1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 * 22 */ 23 24 #include <linux/ratelimit.h> 25 #include <linux/printk.h> 26 #include <linux/slab.h> 27 #include <linux/list.h> 28 #include <linux/types.h> 29 #include <linux/bitops.h> 30 #include <linux/sched.h> 31 #include "kfd_priv.h" 32 #include "kfd_device_queue_manager.h" 33 #include "kfd_mqd_manager.h" 34 #include "cik_regs.h" 35 #include "kfd_kernel_queue.h" 36 #include "amdgpu_amdkfd.h" 37 38 /* Size of the per-pipe EOP queue */ 39 #define CIK_HPD_EOP_BYTES_LOG2 11 40 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2) 41 42 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm, 43 u32 pasid, unsigned int vmid); 44 45 static int execute_queues_cpsch(struct device_queue_manager *dqm, 46 enum kfd_unmap_queues_filter filter, 47 uint32_t filter_param); 48 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 49 enum kfd_unmap_queues_filter filter, 50 uint32_t filter_param); 51 52 static int map_queues_cpsch(struct device_queue_manager *dqm); 53 54 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 55 struct queue *q); 56 57 static inline void deallocate_hqd(struct device_queue_manager *dqm, 58 struct queue *q); 59 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q); 60 static int allocate_sdma_queue(struct device_queue_manager *dqm, 61 struct queue *q); 62 static void kfd_process_hw_exception(struct work_struct *work); 63 64 static inline 65 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type) 66 { 67 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI) 68 return KFD_MQD_TYPE_SDMA; 69 return KFD_MQD_TYPE_CP; 70 } 71 72 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe) 73 { 74 int i; 75 int pipe_offset = (mec * dqm->dev->shared_resources.num_pipe_per_mec 76 + pipe) * dqm->dev->shared_resources.num_queue_per_pipe; 77 78 /* queue is available for KFD usage if bit is 1 */ 79 for (i = 0; i < dqm->dev->shared_resources.num_queue_per_pipe; ++i) 80 if (test_bit(pipe_offset + i, 81 dqm->dev->shared_resources.cp_queue_bitmap)) 82 return true; 83 return false; 84 } 85 86 unsigned int get_cp_queues_num(struct device_queue_manager *dqm) 87 { 88 return bitmap_weight(dqm->dev->shared_resources.cp_queue_bitmap, 89 KGD_MAX_QUEUES); 90 } 91 92 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm) 93 { 94 return dqm->dev->shared_resources.num_queue_per_pipe; 95 } 96 97 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm) 98 { 99 return dqm->dev->shared_resources.num_pipe_per_mec; 100 } 101 102 static unsigned int get_num_sdma_engines(struct device_queue_manager *dqm) 103 { 104 return dqm->dev->device_info->num_sdma_engines; 105 } 106 107 static unsigned int get_num_xgmi_sdma_engines(struct device_queue_manager *dqm) 108 { 109 return dqm->dev->device_info->num_xgmi_sdma_engines; 110 } 111 112 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm) 113 { 114 return get_num_sdma_engines(dqm) + get_num_xgmi_sdma_engines(dqm); 115 } 116 117 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm) 118 { 119 return dqm->dev->device_info->num_sdma_engines 120 * dqm->dev->device_info->num_sdma_queues_per_engine; 121 } 122 123 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm) 124 { 125 return dqm->dev->device_info->num_xgmi_sdma_engines 126 * dqm->dev->device_info->num_sdma_queues_per_engine; 127 } 128 129 void program_sh_mem_settings(struct device_queue_manager *dqm, 130 struct qcm_process_device *qpd) 131 { 132 return dqm->dev->kfd2kgd->program_sh_mem_settings( 133 dqm->dev->kgd, qpd->vmid, 134 qpd->sh_mem_config, 135 qpd->sh_mem_ape1_base, 136 qpd->sh_mem_ape1_limit, 137 qpd->sh_mem_bases); 138 } 139 140 static void increment_queue_count(struct device_queue_manager *dqm, 141 enum kfd_queue_type type) 142 { 143 dqm->active_queue_count++; 144 if (type == KFD_QUEUE_TYPE_COMPUTE || type == KFD_QUEUE_TYPE_DIQ) 145 dqm->active_cp_queue_count++; 146 } 147 148 static void decrement_queue_count(struct device_queue_manager *dqm, 149 enum kfd_queue_type type) 150 { 151 dqm->active_queue_count--; 152 if (type == KFD_QUEUE_TYPE_COMPUTE || type == KFD_QUEUE_TYPE_DIQ) 153 dqm->active_cp_queue_count--; 154 } 155 156 static int allocate_doorbell(struct qcm_process_device *qpd, struct queue *q) 157 { 158 struct kfd_dev *dev = qpd->dqm->dev; 159 160 if (!KFD_IS_SOC15(dev->device_info->asic_family)) { 161 /* On pre-SOC15 chips we need to use the queue ID to 162 * preserve the user mode ABI. 163 */ 164 q->doorbell_id = q->properties.queue_id; 165 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 166 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 167 /* For SDMA queues on SOC15 with 8-byte doorbell, use static 168 * doorbell assignments based on the engine and queue id. 169 * The doobell index distance between RLC (2*i) and (2*i+1) 170 * for a SDMA engine is 512. 171 */ 172 uint32_t *idx_offset = 173 dev->shared_resources.sdma_doorbell_idx; 174 175 q->doorbell_id = idx_offset[q->properties.sdma_engine_id] 176 + (q->properties.sdma_queue_id & 1) 177 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET 178 + (q->properties.sdma_queue_id >> 1); 179 } else { 180 /* For CP queues on SOC15 reserve a free doorbell ID */ 181 unsigned int found; 182 183 found = find_first_zero_bit(qpd->doorbell_bitmap, 184 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS); 185 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) { 186 pr_debug("No doorbells available"); 187 return -EBUSY; 188 } 189 set_bit(found, qpd->doorbell_bitmap); 190 q->doorbell_id = found; 191 } 192 193 q->properties.doorbell_off = 194 kfd_get_doorbell_dw_offset_in_bar(dev, qpd_to_pdd(qpd), 195 q->doorbell_id); 196 return 0; 197 } 198 199 static void deallocate_doorbell(struct qcm_process_device *qpd, 200 struct queue *q) 201 { 202 unsigned int old; 203 struct kfd_dev *dev = qpd->dqm->dev; 204 205 if (!KFD_IS_SOC15(dev->device_info->asic_family) || 206 q->properties.type == KFD_QUEUE_TYPE_SDMA || 207 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 208 return; 209 210 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap); 211 WARN_ON(!old); 212 } 213 214 static int allocate_vmid(struct device_queue_manager *dqm, 215 struct qcm_process_device *qpd, 216 struct queue *q) 217 { 218 int allocated_vmid = -1, i; 219 220 for (i = dqm->dev->vm_info.first_vmid_kfd; 221 i <= dqm->dev->vm_info.last_vmid_kfd; i++) { 222 if (!dqm->vmid_pasid[i]) { 223 allocated_vmid = i; 224 break; 225 } 226 } 227 228 if (allocated_vmid < 0) { 229 pr_err("no more vmid to allocate\n"); 230 return -ENOSPC; 231 } 232 233 pr_debug("vmid allocated: %d\n", allocated_vmid); 234 235 dqm->vmid_pasid[allocated_vmid] = q->process->pasid; 236 237 set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid); 238 239 qpd->vmid = allocated_vmid; 240 q->properties.vmid = allocated_vmid; 241 242 program_sh_mem_settings(dqm, qpd); 243 244 /* qpd->page_table_base is set earlier when register_process() 245 * is called, i.e. when the first queue is created. 