
1324 
1325 	retval = pm_send_runlist(&dqm->packets, &dqm->queues);
1326 	pr_debug("%s sent runlist\n", __func__);
1327 	if (retval) {
1328 		pr_err("failed to execute runlist\n");
1329 		return retval;
1330 	}
1331 	dqm->active_runlist = true;
1332 
1333 	return retval;
1334 }
1335 
1336 /* dqm->lock mutex has to be locked before calling this function */
1337 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1338 				enum kfd_unmap_queues_filter filter,
1339 				uint32_t filter_param)
1340 {
1341 	int retval = 0;
1342 
1343 	if (!dqm->sched_running)
1344 		return 0;
1345 	if (dqm->is_hws_hang)
1346 		return -EIO;
1347 	if (!dqm->active_runlist)
1348 		return retval;
1349 
1350 	retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
1351 			filter, filter_param, false, 0);
1352 	if (retval)
1353 		return retval;
1354 
1355 	*dqm->fence_addr = KFD_FENCE_INIT;
1356 	pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
1357 				KFD_FENCE_COMPLETED);
1358 	/* should be timed out */
1359 	retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
1360 				queue_preemption_timeout_ms);
1361 	if (retval) {
1362 		pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1363 		dqm->is_hws_hang = true;
1364 		/* It's possible we're detecting a HWS hang in the
1365 		 * middle of a GPU reset. No need to schedule another
1366 		 * reset in this case.
1367 		 */
1368 		if (!dqm->is_resetting)
1369 			schedule_work(&dqm->hw_exception_work);
1370 		return retval;
1371 	}
1372 
1373 	pm_release_ib(&dqm->packets);
1374 	dqm->active_runlist = false;
1375 
1376 	return retval;
1377 }
1378 
1379 /* dqm->lock mutex has to be locked before calling this function */
1380 static int execute_queues_cpsch(struct device_queue_manager *dqm,
1381 				enum kfd_unmap_queues_filter filter,
1382 				uint32_t filter_param)
1383 {
1384 	int retval;
1385 
1386 	if (dqm->is_hws_hang)
1387 		return -EIO;
1388 	retval = unmap_queues_cpsch(dqm, filter, filter_param);
1389 	if (retval)
1390 		return retval;
1391 
1392 	return map_queues_cpsch(dqm);
1393 }
1394 
1395 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1396 				struct qcm_process_device *qpd,
1397 				struct queue *q)
1398 {
1399 	int retval;
1400 	struct mqd_manager *mqd_mgr;
1401 
1402 	retval = 0;
1403 
1404 	/* remove queue from list to prevent rescheduling after preemption */
1405 	dqm_lock(dqm);
1406 
1407 	if (qpd->is_debug) {
1408 		/*
1409 		 * error, currently we do not allow to destroy a queue
1410 		 * of a currently debugged process
1411 		 */
1412 		retval = -EBUSY;
1413 		goto failed_try_destroy_debugged_queue;
1414 
1415 	}
1416 
1417 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1418 			q->properties.type)];
1419 
1420 	deallocate_doorbell(qpd, q);
1421 
1422 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1423 		deallocate_sdma_queue(dqm, q);
1424 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1425 		deallocate_sdma_queue(dqm, q);
1426 
1427 	list_del(&q->list);
1428 	qpd->queue_count--;
1429 	if (q->properties.is_active) {
1430 		decrement_queue_count(dqm, q->properties.type);
1431 		retval = execute_queues_cpsch(dqm,
1432 				KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1433 		if (retval == -ETIME)
1434 			qpd->reset_wavefronts = true;
1435 	}
1436 
1437 	/*
1438 	 * Unconditionally decrement this counter, regardless of the queue's
1439 	 * type
1440 	 */
1441 	dqm->total_queue_count--;
1442 	pr_debug("Total of %d queues are accountable so far\n",
1443 			dqm->total_queue_count);
1444 
1445 	dqm_unlock(dqm);
1446 
1447 	/* Do free_mqd after dqm_unlock(dqm) to avoid circular locking */
1448 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1449 
1450 	return retval;
1451 
1452 failed_try_destroy_debugged_queue:
1453 
1454 	dqm_unlock(dqm);
1455 	return retval;
1456 }
1457 
1458 /*
1459  * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1460  * stay in user mode.
1461  */
1462 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1463 /* APE1 limit is inclusive and 64K aligned. */
1464 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1465 
1466 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1467 				   struct qcm_process_device *qpd,
1468 				   enum cache_policy default_policy,
1469 				   enum cache_policy alternate_policy,
1470 				   void __user *alternate_aperture_base,
1471 				   uint64_t alternate_aperture_size)
1472 {
1473 	bool retval = true;
1474 
1475 	if (!dqm->asic_ops.set_cache_memory_policy)
1476 		return retval;
1477 
1478 	dqm_lock(dqm);
1479 
1480 	if (alternate_aperture_size == 0) {
1481 		/* base > limit disables APE1 */
1482 		qpd->sh_mem_ape1_base = 1;
1483 		qpd->sh_mem_ape1_limit = 0;
1484 	} else {
1485 		/*
1486 		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1487 		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
1488 		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1489 		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1490 		 * Verify that the base and size parameters can be
1491 		 * represented in this format and convert them.
1492 		 * Additionally restrict APE1 to user-mode addresses.
1493 		 */
1494 
1495 		uint64_t base = (uintptr_t)alternate_aperture_base;
1496 		uint64_t limit = base + alternate_aperture_size - 1;
1497 
1498 		if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
1499 		   (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
1500 			retval = false;
1501 			goto out;
1502 		}
1503 
1504 		qpd->sh_mem_ape1_base = base >> 16;
1505 		qpd->sh_mem_ape1_limit = limit >> 16;
1506 	}
1507 
1508 	retval = dqm->asic_ops.set_cache_memory_policy(
1509 			dqm,
1510 			qpd,
1511 			default_policy,
1512 			alternate_policy,
1513 			alternate_aperture_base,
1514 			alternate_aperture_size);
1515 
1516 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1517 		program_sh_mem_settings(dqm, qpd);
1518 
1519 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1520 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1521 		qpd->sh_mem_ape1_limit);
1522 
1523 out:
1524 	dqm_unlock(dqm);
1525 	return retval;
1526 }
1527 
1528 static int set_trap_handler(struct device_queue_manager *dqm,
1529 				struct qcm_process_device *qpd,
1530 				uint64_t tba_addr,
1531 				uint64_t tma_addr)
1532 {
1533 	uint64_t *tma;
1534 
1535 	if (dqm->dev->cwsr_enabled) {
1536 		/* Jump from CWSR trap handler to user trap */
1537 		tma = (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1538 		tma[0] = tba_addr;
1539 		tma[1] = tma_addr;
1540 	} else {
1541 		qpd->tba_addr = tba_addr;
1542 		qpd->tma_addr = tma_addr;
1543 	}
1544 
1545 	return 0;
1546 }
1547 
1548 static int process_termination_nocpsch(struct device_queue_manager *dqm,
1549 		struct qcm_process_device *qpd)
1550 {
1551 	struct queue *q, *next;
1552 	struct device_process_node *cur, *next_dpn;
1553 	int retval = 0;
1554 	bool found = false;
1555 
1556 	dqm_lock(dqm);
1557 
1558 	/* Clear all user mode queues */
1559 	list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1560 		int ret;
1561 
1562 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
1563 		if (ret)
1564 			retval = ret;
1565 	}
1566 
1567 	/* Unregister process */
1568 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1569 		if (qpd == cur->qpd) {
1570 			list_del(&cur->list);
1571 			kfree(cur);
1572 			dqm->processes_count--;
1573 			found = true;
1574 			break;
1575 		}
1576 	}
1577 
1578 	dqm_unlock(dqm);
1579 
1580 	/* Outside the DQM lock because under the DQM lock we can't do
1581 	 * reclaim or take other locks that others hold while reclaiming.