246 */ 247 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->kgd, 248 qpd->vmid, 249 qpd->page_table_base); 250 /* invalidate the VM context after pasid and vmid mapping is set up */ 251 kfd_flush_tlb(qpd_to_pdd(qpd)); 252 253 if (dqm->dev->kfd2kgd->set_scratch_backing_va) 254 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->kgd, 255 qpd->sh_hidden_private_base, qpd->vmid); 256 257 return 0; 258 } 259 260 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev, 261 struct qcm_process_device *qpd) 262 { 263 const struct packet_manager_funcs *pmf = qpd->dqm->packets.pmf; 264 int ret; 265 266 if (!qpd->ib_kaddr) 267 return -ENOMEM; 268 269 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr); 270 if (ret) 271 return ret; 272 273 return amdgpu_amdkfd_submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid, 274 qpd->ib_base, (uint32_t *)qpd->ib_kaddr, 275 pmf->release_mem_size / sizeof(uint32_t)); 276 } 277 278 static void deallocate_vmid(struct device_queue_manager *dqm, 279 struct qcm_process_device *qpd, 280 struct queue *q) 281 { 282 /* On GFX v7, CP doesn't flush TC at dequeue */ 283 if (q->device->device_info->asic_family == CHIP_HAWAII) 284 if (flush_texture_cache_nocpsch(q->device, qpd)) 285 pr_err("Failed to flush TC\n"); 286 287 kfd_flush_tlb(qpd_to_pdd(qpd)); 288 289 /* Release the vmid mapping */ 290 set_pasid_vmid_mapping(dqm, 0, qpd->vmid); 291 dqm->vmid_pasid[qpd->vmid] = 0; 292 293 qpd->vmid = 0; 294 q->properties.vmid = 0; 295 } 296 297 static int create_queue_nocpsch(struct device_queue_manager *dqm, 298 struct queue *q, 299 struct qcm_process_device *qpd) 300 { 301 struct mqd_manager *mqd_mgr; 302 int retval; 303 304 dqm_lock(dqm); 305 306 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 307 pr_warn("Can't create new usermode queue because %d queues were already created\n", 308 dqm->total_queue_count); 309 retval = -EPERM; 310 goto out_unlock; 311 } 312 313 if (list_empty(&qpd->queues_list)) { 314 retval = allocate_vmid(dqm, qpd, q); 315 if (retval) 316 goto out_unlock; 317 } 318 q->properties.vmid = qpd->vmid; 319 /* 320 * Eviction state logic: mark all queues as evicted, even ones 321 * not currently active. Restoring inactive queues later only 322 * updates the is_evicted flag but is a no-op otherwise. 323 */ 324 q->properties.is_evicted = !!qpd->evicted; 325 326 q->properties.tba_addr = qpd->tba_addr; 327 q->properties.tma_addr = qpd->tma_addr; 328 329 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 330 q->properties.type)]; 331 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) { 332 retval = allocate_hqd(dqm, q); 333 if (retval) 334 goto deallocate_vmid; 335 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n", 336 q->pipe, q->queue); 337 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 338 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 339 retval = allocate_sdma_queue(dqm, q); 340 if (retval) 341 goto deallocate_vmid; 342 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 343 } 344 345 retval = allocate_doorbell(qpd, q); 346 if (retval) 347 goto out_deallocate_hqd; 348 349 /* Temporarily release dqm lock to avoid a circular lock dependency */ 350 dqm_unlock(dqm); 351 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 352 dqm_lock(dqm); 353 354 if (!q->mqd_mem_obj) { 355 retval = -ENOMEM; 356 goto out_deallocate_doorbell; 357 } 358 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 359 &q->gart_mqd_addr, &q->properties); 360 if (q->properties.is_active) { 361 if (!dqm->sched_running) { 362 WARN_ONCE(1, "Load non-HWS mqd while stopped\n"); 363 goto add_queue_to_list; 364 } 365 366 if (WARN(q->process->mm != current->mm, 367 "should only run in user thread")) 368 retval = -EFAULT; 369 else 370 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 371 q->queue, &q->properties, current->mm); 372 if (retval) 373 goto out_free_mqd; 374 } 375 376 add_queue_to_list: 377 list_add(&q->list, &qpd->queues_list); 378 qpd->queue_count++; 379 if (q->properties.is_active) 380 increment_queue_count(dqm, q->properties.type); 381 382 /* 383 * Unconditionally increment this counter, regardless of the queue's 384 * type or whether the queue is active. 385 */ 386 dqm->total_queue_count++; 387 pr_debug("Total of %d queues are accountable so far\n", 388 dqm->total_queue_count); 389 goto out_unlock; 390 391 out_free_mqd: 392 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 393 out_deallocate_doorbell: 394 deallocate_doorbell(qpd, q); 395 out_deallocate_hqd: 396 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 397 deallocate_hqd(dqm, q); 398 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 399 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 400 deallocate_sdma_queue(dqm, q); 401 deallocate_vmid: 402 if (list_empty(&qpd->queues_list)) 403 deallocate_vmid(dqm, qpd, q); 404 out_unlock: 405 dqm_unlock(dqm); 406 return retval; 407 } 408 409 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q) 410 { 411 bool set; 412 int pipe, bit, i; 413 414 set = false; 415 416 for (pipe = dqm->next_pipe_to_allocate, i = 0; 417 i < get_pipes_per_mec(dqm); 418 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) { 419 420 if (!is_pipe_enabled(dqm, 0, pipe)) 421 continue; 422 423 if (dqm->allocated_queues[pipe] != 0) { 424 bit = ffs(dqm->allocated_queues[pipe]) - 1; 425 dqm->allocated_queues[pipe] &= ~(1 << bit); 426 q->pipe = pipe; 427 q->queue = bit; 428 set = true; 429 break; 430 } 431 } 432 433 if (!set) 434 return -EBUSY; 435 436 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue); 437 /* horizontal hqd allocation */ 438 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm); 439 440 return 0; 441 } 442 443 static inline void deallocate_hqd(struct device_queue_manager *dqm, 444 struct queue *q) 445 { 446 dqm->allocated_queues[q->pipe] |= (1 << q->queue); 447 } 448 449 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked 450 * to avoid asynchronized access 451 */ 452 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm, 453 struct qcm_process_device *qpd, 454 struct queue *q) 455 { 456 int retval; 457 struct mqd_manager *mqd_mgr; 458 459 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 460 q->properties.type)]; 461 462 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) 463 deallocate_hqd(dqm, q); 464 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 465 deallocate_sdma_queue(dqm, q); 466 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 467 deallocate_sdma_queue(dqm, q); 468 else { 469 pr_debug("q->properties.type %d is invalid\n", 470 q->properties.type); 471 return -EINVAL; 472 } 473 dqm->total_queue_count--; 474 475 deallocate_doorbell(qpd, q); 476 477 if (!dqm->sched_running) { 478 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n"); 479 return 0; 480 } 481 482 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 483 KFD_PREEMPT_TYPE_WAVEFRONT_RESET, 484 KFD_UNMAP_LATENCY_MS, 485 q->pipe, q->queue); 486 if (retval == -ETIME) 487 qpd->reset_wavefronts = true; 488 489 490 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 491 492 list_del(&q->list); 493 if (list_empty(&qpd->queues_list)) { 494 if (qpd->reset_wavefronts) { 495 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n", 496 dqm->dev); 497 /* dbgdev_wave_reset_wavefronts has to be called before 498 * deallocate_vmid(), i.e. when vmid is still in use. 499 */ 500 dbgdev_wave_reset_wavefronts(dqm->dev, 501 qpd->pqm->process); 502 qpd->reset_wavefronts = false; 503 } 504 505 deallocate_vmid(dqm, qpd, q); 506 } 507 qpd->queue_count--; 508 if (q->properties.is_active) { 509 decrement_queue_count(dqm, q->properties.type); 510 if (q->properties.is_gws) { 511 dqm->gws_queue_count--; 512 qpd->mapped_gws_queue = false; 513 } 514 } 515 516 return retval; 517 } 518 519 static int destroy_queue_nocpsch(struct device_queue_manager *dqm, 520 struct qcm_process_device *qpd, 521 struct queue *q) 522 { 523 int retval; 524 uint64_t sdma_val = 0; 525 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 526 527 /* Get the SDMA queue stats */ 528 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 529 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 530 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr, 531 &sdma_val); 532 if (retval) 533 pr_err("Failed to read SDMA queue counter for queue: %d\n", 534 q->properties.queue_id); 535 } 536 537 dqm_lock(dqm); 538 retval = destroy_queue_nocpsch_locked(dqm, qpd, q); 539 if (!retval) 540 pdd->sdma_past_activity_counter += sdma_val; 541 dqm_unlock(dqm); 542 543 return retval; 544 } 545 546 static int update_queue(struct device_queue_manager *dqm, struct queue *q) 547 { 548 int retval = 0; 549 struct mqd_manager *mqd_mgr; 550 struct kfd_process_device *pdd; 551 bool prev_active = false; 552 553 dqm_lock(dqm); 554 pdd = kfd_get_process_device_data(q->device, q->process); 555 if (!pdd) { 556 retval = -ENODEV; 557 goto out_unlock; 558 } 559 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 560 q->properties.type)]; 561 562 /* Save previous activity state for counters */ 563 prev_active = q->properties.is_active; 564 565 /* Make sure the queue is unmapped before updating the MQD */ 566 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) { 567 retval = unmap_queues_cpsch(dqm, 568 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 569 if (retval) { 570 pr_err("unmap queue failed\n"); 571 goto out_unlock; 572 } 573 } else if (prev_active && 574 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 575 q->properties.type == KFD_QUEUE_TYPE_SDMA || 576 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 577 578 if (!dqm->sched_running) { 579 WARN_ONCE(1, "Update non-HWS queue while stopped\n"); 580 goto out_unlock; 581 } 582 583 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 584 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN, 585 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 586 if (retval) { 587 pr_err("destroy mqd failed\n"); 588 goto out_unlock; 589 } 590 } 591 592 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties); 593 594 /* 595 * check active state vs. the previous state and modify 596 * counter accordingly. map_queues_cpsch uses the 597 * dqm->active_queue_count to determine whether a new runlist must be 598 * uploaded. 599 */ 600 if (q->properties.is_active && !prev_active) 601 increment_queue_count(dqm, q->properties.type); 602 else if (!q->properties.is_active && prev_active) 603 decrement_queue_count(dqm, q->properties.type); 604 605 if (q->gws && !q->properties.is_gws) { 606 if (q->properties.is_active) { 607 dqm->gws_queue_count++; 608 pdd->qpd.mapped_gws_queue = true; 609 } 610 q->properties.is_gws = true; 611 } else if (!q->gws && q->properties.is_gws) { 612 if (q->properties.is_active) { 613 dqm->gws_queue_count--; 614 pdd->qpd.mapped_gws_queue = false; 615 } 616 q->properties.is_gws = false; 617 } 618 619 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) 620 retval = map_queues_cpsch(dqm); 621 else if (q->properties.is_active && 622 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE || 623 q->properties.type == KFD_QUEUE_TYPE_SDMA || 624 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 625 if (WARN(q->process->mm != current->mm, 626 "should only run in user thread")) 627 retval = -EFAULT; 628 else 629 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, 630 q->pipe, q->queue, 631 &q->properties, current->mm); 632 } 633 634 out_unlock: 635 dqm_unlock(dqm); 636 return retval; 637 } 638 639 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm, 640 struct qcm_process_device *qpd) 641 { 642 struct queue *q; 643 struct mqd_manager *mqd_mgr; 644 struct kfd_process_device *pdd; 645 int retval, ret = 0; 646 647 dqm_lock(dqm); 648 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 649 goto out; 650 651 pdd = qpd_to_pdd(qpd); 652 pr_debug_ratelimited("Evicting PASID 0x%x queues\n", 653 pdd->process->pasid); 654 655 pdd->last_evict_timestamp = get_jiffies_64(); 656 /* Mark all queues as evicted. Deactivate all active queues on 657 * the qpd. 658 */ 659 list_for_each_entry(q, &qpd->queues_list, list) { 660 q->properties.is_evicted = true; 661 if (!q->properties.is_active) 662 continue; 663 664 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 665 q->properties.type)]; 666 q->properties.is_active = false; 667 decrement_queue_count(dqm, q->properties.type); 668 if (q->properties.is_gws) { 669 dqm->gws_queue_count--; 670 qpd->mapped_gws_queue = false; 671 } 672 673 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n")) 674 continue; 675 676 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd, 677 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN, 678 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue); 679 if (retval && !ret) 680 /* Return the first error, but keep going to 681 * maintain a consistent eviction state 682 */ 683 ret = retval; 684 } 685 686 out: 687 dqm_unlock(dqm); 688 return ret; 689 } 690 691 static int evict_process_queues_cpsch(struct device_queue_manager *dqm, 692 struct qcm_process_device *qpd) 693 { 694 struct queue *q; 695 struct kfd_process_device *pdd; 696 int retval = 0; 697 698 dqm_lock(dqm); 699 if (qpd->evicted++ > 0) /* already evicted, do nothing */ 700 goto out; 701 702 pdd = qpd_to_pdd(qpd); 703 pr_debug_ratelimited("Evicting PASID 0x%x queues\n", 704 pdd->process->pasid); 705 706 /* Mark all queues as evicted. Deactivate all active queues on 707 * the qpd. 708 */ 709 list_for_each_entry(q, &qpd->queues_list, list) { 710 q->properties.is_evicted = true; 711 if (!q->properties.is_active) 712 continue; 713 714 q->properties.is_active = false; 715 decrement_queue_count(dqm, q->properties.type); 716 } 717 pdd->last_evict_timestamp = get_jiffies_64(); 718 retval = execute_queues_cpsch(dqm, 719 qpd->is_debug ? 720 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES : 721 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 722 723 out: 724 dqm_unlock(dqm); 725 return retval; 726 } 727 728 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm, 729 struct qcm_process_device *qpd) 730 { 731 struct mm_struct *mm = NULL; 732 struct queue *q; 733 struct mqd_manager *mqd_mgr; 734 struct kfd_process_device *pdd; 735 uint64_t pd_base; 736 uint64_t eviction_duration; 737 int retval, ret = 0; 738 739 pdd = qpd_to_pdd(qpd); 740 /* Retrieve PD base */ 741 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm); 742 743 dqm_lock(dqm); 744 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 745 goto out; 746 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 747 qpd->evicted--; 748 goto out; 749 } 750 751 pr_debug_ratelimited("Restoring PASID 0x%x queues\n", 752 pdd->process->pasid); 753 754 /* Update PD Base in QPD */ 755 qpd->page_table_base = pd_base; 756 pr_debug("Updated PD address to 0x%llx\n", pd_base); 757 758 if (!list_empty(&qpd->queues_list)) { 759 dqm->dev->kfd2kgd->set_vm_context_page_table_base( 760 dqm->dev->kgd, 761 qpd->vmid, 762 qpd->page_table_base); 763 kfd_flush_tlb(pdd); 764 } 765 766 /* Take a safe reference to the mm_struct, which may otherwise 767 * disappear even while the kfd_process is still referenced. 768 */ 769 mm = get_task_mm(pdd->process->lead_thread); 770 if (!mm) { 771 ret = -EFAULT; 772 goto out; 773 } 774 775 /* Remove the eviction flags. Activate queues that are not 776 * inactive for other reasons. 