1582 	 */
1583 	if (found)
1584 		kfd_dec_compute_active(dqm->dev);
1585 
1586 	return retval;
1587 }
1588 
1589 static int get_wave_state(struct device_queue_manager *dqm,
1590 			  struct queue *q,
1591 			  void __user *ctl_stack,
1592 			  u32 *ctl_stack_used_size,
1593 			  u32 *save_area_used_size)
1594 {
1595 	struct mqd_manager *mqd_mgr;
1596 	int r;
1597 
1598 	dqm_lock(dqm);
1599 
1600 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
1601 	    q->properties.is_active || !q->device->cwsr_enabled) {
1602 		r = -EINVAL;
1603 		goto dqm_unlock;
1604 	}
1605 
1606 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
1607 
1608 	if (!mqd_mgr->get_wave_state) {
1609 		r = -EINVAL;
1610 		goto dqm_unlock;
1611 	}
1612 
1613 	r = mqd_mgr->get_wave_state(mqd_mgr, q->mqd, ctl_stack,
1614 			ctl_stack_used_size, save_area_used_size);
1615 
1616 dqm_unlock:
1617 	dqm_unlock(dqm);
1618 	return r;
1619 }
1620 
1621 static int process_termination_cpsch(struct device_queue_manager *dqm,
1622 		struct qcm_process_device *qpd)
1623 {
1624 	int retval;
1625 	struct queue *q, *next;
1626 	struct kernel_queue *kq, *kq_next;
1627 	struct mqd_manager *mqd_mgr;
1628 	struct device_process_node *cur, *next_dpn;
1629 	enum kfd_unmap_queues_filter filter =
1630 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
1631 	bool found = false;
1632 
1633 	retval = 0;
1634 
1635 	dqm_lock(dqm);
1636 
1637 	/* Clean all kernel queues */
1638 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
1639 		list_del(&kq->list);
1640 		decrement_queue_count(dqm, kq->queue->properties.type);
1641 		qpd->is_debug = false;
1642 		dqm->total_queue_count--;
1643 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
1644 	}
1645 
1646 	/* Clear all user mode queues */
1647 	list_for_each_entry(q, &qpd->queues_list, list) {
1648 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1649 			deallocate_sdma_queue(dqm, q);
1650 		else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1651 			deallocate_sdma_queue(dqm, q);
1652 
1653 		if (q->properties.is_active)
1654 			decrement_queue_count(dqm, q->properties.type);
1655 
1656 		dqm->total_queue_count--;
1657 	}
1658 
1659 	/* Unregister process */
1660 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1661 		if (qpd == cur->qpd) {
1662 			list_del(&cur->list);
1663 			kfree(cur);
1664 			dqm->processes_count--;
1665 			found = true;
1666 			break;
1667 		}
1668 	}
1669 
1670 	retval = execute_queues_cpsch(dqm, filter, 0);
1671 	if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
1672 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
1673 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
1674 		qpd->reset_wavefronts = false;
1675 	}
1676 
1677 	dqm_unlock(dqm);
1678 
1679 	/* Outside the DQM lock because under the DQM lock we can't do
1680 	 * reclaim or take other locks that others hold while reclaiming.
1681 	 */
1682 	if (found)
1683 		kfd_dec_compute_active(dqm->dev);
1684 
1685 	/* Lastly, free mqd resources.
1686 	 * Do free_mqd() after dqm_unlock to avoid circular locking.
1687 	 */
1688 	list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
1689 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1690 				q->properties.type)];
1691 		list_del(&q->list);
1692 		qpd->queue_count--;
1693 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1694 	}
1695 
1696 	return retval;
1697 }
1698 
1699 static int init_mqd_managers(struct device_queue_manager *dqm)
1700 {
1701 	int i, j;
1702 	struct mqd_manager *mqd_mgr;
1703 
1704 	for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
1705 		mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
1706 		if (!mqd_mgr) {
1707 			pr_err("mqd manager [%d] initialization failed\n", i);
1708 			goto out_free;
1709 		}
1710 		dqm->mqd_mgrs[i] = mqd_mgr;
1711 	}
1712 
1713 	return 0;
1714 
1715 out_free:
1716 	for (j = 0; j < i; j++) {
1717 		kfree(dqm->mqd_mgrs[j]);
1718 		dqm->mqd_mgrs[j] = NULL;
1719 	}
1720 
1721 	return -ENOMEM;
1722 }
1723 
1724 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
1725 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
1726 {
1727 	int retval;
1728 	struct kfd_dev *dev = dqm->dev;
1729 	struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
1730 	uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
1731 		get_num_all_sdma_engines(dqm) *
1732 		dev->device_info->num_sdma_queues_per_engine +
1733 		dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size;
1734 
1735 	retval = amdgpu_amdkfd_alloc_gtt_mem(dev->kgd, size,
1736 		&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
1737 		(void *)&(mem_obj->cpu_ptr), false);
1738 
1739 	return retval;
1740 }
1741 
1742 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1743 {
1744 	struct device_queue_manager *dqm;
1745 
1746 	pr_debug("Loading device queue manager\n");
1747 
1748 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
1749 	if (!dqm)
1750 		return NULL;
1751 
1752 	switch (dev->device_info->asic_family) {
1753 	/* HWS is not available on Hawaii. */
1754 	case CHIP_HAWAII:
1755 	/* HWS depends on CWSR for timely dequeue. CWSR is not
1756 	 * available on Tonga.
1757 	 *
1758 	 * FIXME: This argument also applies to Kaveri.