777 */ 778 list_for_each_entry(q, &qpd->queues_list, list) { 779 q->properties.is_evicted = false; 780 if (!QUEUE_IS_ACTIVE(q->properties)) 781 continue; 782 783 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 784 q->properties.type)]; 785 q->properties.is_active = true; 786 increment_queue_count(dqm, q->properties.type); 787 if (q->properties.is_gws) { 788 dqm->gws_queue_count++; 789 qpd->mapped_gws_queue = true; 790 } 791 792 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n")) 793 continue; 794 795 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe, 796 q->queue, &q->properties, mm); 797 if (retval && !ret) 798 /* Return the first error, but keep going to 799 * maintain a consistent eviction state 800 */ 801 ret = retval; 802 } 803 qpd->evicted = 0; 804 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp; 805 atomic64_add(eviction_duration, &pdd->evict_duration_counter); 806 out: 807 if (mm) 808 mmput(mm); 809 dqm_unlock(dqm); 810 return ret; 811 } 812 813 static int restore_process_queues_cpsch(struct device_queue_manager *dqm, 814 struct qcm_process_device *qpd) 815 { 816 struct queue *q; 817 struct kfd_process_device *pdd; 818 uint64_t pd_base; 819 uint64_t eviction_duration; 820 int retval = 0; 821 822 pdd = qpd_to_pdd(qpd); 823 /* Retrieve PD base */ 824 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm); 825 826 dqm_lock(dqm); 827 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */ 828 goto out; 829 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */ 830 qpd->evicted--; 831 goto out; 832 } 833 834 pr_debug_ratelimited("Restoring PASID 0x%x queues\n", 835 pdd->process->pasid); 836 837 /* Update PD Base in QPD */ 838 qpd->page_table_base = pd_base; 839 pr_debug("Updated PD address to 0x%llx\n", pd_base); 840 841 /* activate all active queues on the qpd */ 842 list_for_each_entry(q, &qpd->queues_list, list) { 843 q->properties.is_evicted = false; 844 if (!QUEUE_IS_ACTIVE(q->properties)) 845 continue; 846 847 q->properties.is_active = true; 848 increment_queue_count(dqm, q->properties.type); 849 } 850 retval = execute_queues_cpsch(dqm, 851 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 852 qpd->evicted = 0; 853 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp; 854 atomic64_add(eviction_duration, &pdd->evict_duration_counter); 855 out: 856 dqm_unlock(dqm); 857 return retval; 858 } 859 860 static int register_process(struct device_queue_manager *dqm, 861 struct qcm_process_device *qpd) 862 { 863 struct device_process_node *n; 864 struct kfd_process_device *pdd; 865 uint64_t pd_base; 866 int retval; 867 868 n = kzalloc(sizeof(*n), GFP_KERNEL); 869 if (!n) 870 return -ENOMEM; 871 872 n->qpd = qpd; 873 874 pdd = qpd_to_pdd(qpd); 875 /* Retrieve PD base */ 876 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->vm); 877 878 dqm_lock(dqm); 879 list_add(&n->list, &dqm->queues); 880 881 /* Update PD Base in QPD */ 882 qpd->page_table_base = pd_base; 883 pr_debug("Updated PD address to 0x%llx\n", pd_base); 884 885 retval = dqm->asic_ops.update_qpd(dqm, qpd); 886 887 dqm->processes_count++; 888 889 dqm_unlock(dqm); 890 891 /* Outside the DQM lock because under the DQM lock we can't do 892 * reclaim or take other locks that others hold while reclaiming. 893 */ 894 kfd_inc_compute_active(dqm->dev); 895 896 return retval; 897 } 898 899 static int unregister_process(struct device_queue_manager *dqm, 900 struct qcm_process_device *qpd) 901 { 902 int retval; 903 struct device_process_node *cur, *next; 904 905 pr_debug("qpd->queues_list is %s\n", 906 list_empty(&qpd->queues_list) ? "empty" : "not empty"); 907 908 retval = 0; 909 dqm_lock(dqm); 910 911 list_for_each_entry_safe(cur, next, &dqm->queues, list) { 912 if (qpd == cur->qpd) { 913 list_del(&cur->list); 914 kfree(cur); 915 dqm->processes_count--; 916 goto out; 917 } 918 } 919 /* qpd not found in dqm list */ 920 retval = 1; 921 out: 922 dqm_unlock(dqm); 923 924 /* Outside the DQM lock because under the DQM lock we can't do 925 * reclaim or take other locks that others hold while reclaiming. 926 */ 927 if (!retval) 928 kfd_dec_compute_active(dqm->dev); 929 930 return retval; 931 } 932 933 static int 934 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid, 935 unsigned int vmid) 936 { 937 return dqm->dev->kfd2kgd->set_pasid_vmid_mapping( 938 dqm->dev->kgd, pasid, vmid); 939 } 940 941 static void init_interrupts(struct device_queue_manager *dqm) 942 { 943 unsigned int i; 944 945 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) 946 if (is_pipe_enabled(dqm, 0, i)) 947 dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i); 948 } 949 950 static int initialize_nocpsch(struct device_queue_manager *dqm) 951 { 952 int pipe, queue; 953 954 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 955 956 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm), 957 sizeof(unsigned int), GFP_KERNEL); 958 if (!dqm->allocated_queues) 959 return -ENOMEM; 960 961 mutex_init(&dqm->lock_hidden); 962 INIT_LIST_HEAD(&dqm->queues); 963 dqm->active_queue_count = dqm->next_pipe_to_allocate = 0; 964 dqm->active_cp_queue_count = 0; 965 dqm->gws_queue_count = 0; 966 967 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 968 int pipe_offset = pipe * get_queues_per_pipe(dqm); 969 970 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) 971 if (test_bit(pipe_offset + queue, 972 dqm->dev->shared_resources.cp_queue_bitmap)) 973 dqm->allocated_queues[pipe] |= 1 << queue; 974 } 975 976 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid)); 977 978 dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm)); 979 dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm)); 980 981 return 0; 982 } 983 984 static void uninitialize(struct device_queue_manager *dqm) 985 { 986 int i; 987 988 WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0); 989 990 kfree(dqm->allocated_queues); 991 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++) 992 kfree(dqm->mqd_mgrs[i]); 993 mutex_destroy(&dqm->lock_hidden); 994 } 995 996 static int start_nocpsch(struct device_queue_manager *dqm) 997 { 998 pr_info("SW scheduler is used"); 999 init_interrupts(dqm); 1000 1001 if (dqm->dev->device_info->asic_family == CHIP_HAWAII) 1002 return pm_init(&dqm->packets, dqm); 1003 dqm->sched_running = true; 1004 1005 return 0; 1006 } 1007 1008 static int stop_nocpsch(struct device_queue_manager *dqm) 1009 { 1010 if (dqm->dev->device_info->asic_family == CHIP_HAWAII) 1011 pm_uninit(&dqm->packets, false); 1012 dqm->sched_running = false; 1013 1014 return 0; 1015 } 1016 1017 static void pre_reset(struct device_queue_manager *dqm) 1018 { 1019 dqm_lock(dqm); 1020 dqm->is_resetting = true; 1021 dqm_unlock(dqm); 1022 } 1023 1024 static int allocate_sdma_queue(struct device_queue_manager *dqm, 1025 struct queue *q) 1026 { 1027 int bit; 1028 1029 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1030 if (dqm->sdma_bitmap == 0) { 1031 pr_err("No more SDMA queue to allocate\n"); 1032 return -ENOMEM; 1033 } 1034 1035 bit = __ffs64(dqm->sdma_bitmap); 1036 dqm->sdma_bitmap &= ~(1ULL << bit); 1037 q->sdma_id = bit; 1038 q->properties.sdma_engine_id = q->sdma_id % 1039 get_num_sdma_engines(dqm); 1040 q->properties.sdma_queue_id = q->sdma_id / 1041 get_num_sdma_engines(dqm); 1042 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1043 if (dqm->xgmi_sdma_bitmap == 0) { 1044 pr_err("No more XGMI SDMA queue to allocate\n"); 1045 return -ENOMEM; 1046 } 1047 bit = __ffs64(dqm->xgmi_sdma_bitmap); 1048 dqm->xgmi_sdma_bitmap &= ~(1ULL << bit); 1049 q->sdma_id = bit; 1050 /* sdma_engine_id is sdma id including 1051 * both PCIe-optimized SDMAs and XGMI- 1052 * optimized SDMAs. The calculation below 1053 * assumes the first N engines are always 1054 * PCIe-optimized ones 1055 */ 1056 q->properties.sdma_engine_id = get_num_sdma_engines(dqm) + 1057 q->sdma_id % get_num_xgmi_sdma_engines(dqm); 1058 q->properties.sdma_queue_id = q->sdma_id / 1059 get_num_xgmi_sdma_engines(dqm); 1060 } 1061 1062 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id); 1063 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id); 1064 1065 return 0; 1066 } 1067 1068 static void deallocate_sdma_queue(struct device_queue_manager *dqm, 1069 struct queue *q) 1070 { 1071 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) { 1072 if (q->sdma_id >= get_num_sdma_queues(dqm)) 1073 return; 1074 dqm->sdma_bitmap |= (1ULL << q->sdma_id); 1075 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1076 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm)) 1077 return; 1078 dqm->xgmi_sdma_bitmap |= (1ULL << q->sdma_id); 1079 } 1080 } 1081 1082 /* 1083 * Device Queue Manager implementation for cp scheduler 1084 */ 1085 1086 static int set_sched_resources(struct device_queue_manager *dqm) 1087 { 1088 int i, mec; 1089 struct scheduling_resources res; 1090 1091 res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap; 1092 1093 res.queue_mask = 0; 1094 for (i = 0; i < KGD_MAX_QUEUES; ++i) { 1095 mec = (i / dqm->dev->shared_resources.num_queue_per_pipe) 1096 / dqm->dev->shared_resources.num_pipe_per_mec; 1097 1098 if (!test_bit(i, dqm->dev->shared_resources.cp_queue_bitmap)) 1099 continue; 1100 1101 /* only acquire queues from the first MEC */ 1102 if (mec > 0) 1103 continue; 1104 1105 /* This situation may be hit in the future if a new HW 1106 * generation exposes more than 64 queues. If so, the 1107 * definition of res.queue_mask needs updating 1108 */ 1109 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) { 1110 pr_err("Invalid queue enabled by amdgpu: %d\n", i); 1111 break; 1112 } 1113 1114 res.queue_mask |= 1ull 1115 << amdgpu_queue_mask_bit_to_set_resource_bit( 1116 (struct amdgpu_device *)dqm->dev->kgd, i); 1117 } 1118 res.gws_mask = ~0ull; 1119 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0; 1120 1121 pr_debug("Scheduling resources:\n" 1122 "vmid mask: 0x%8X\n" 1123 "queue mask: 0x%8llX\n", 1124 res.vmid_mask, res.queue_mask); 1125 1126 return pm_send_set_resources(&dqm->packets, &res); 1127 } 1128 1129 static int initialize_cpsch(struct device_queue_manager *dqm) 1130 { 1131 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm)); 1132 1133 mutex_init(&dqm->lock_hidden); 1134 INIT_LIST_HEAD(&dqm->queues); 1135 dqm->active_queue_count = dqm->processes_count = 0; 1136 dqm->active_cp_queue_count = 0; 1137 dqm->gws_queue_count = 0; 1138 dqm->active_runlist = false; 1139 dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm)); 1140 dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm)); 1141 1142 INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception); 1143 1144 return 0; 1145 } 1146 1147 static int start_cpsch(struct device_queue_manager *dqm) 1148 { 1149 int retval; 1150 1151 retval = 0; 1152 1153 retval = pm_init(&dqm->packets, dqm); 1154 if (retval) 1155 goto fail_packet_manager_init; 1156 1157 retval = set_sched_resources(dqm); 1158 if (retval) 1159 goto fail_set_sched_resources; 1160 1161 pr_debug("Allocating fence memory\n"); 1162 1163 /* allocate fence memory on the gart */ 1164 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr), 1165 &dqm->fence_mem); 1166 1167 if (retval) 1168 goto fail_allocate_vidmem; 1169 1170 dqm->fence_addr = dqm->fence_mem->cpu_ptr; 1171 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr; 1172 1173 init_interrupts(dqm); 1174 1175 dqm_lock(dqm); 1176 /* clear hang status when driver try to start the hw scheduler */ 1177 dqm->is_hws_hang = false; 1178 dqm->is_resetting = false; 1179 dqm->sched_running = true; 1180 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1181 dqm_unlock(dqm); 1182 1183 return 0; 1184 fail_allocate_vidmem: 1185 fail_set_sched_resources: 1186 pm_uninit(&dqm->packets, false); 1187 fail_packet_manager_init: 1188 return retval; 1189 } 1190 1191 static int stop_cpsch(struct device_queue_manager *dqm) 1192 { 1193 bool hanging; 1194 1195 dqm_lock(dqm); 1196 if (!dqm->is_hws_hang) 1197 unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0); 1198 hanging = dqm->is_hws_hang || dqm->is_resetting; 1199 dqm->sched_running = false; 1200 dqm_unlock(dqm); 1201 1202 pm_release_ib(&dqm->packets); 1203 1204 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem); 1205 pm_uninit(&dqm->packets, hanging); 1206 1207 return 0; 1208 } 1209 1210 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm, 1211 struct kernel_queue *kq, 1212 struct qcm_process_device *qpd) 1213 { 1214 dqm_lock(dqm); 1215 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1216 pr_warn("Can't create new kernel queue because %d queues were already created\n", 1217 dqm->total_queue_count); 1218 dqm_unlock(dqm); 1219 return -EPERM; 1220 } 1221 1222 /* 1223 * Unconditionally increment this counter, regardless of the queue's 1224 * type or whether the queue is active. 1225 */ 1226 dqm->total_queue_count++; 1227 pr_debug("Total of %d queues are accountable so far\n", 1228 dqm->total_queue_count); 1229 1230 list_add(&kq->list, &qpd->priv_queue_list); 1231 increment_queue_count(dqm, kq->queue->properties.type); 1232 qpd->is_debug = true; 1233 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1234 dqm_unlock(dqm); 1235 1236 return 0; 1237 } 1238 1239 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm, 1240 struct kernel_queue *kq, 1241 struct qcm_process_device *qpd) 1242 { 1243 dqm_lock(dqm); 1244 list_del(&kq->list); 1245 decrement_queue_count(dqm, kq->queue->properties.type); 1246 qpd->is_debug = false; 1247 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0); 1248 /* 1249 * Unconditionally decrement this counter, regardless of the queue's 1250 * type. 1251 */ 1252 dqm->total_queue_count--; 1253 pr_debug("Total of %d queues are accountable so far\n", 1254 dqm->total_queue_count); 1255 dqm_unlock(dqm); 1256 } 1257 1258 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q, 1259 struct qcm_process_device *qpd) 1260 { 1261 int retval; 1262 struct mqd_manager *mqd_mgr; 1263 1264 if (dqm->total_queue_count >= max_num_of_queues_per_device) { 1265 pr_warn("Can't create new usermode queue because %d queues were already created\n", 1266 dqm->total_queue_count); 1267 retval = -EPERM; 1268 goto out; 1269 } 1270 1271 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1272 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1273 dqm_lock(dqm); 1274 retval = allocate_sdma_queue(dqm, q); 1275 dqm_unlock(dqm); 1276 if (retval) 1277 goto out; 1278 } 1279 1280 retval = allocate_doorbell(qpd, q); 1281 if (retval) 1282 goto out_deallocate_sdma_queue; 1283 1284 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1285 q->properties.type)]; 1286 1287 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1288 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 1289 dqm->asic_ops.init_sdma_vm(dqm, q, qpd); 1290 q->properties.tba_addr = qpd->tba_addr; 1291 q->properties.tma_addr = qpd->tma_addr; 1292 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties); 1293 if (!q->mqd_mem_obj) { 1294 retval = -ENOMEM; 1295 goto out_deallocate_doorbell; 1296 } 1297 1298 dqm_lock(dqm); 1299 /* 1300 * Eviction state logic: mark all queues as evicted, even ones 1301 * not currently active. Restoring inactive queues later only 1302 * updates the is_evicted flag but is a no-op otherwise. 