1759 	 */
1760 	case CHIP_TONGA:
1761 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
1762 		break;
1763 	default:
1764 		dqm->sched_policy = sched_policy;
1765 		break;
1766 	}
1767 
1768 	dqm->dev = dev;
1769 	switch (dqm->sched_policy) {
1770 	case KFD_SCHED_POLICY_HWS:
1771 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1772 		/* initialize dqm for cp scheduling */
1773 		dqm->ops.create_queue = create_queue_cpsch;
1774 		dqm->ops.initialize = initialize_cpsch;
1775 		dqm->ops.start = start_cpsch;
1776 		dqm->ops.stop = stop_cpsch;
1777 		dqm->ops.pre_reset = pre_reset;
1778 		dqm->ops.destroy_queue = destroy_queue_cpsch;
1779 		dqm->ops.update_queue = update_queue;
1780 		dqm->ops.register_process = register_process;
1781 		dqm->ops.unregister_process = unregister_process;
1782 		dqm->ops.uninitialize = uninitialize;
1783 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1784 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1785 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1786 		dqm->ops.set_trap_handler = set_trap_handler;
1787 		dqm->ops.process_termination = process_termination_cpsch;
1788 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
1789 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
1790 		dqm->ops.get_wave_state = get_wave_state;
1791 		break;
1792 	case KFD_SCHED_POLICY_NO_HWS:
1793 		/* initialize dqm for no cp scheduling */
1794 		dqm->ops.start = start_nocpsch;
1795 		dqm->ops.stop = stop_nocpsch;
1796 		dqm->ops.pre_reset = pre_reset;
1797 		dqm->ops.create_queue = create_queue_nocpsch;
1798 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
1799 		dqm->ops.update_queue = update_queue;
1800 		dqm->ops.register_process = register_process;
1801 		dqm->ops.unregister_process = unregister_process;
1802 		dqm->ops.initialize = initialize_nocpsch;
1803 		dqm->ops.uninitialize = uninitialize;
1804 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1805 		dqm->ops.set_trap_handler = set_trap_handler;
1806 		dqm->ops.process_termination = process_termination_nocpsch;
1807 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
1808 		dqm->ops.restore_process_queues =
1809 			restore_process_queues_nocpsch;
1810 		dqm->ops.get_wave_state = get_wave_state;
1811 		break;
1812 	default:
1813 		pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
1814 		goto out_free;
1815 	}
1816 
1817 	switch (dev->device_info->asic_family) {
1818 	case CHIP_CARRIZO:
1819 		device_queue_manager_init_vi(&dqm->asic_ops);
1820 		break;
1821 
1822 	case CHIP_KAVERI:
1823 		device_queue_manager_init_cik(&dqm->asic_ops);
1824 		break;
1825 
1826 	case CHIP_HAWAII:
1827 		device_queue_manager_init_cik_hawaii(&dqm->asic_ops);
1828 		break;
1829 
1830 	case CHIP_TONGA:
1831 	case CHIP_FIJI:
1832 	case CHIP_POLARIS10:
1833 	case CHIP_POLARIS11:
1834 	case CHIP_POLARIS12:
1835 	case CHIP_VEGAM:
1836 		device_queue_manager_init_vi_tonga(&dqm->asic_ops);
1837 		break;
1838 
1839 	case CHIP_VEGA10:
1840 	case CHIP_VEGA12:
1841 	case CHIP_VEGA20:
1842 	case CHIP_RAVEN:
1843 	case CHIP_RENOIR:
1844 	case CHIP_ARCTURUS:
1845 		device_queue_manager_init_v9(&dqm->asic_ops);
1846 		break;
1847 	case CHIP_NAVI10:
1848 	case CHIP_NAVI12:
1849 	case CHIP_NAVI14:
1850 		device_queue_manager_init_v10_navi10(&dqm->asic_ops);
1851 		break;
1852 	default:
1853 		WARN(1, "Unexpected ASIC family %u",
1854 		     dev->device_info->asic_family);
1855 		goto out_free;
1856 	}
1857 
1858 	if (init_mqd_managers(dqm))
1859 		goto out_free;
1860 
1861 	if (allocate_hiq_sdma_mqd(dqm)) {
1862 		pr_err("Failed to allocate hiq sdma mqd trunk buffer\n");
1863 		goto out_free;
1864 	}
1865 
1866 	if (!dqm->ops.initialize(dqm))
1867 		return dqm;
1868 
1869 out_free:
1870 	kfree(dqm);
1871 	return NULL;
1872 }
1873 
1874 static void deallocate_hiq_sdma_mqd(struct kfd_dev *dev,
1875 				    struct kfd_mem_obj *mqd)
1876 {
1877 	WARN(!mqd, "No hiq sdma mqd trunk to free");
1878 
1879 	amdgpu_amdkfd_free_gtt_mem(dev->kgd, mqd->gtt_mem);
1880 }
1881 
1882 void device_queue_manager_uninit(struct device_queue_manager *dqm)
1883 {
1884 	dqm->ops.uninitialize(dqm);
1885 	deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
1886 	kfree(dqm);
1887 }
1888 
1889 int kfd_process_vm_fault(struct device_queue_manager *dqm,
1890 			 unsigned int pasid)
1891 {
1892 	struct kfd_process_device *pdd;
1893 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1894 	int ret = 0;
1895 
1896 	if (!p)
1897 		return -EINVAL;
1898 	pdd = kfd_get_process_device_data(dqm->dev, p);
1899 	if (pdd)
1900 		ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
1901 	kfd_unref_process(p);
1902 
1903 	return ret;
1904 }
1905 
1906 static void kfd_process_hw_exception(struct work_struct *work)
1907 {
1908 	struct device_queue_manager *dqm = container_of(work,
1909 			struct device_queue_manager, hw_exception_work);
1910 	amdgpu_amdkfd_gpu_reset(dqm->dev->kgd);
1911 }
1912 
1913 #if defined(CONFIG_DEBUG_FS)
1914 
1915 static void seq_reg_dump(struct seq_file *m,
1916 			 uint32_t (*dump)[2], uint32_t n_regs)
1917 {
1918 	uint32_t i, count;
1919 
1920 	for (i = 0, count = 0; i < n_regs; i++) {
1921 		if (count == 0 ||
1922 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
1923 			seq_printf(m, "%s    %08x: %08x",
1924 				   i ? "\n" : "",
1925 				   dump[i][0], dump[i][1]);
1926 			count = 7;
1927 		} else {
1928 			seq_printf(m, " %08x", dump[i][1]);
1929 			count--;
1930 		}
1931 	}
1932 
1933 	seq_puts(m, "\n");
1934 }
1935 
1936 int dqm_debugfs_hqds(struct seq_file *m, void *data)
1937 {
1938 	struct device_queue_manager *dqm = data;
1939 	uint32_t (*dump)[2], n_regs;
1940 	int pipe, queue;
1941 	int r = 0;
1942 
1943 	if (!dqm->sched_running) {
1944 		seq_printf(m, " Device is stopped\n");
1945 
1946 		return 0;
1947 	}
1948 
1949 	r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->kgd,
1950 					KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE,
1951 					&dump, &n_regs);
1952 	if (!r) {
1953 		seq_printf(m, "  HIQ on MEC %d Pipe %d Queue %d\n",
1954 			   KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1,
1955 			   KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm),
1956 			   KFD_CIK_HIQ_QUEUE);
1957 		seq_reg_dump(m, dump, n_regs);
1958 
1959 		kfree(dump);
1960 	}
1961 
1962 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1963 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1964 
1965 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
1966 			if (!test_bit(pipe_offset + queue,
1967 				      dqm->dev->shared_resources.cp_queue_bitmap))
1968 				continue;
1969 
1970 			r = dqm->dev->kfd2kgd->hqd_dump(
1971 				dqm->dev->kgd, pipe, queue, &dump, &n_regs);
1972 			if (r)
1973 				break;
1974 
1975 			seq_printf(m, "  CP Pipe %d, Queue %d\n",
1976 				  pipe, queue);
1977 			seq_reg_dump(m, dump, n_regs);
1978 
1979 			kfree(dump);
1980 		}
1981 	}
1982 
1983 	for (pipe = 0; pipe < get_num_all_sdma_engines(dqm); pipe++) {
1984 		for (queue = 0;
1985 		     queue < dqm->dev->device_info->num_sdma_queues_per_engine;
1986 		     queue++) {
1987 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
1988 				dqm->dev->kgd, pipe, queue, &dump, &n_regs);
1989 			if (r)
1990 				break;
1991 
1992 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
1993 				  pipe, queue);
1994 			seq_reg_dump(m, dump, n_regs);
1995 
1996 			kfree(dump);
1997 		}
1998 	}
1999 
2000 	return r;
2001 }
2002 
2003 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm)
2004 {
2005 	int r = 0;
2006 
2007 	dqm_lock(dqm);
2008 	dqm->active_runlist = true;
2009 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
2010 	dqm_unlock(dqm);
2011 
2012 	return r;
2013 }
2014 
2015 #endif
2016