1303 */ 1304 q->properties.is_evicted = !!qpd->evicted; 1305 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, 1306 &q->gart_mqd_addr, &q->properties); 1307 1308 list_add(&q->list, &qpd->queues_list); 1309 qpd->queue_count++; 1310 1311 if (q->properties.is_active) { 1312 increment_queue_count(dqm, q->properties.type); 1313 1314 execute_queues_cpsch(dqm, 1315 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1316 } 1317 1318 /* 1319 * Unconditionally increment this counter, regardless of the queue's 1320 * type or whether the queue is active. 1321 */ 1322 dqm->total_queue_count++; 1323 1324 pr_debug("Total of %d queues are accountable so far\n", 1325 dqm->total_queue_count); 1326 1327 dqm_unlock(dqm); 1328 return retval; 1329 1330 out_deallocate_doorbell: 1331 deallocate_doorbell(qpd, q); 1332 out_deallocate_sdma_queue: 1333 if (q->properties.type == KFD_QUEUE_TYPE_SDMA || 1334 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) { 1335 dqm_lock(dqm); 1336 deallocate_sdma_queue(dqm, q); 1337 dqm_unlock(dqm); 1338 } 1339 out: 1340 return retval; 1341 } 1342 1343 int amdkfd_fence_wait_timeout(unsigned int *fence_addr, 1344 unsigned int fence_value, 1345 unsigned int timeout_ms) 1346 { 1347 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies; 1348 1349 while (*fence_addr != fence_value) { 1350 if (time_after(jiffies, end_jiffies)) { 1351 pr_err("qcm fence wait loop timeout expired\n"); 1352 /* In HWS case, this is used to halt the driver thread 1353 * in order not to mess up CP states before doing 1354 * scandumps for FW debugging. 1355 */ 1356 while (halt_if_hws_hang) 1357 schedule(); 1358 1359 return -ETIME; 1360 } 1361 schedule(); 1362 } 1363 1364 return 0; 1365 } 1366 1367 /* dqm->lock mutex has to be locked before calling this function */ 1368 static int map_queues_cpsch(struct device_queue_manager *dqm) 1369 { 1370 int retval; 1371 1372 if (!dqm->sched_running) 1373 return 0; 1374 if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0) 1375 return 0; 1376 if (dqm->active_runlist) 1377 return 0; 1378 1379 retval = pm_send_runlist(&dqm->packets, &dqm->queues); 1380 pr_debug("%s sent runlist\n", __func__); 1381 if (retval) { 1382 pr_err("failed to execute runlist\n"); 1383 return retval; 1384 } 1385 dqm->active_runlist = true; 1386 1387 return retval; 1388 } 1389 1390 /* dqm->lock mutex has to be locked before calling this function */ 1391 static int unmap_queues_cpsch(struct device_queue_manager *dqm, 1392 enum kfd_unmap_queues_filter filter, 1393 uint32_t filter_param) 1394 { 1395 int retval = 0; 1396 1397 if (!dqm->sched_running) 1398 return 0; 1399 if (dqm->is_hws_hang) 1400 return -EIO; 1401 if (!dqm->active_runlist) 1402 return retval; 1403 1404 retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE, 1405 filter, filter_param, false, 0); 1406 if (retval) 1407 return retval; 1408 1409 *dqm->fence_addr = KFD_FENCE_INIT; 1410 pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr, 1411 KFD_FENCE_COMPLETED); 1412 /* should be timed out */ 1413 retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED, 1414 queue_preemption_timeout_ms); 1415 if (retval) { 1416 pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n"); 1417 dqm->is_hws_hang = true; 1418 /* It's possible we're detecting a HWS hang in the 1419 * middle of a GPU reset. No need to schedule another 1420 * reset in this case. 1421 */ 1422 if (!dqm->is_resetting) 1423 schedule_work(&dqm->hw_exception_work); 1424 return retval; 1425 } 1426 1427 pm_release_ib(&dqm->packets); 1428 dqm->active_runlist = false; 1429 1430 return retval; 1431 } 1432 1433 /* dqm->lock mutex has to be locked before calling this function */ 1434 static int execute_queues_cpsch(struct device_queue_manager *dqm, 1435 enum kfd_unmap_queues_filter filter, 1436 uint32_t filter_param) 1437 { 1438 int retval; 1439 1440 if (dqm->is_hws_hang) 1441 return -EIO; 1442 retval = unmap_queues_cpsch(dqm, filter, filter_param); 1443 if (retval) 1444 return retval; 1445 1446 return map_queues_cpsch(dqm); 1447 } 1448 1449 static int destroy_queue_cpsch(struct device_queue_manager *dqm, 1450 struct qcm_process_device *qpd, 1451 struct queue *q) 1452 { 1453 int retval; 1454 struct mqd_manager *mqd_mgr; 1455 uint64_t sdma_val = 0; 1456 struct kfd_process_device *pdd = qpd_to_pdd(qpd); 1457 1458 /* Get the SDMA queue stats */ 1459 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 1460 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 1461 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr, 1462 &sdma_val); 1463 if (retval) 1464 pr_err("Failed to read SDMA queue counter for queue: %d\n", 1465 q->properties.queue_id); 1466 } 1467 1468 retval = 0; 1469 1470 /* remove queue from list to prevent rescheduling after preemption */ 1471 dqm_lock(dqm); 1472 1473 if (qpd->is_debug) { 1474 /* 1475 * error, currently we do not allow to destroy a queue 1476 * of a currently debugged process 1477 */ 1478 retval = -EBUSY; 1479 goto failed_try_destroy_debugged_queue; 1480 1481 } 1482 1483 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1484 q->properties.type)]; 1485 1486 deallocate_doorbell(qpd, q); 1487 1488 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) || 1489 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) { 1490 deallocate_sdma_queue(dqm, q); 1491 pdd->sdma_past_activity_counter += sdma_val; 1492 } 1493 1494 list_del(&q->list); 1495 qpd->queue_count--; 1496 if (q->properties.is_active) { 1497 decrement_queue_count(dqm, q->properties.type); 1498 retval = execute_queues_cpsch(dqm, 1499 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0); 1500 if (retval == -ETIME) 1501 qpd->reset_wavefronts = true; 1502 if (q->properties.is_gws) { 1503 dqm->gws_queue_count--; 1504 qpd->mapped_gws_queue = false; 1505 } 1506 } 1507 1508 /* 1509 * Unconditionally decrement this counter, regardless of the queue's 1510 * type 1511 */ 1512 dqm->total_queue_count--; 1513 pr_debug("Total of %d queues are accountable so far\n", 1514 dqm->total_queue_count); 1515 1516 dqm_unlock(dqm); 1517 1518 /* Do free_mqd after dqm_unlock(dqm) to avoid circular locking */ 1519 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 1520 1521 return retval; 1522 1523 failed_try_destroy_debugged_queue: 1524 1525 dqm_unlock(dqm); 1526 return retval; 1527 } 1528 1529 /* 1530 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to 1531 * stay in user mode. 1532 */ 1533 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL 1534 /* APE1 limit is inclusive and 64K aligned. */ 1535 #define APE1_LIMIT_ALIGNMENT 0xFFFF 1536 1537 static bool set_cache_memory_policy(struct device_queue_manager *dqm, 1538 struct qcm_process_device *qpd, 1539 enum cache_policy default_policy, 1540 enum cache_policy alternate_policy, 1541 void __user *alternate_aperture_base, 1542 uint64_t alternate_aperture_size) 1543 { 1544 bool retval = true; 1545 1546 if (!dqm->asic_ops.set_cache_memory_policy) 1547 return retval; 1548 1549 dqm_lock(dqm); 1550 1551 if (alternate_aperture_size == 0) { 1552 /* base > limit disables APE1 */ 1553 qpd->sh_mem_ape1_base = 1; 1554 qpd->sh_mem_ape1_limit = 0; 1555 } else { 1556 /* 1557 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]}, 1558 * SH_MEM_APE1_BASE[31:0], 0x0000 } 1559 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]}, 1560 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF } 1561 * Verify that the base and size parameters can be 1562 * represented in this format and convert them. 1563 * Additionally restrict APE1 to user-mode addresses. 1564 */ 1565 1566 uint64_t base = (uintptr_t)alternate_aperture_base; 1567 uint64_t limit = base + alternate_aperture_size - 1; 1568 1569 if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 || 1570 (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) { 1571 retval = false; 1572 goto out; 1573 } 1574 1575 qpd->sh_mem_ape1_base = base >> 16; 1576 qpd->sh_mem_ape1_limit = limit >> 16; 1577 } 1578 1579 retval = dqm->asic_ops.set_cache_memory_policy( 1580 dqm, 1581 qpd, 1582 default_policy, 1583 alternate_policy, 1584 alternate_aperture_base, 1585 alternate_aperture_size); 1586 1587 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0)) 1588 program_sh_mem_settings(dqm, qpd); 1589 1590 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n", 1591 qpd->sh_mem_config, qpd->sh_mem_ape1_base, 1592 qpd->sh_mem_ape1_limit); 1593 1594 out: 1595 dqm_unlock(dqm); 1596 return retval; 1597 } 1598 1599 static int set_trap_handler(struct device_queue_manager *dqm, 1600 struct qcm_process_device *qpd, 1601 uint64_t tba_addr, 1602 uint64_t tma_addr) 1603 { 1604 uint64_t *tma; 1605 1606 if (dqm->dev->cwsr_enabled) { 1607 /* Jump from CWSR trap handler to user trap */ 1608 tma = (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET); 1609 tma[0] = tba_addr; 1610 tma[1] = tma_addr; 1611 } else { 1612 qpd->tba_addr = tba_addr; 1613 qpd->tma_addr = tma_addr; 1614 } 1615 1616 return 0; 1617 } 1618 1619 static int process_termination_nocpsch(struct device_queue_manager *dqm, 1620 struct qcm_process_device *qpd) 1621 { 1622 struct queue *q, *next; 1623 struct device_process_node *cur, *next_dpn; 1624 int retval = 0; 1625 bool found = false; 1626 1627 dqm_lock(dqm); 1628 1629 /* Clear all user mode queues */ 1630 list_for_each_entry_safe(q, next, &qpd->queues_list, list) { 1631 int ret; 1632 1633 ret = destroy_queue_nocpsch_locked(dqm, qpd, q); 1634 if (ret) 1635 retval = ret; 1636 } 1637 1638 /* Unregister process */ 1639 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 1640 if (qpd == cur->qpd) { 1641 list_del(&cur->list); 1642 kfree(cur); 1643 dqm->processes_count--; 1644 found = true; 1645 break; 1646 } 1647 } 1648 1649 dqm_unlock(dqm); 1650 1651 /* Outside the DQM lock because under the DQM lock we can't do 1652 * reclaim or take other locks that others hold while reclaiming. 1653 */ 1654 if (found) 1655 kfd_dec_compute_active(dqm->dev); 1656 1657 return retval; 1658 } 1659 1660 static int get_wave_state(struct device_queue_manager *dqm, 1661 struct queue *q, 1662 void __user *ctl_stack, 1663 u32 *ctl_stack_used_size, 1664 u32 *save_area_used_size) 1665 { 1666 struct mqd_manager *mqd_mgr; 1667 int r; 1668 1669 dqm_lock(dqm); 1670 1671 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE || 1672 q->properties.is_active || !q->device->cwsr_enabled) { 1673 r = -EINVAL; 1674 goto dqm_unlock; 1675 } 1676 1677 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP]; 1678 1679 if (!mqd_mgr->get_wave_state) { 1680 r = -EINVAL; 1681 goto dqm_unlock; 1682 } 1683 1684 r = mqd_mgr->get_wave_state(mqd_mgr, q->mqd, ctl_stack, 1685 ctl_stack_used_size, save_area_used_size); 1686 1687 dqm_unlock: 1688 dqm_unlock(dqm); 1689 return r; 1690 } 1691 1692 static int process_termination_cpsch(struct device_queue_manager *dqm, 1693 struct qcm_process_device *qpd) 1694 { 1695 int retval; 1696 struct queue *q, *next; 1697 struct kernel_queue *kq, *kq_next; 1698 struct mqd_manager *mqd_mgr; 1699 struct device_process_node *cur, *next_dpn; 1700 enum kfd_unmap_queues_filter filter = 1701 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES; 1702 bool found = false; 1703 1704 retval = 0; 1705 1706 dqm_lock(dqm); 1707 1708 /* Clean all kernel queues */ 1709 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) { 1710 list_del(&kq->list); 1711 decrement_queue_count(dqm, kq->queue->properties.type); 1712 qpd->is_debug = false; 1713 dqm->total_queue_count--; 1714 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES; 1715 } 1716 1717 /* Clear all user mode queues */ 1718 list_for_each_entry(q, &qpd->queues_list, list) { 1719 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) 1720 deallocate_sdma_queue(dqm, q); 1721 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) 1722 deallocate_sdma_queue(dqm, q); 1723 1724 if (q->properties.is_active) { 1725 decrement_queue_count(dqm, q->properties.type); 1726 if (q->properties.is_gws) { 1727 dqm->gws_queue_count--; 1728 qpd->mapped_gws_queue = false; 1729 } 1730 } 1731 1732 dqm->total_queue_count--; 1733 } 1734 1735 /* Unregister process */ 1736 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) { 1737 if (qpd == cur->qpd) { 1738 list_del(&cur->list); 1739 kfree(cur); 1740 dqm->processes_count--; 1741 found = true; 1742 break; 1743 } 1744 } 1745 1746 retval = execute_queues_cpsch(dqm, filter, 0); 1747 if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) { 1748 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev); 1749 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process); 1750 qpd->reset_wavefronts = false; 1751 } 1752 1753 dqm_unlock(dqm); 1754 1755 /* Outside the DQM lock because under the DQM lock we can't do 1756 * reclaim or take other locks that others hold while reclaiming. 1757 */ 1758 if (found) 1759 kfd_dec_compute_active(dqm->dev); 1760 1761 /* Lastly, free mqd resources. 1762 * Do free_mqd() after dqm_unlock to avoid circular locking. 1763 */ 1764 list_for_each_entry_safe(q, next, &qpd->queues_list, list) { 1765 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type( 1766 q->properties.type)]; 1767 list_del(&q->list); 1768 qpd->queue_count--; 1769 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj); 1770 } 1771 1772 return retval; 1773 } 1774 1775 static int init_mqd_managers(struct device_queue_manager *dqm) 1776 { 1777 int i, j; 1778 struct mqd_manager *mqd_mgr; 1779 1780 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) { 1781 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev); 1782 if (!mqd_mgr) { 1783 pr_err("mqd manager [%d] initialization failed\n", i); 1784 goto out_free; 1785 } 1786 dqm->mqd_mgrs[i] = mqd_mgr; 1787 } 1788 1789 return 0; 1790 1791 out_free: 1792 for (j = 0; j < i; j++) { 1793 kfree(dqm->mqd_mgrs[j]); 1794 dqm->mqd_mgrs[j] = NULL; 1795 } 1796 1797 return -ENOMEM; 1798 } 1799 1800 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/ 1801 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm) 1802 { 1803 int retval; 1804 struct kfd_dev *dev = dqm->dev; 1805 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd; 1806 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size * 1807 get_num_all_sdma_engines(dqm) * 1808 dev->device_info->num_sdma_queues_per_engine + 1809 dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size; 1810 1811 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->kgd, size, 1812 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr), 1813 (void *)&(mem_obj->cpu_ptr), false); 1814 1815 return retval; 1816 } 1817 1818 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev) 1819 { 1820 struct device_queue_manager *dqm; 1821 1822 pr_debug("Loading device queue manager\n"); 1823 1824 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL); 1825 if (!dqm) 1826 return NULL; 1827 1828 switch (dev->device_info->asic_family) { 1829 /* HWS is not available on Hawaii. */ 1830 case CHIP_HAWAII: 1831 /* HWS depends on CWSR for timely dequeue. CWSR is not 1832 * available on Tonga. 1833 * 1834 * FIXME: This argument also applies to Kaveri. 1835 */ 1836 case CHIP_TONGA: 1837 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS; 1838 break; 1839 default: 1840 dqm->sched_policy = sched_policy; 1841 break; 1842 } 1843 1844 dqm->dev = dev; 1845 switch (dqm->sched_policy) { 1846 case KFD_SCHED_POLICY_HWS: 1847 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: 1848 /* initialize dqm for cp scheduling */ 1849 dqm->ops.create_queue = create_queue_cpsch; 1850 dqm->ops.initialize = initialize_cpsch; 1851 dqm->ops.start = start_cpsch; 1852 dqm->ops.stop = stop_cpsch; 1853 dqm->ops.pre_reset = pre_reset; 1854 dqm->ops.destroy_queue = destroy_queue_cpsch; 1855 dqm->ops.update_queue = update_queue; 1856 dqm->ops.register_process = register_process; 1857 dqm->ops.unregister_process = unregister_process; 1858 dqm->ops.uninitialize = uninitialize; 1859 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch; 1860 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch; 1861 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 1862 dqm->ops.set_trap_handler = set_trap_handler; 1863 dqm->ops.process_termination = process_termination_cpsch; 1864 dqm->ops.evict_process_queues = evict_process_queues_cpsch; 1865 dqm->ops.restore_process_queues = restore_process_queues_cpsch; 1866 dqm->ops.get_wave_state = get_wave_state; 1867 break; 1868 case KFD_SCHED_POLICY_NO_HWS: 1869 /* initialize dqm for no cp scheduling */ 1870 dqm->ops.start = start_nocpsch; 1871 dqm->ops.stop = stop_nocpsch; 1872 dqm->ops.pre_reset = pre_reset; 1873 dqm->ops.create_queue = create_queue_nocpsch; 1874 dqm->ops.destroy_queue = destroy_queue_nocpsch; 1875 dqm->ops.update_queue = update_queue; 1876 dqm->ops.register_process = register_process; 1877 dqm->ops.unregister_process = unregister_process; 1878 dqm->ops.initialize = initialize_nocpsch; 1879 dqm->ops.uninitialize = uninitialize; 1880 dqm->ops.set_cache_memory_policy = set_cache_memory_policy; 1881 dqm->ops.set_trap_handler = set_trap_handler; 1882 dqm->ops.process_termination = process_termination_nocpsch; 1883 dqm->ops.evict_process_queues = evict_process_queues_nocpsch; 1884 dqm->ops.restore_process_queues = 1885 restore_process_queues_nocpsch; 1886 dqm->ops.get_wave_state = get_wave_state; 1887 break; 1888 default: 1889 pr_err("Invalid scheduling policy %d\n", dqm->sched_policy); 1890 goto out_free; 1891 } 1892 1893 switch (dev->device_info->asic_family) { 1894 case CHIP_CARRIZO: 1895 device_queue_manager_init_vi(&dqm->asic_ops); 1896 break; 1897 1898 case CHIP_KAVERI: 1899 device_queue_manager_init_cik(&dqm->asic_ops); 1900 break; 1901 1902 case CHIP_HAWAII: 1903 device_queue_manager_init_cik_hawaii(&dqm->asic_ops); 1904 break; 1905 1906 case CHIP_TONGA: 1907 case CHIP_FIJI: 1908 case CHIP_POLARIS10: 1909 case CHIP_POLARIS11: 1910 case CHIP_POLARIS12: 1911 case CHIP_VEGAM: 1912 device_queue_manager_init_vi_tonga(&dqm->asic_ops); 1913 break; 1914 1915 case CHIP_VEGA10: 1916 case CHIP_VEGA12: 1917 case CHIP_VEGA20: 1918 case CHIP_RAVEN: 1919 case CHIP_RENOIR: 1920 case CHIP_ARCTURUS: 1921 device_queue_manager_init_v9(&dqm->asic_ops); 1922 break; 1923 case CHIP_NAVI10: 1924 case CHIP_NAVI12: 1925 case CHIP_NAVI14: 1926 case CHIP_SIENNA_CICHLID: 1927 case CHIP_NAVY_FLOUNDER: 1928 case CHIP_VANGOGH: 1929 case CHIP_DIMGREY_CAVEFISH: 1930 device_queue_manager_init_v10_navi10(&dqm->asic_ops); 1931 break; 1932 default: 1933 WARN(1, "Unexpected ASIC family %u", 1934 dev->device_info->asic_family); 1935 goto out_free; 1936 } 1937 1938 if (init_mqd_managers(dqm)) 1939 goto out_free; 1940 1941 if (allocate_hiq_sdma_mqd(dqm)) { 1942 pr_err("Failed to allocate hiq sdma mqd trunk buffer\n"); 1943 goto out_free; 1944 } 1945 1946 if (!dqm->ops.initialize(dqm)) 1947 return dqm; 1948 1949 out_free: 1950 kfree(dqm); 1951 return NULL; 1952 } 1953 1954 static void deallocate_hiq_sdma_mqd(struct kfd_dev *dev, 1955 struct kfd_mem_obj *mqd) 1956 { 1957 WARN(!mqd, "No hiq sdma mqd trunk to free"); 1958 1959 amdgpu_amdkfd_free_gtt_mem(dev->kgd, mqd->gtt_mem); 1960 } 1961 1962 void device_queue_manager_uninit(struct device_queue_manager *dqm) 1963 { 1964 dqm->ops.uninitialize(dqm); 1965 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd); 1966 kfree(dqm); 1967 } 1968 1969 int kfd_process_vm_fault(struct device_queue_manager *dqm, u32 pasid) 1970 { 1971 struct kfd_process_device *pdd; 1972 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 1973 int ret = 0; 1974 1975 if (!p) 1976 return -EINVAL; 1977 WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid); 1978 pdd = kfd_get_process_device_data(dqm->dev, p); 1979 if (pdd) 1980 ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd); 1981 kfd_unref_process(p); 1982 1983 return ret; 1984 } 1985 1986 static void kfd_process_hw_exception(struct work_struct *work) 1987 { 1988 struct device_queue_manager *dqm = container_of(work, 1989 struct device_queue_manager, hw_exception_work); 1990 amdgpu_amdkfd_gpu_reset(dqm->dev->kgd); 1991 } 1992 1993 #if defined(CONFIG_DEBUG_FS) 1994 1995 static void seq_reg_dump(struct seq_file *m, 1996 uint32_t (*dump)[2], uint32_t n_regs) 1997 { 1998 uint32_t i, count; 1999 2000 for (i = 0, count = 0; i < n_regs; i++) { 2001 if (count == 0 || 2002 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) { 2003 seq_printf(m, "%s %08x: %08x", 2004 i ? "\n" : "", 2005 dump[i][0], dump[i][1]); 2006 count = 7; 2007 } else { 2008 seq_printf(m, " %08x", dump[i][1]); 2009 count--; 2010 } 2011 } 2012 2013 seq_puts(m, "\n"); 2014 } 2015 2016 int dqm_debugfs_hqds(struct seq_file *m, void *data) 2017 { 2018 struct device_queue_manager *dqm = data; 2019 uint32_t (*dump)[2], n_regs; 2020 int pipe, queue; 2021 int r = 0; 2022 2023 if (!dqm->sched_running) { 2024 seq_printf(m, " Device is stopped\n"); 2025 2026 return 0; 2027 } 2028 2029 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->kgd, 2030 KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE, 2031 &dump, &n_regs); 2032 if (!r) { 2033 seq_printf(m, " HIQ on MEC %d Pipe %d Queue %d\n", 2034 KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1, 2035 KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm), 2036 KFD_CIK_HIQ_QUEUE); 2037 seq_reg_dump(m, dump, n_regs); 2038 2039 kfree(dump); 2040 } 2041 2042 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) { 2043 int pipe_offset = pipe * get_queues_per_pipe(dqm); 2044 2045 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) { 2046 if (!test_bit(pipe_offset + queue, 2047 dqm->dev->shared_resources.cp_queue_bitmap)) 2048 continue; 2049 2050 r = dqm->dev->kfd2kgd->hqd_dump( 2051 dqm->dev->kgd, pipe, queue, &dump, &n_regs); 2052 if (r) 2053 break; 2054 2055 seq_printf(m, " CP Pipe %d, Queue %d\n", 2056 pipe, queue); 2057 seq_reg_dump(m, dump, n_regs); 2058 2059 kfree(dump); 2060 } 2061 } 2062 2063 for (pipe = 0; pipe < get_num_all_sdma_engines(dqm); pipe++) { 2064 for (queue = 0; 2065 queue < dqm->dev->device_info->num_sdma_queues_per_engine; 2066 queue++) { 2067 r = dqm->dev->kfd2kgd->hqd_sdma_dump( 2068 dqm->dev->kgd, pipe, queue, &dump, &n_regs); 2069 if (r) 2070 break; 2071 2072 seq_printf(m, " SDMA Engine %d, RLC %d\n", 2073 pipe, queue); 2074 seq_reg_dump(m, dump, n_regs); 2075 2076 kfree(dump); 2077 } 2078 } 2079 2080 return r; 2081 } 2082 2083 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm) 2084 { 2085 int r = 0; 2086 2087 dqm_lock(dqm); 2088 dqm->active_runlist = true; 2089 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0); 2090 dqm_unlock(dqm); 2091 2092 return r; 2093 } 2094 2095 #endif 2096