1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
32 
33 #define MQD_SIZE_ALIGNED 768
34 
35 /*
36  * kfd_locked is used to lock the kfd driver during suspend or reset
37  * once locked, kfd driver will stop any further GPU execution.
38  * create process (open) will return -EAGAIN.
39  */
40 static atomic_t kfd_locked = ATOMIC_INIT(0);
41 
42 #ifdef KFD_SUPPORT_IOMMU_V2
43 static const struct kfd_device_info kaveri_device_info = {
44 	.asic_family = CHIP_KAVERI,
45 	.max_pasid_bits = 16,
46 	/* max num of queues for KV.TODO should be a dynamic value */
47 	.max_no_of_hqd	= 24,
48 	.doorbell_size  = 4,
49 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
50 	.event_interrupt_class = &event_interrupt_class_cik,
51 	.num_of_watch_points = 4,
52 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
53 	.supports_cwsr = false,
54 	.needs_iommu_device = true,
55 	.needs_pci_atomics = false,
56 	.num_sdma_engines = 2,
57 	.num_xgmi_sdma_engines = 0,
58 	.num_sdma_queues_per_engine = 2,
59 };
60 
61 static const struct kfd_device_info carrizo_device_info = {
62 	.asic_family = CHIP_CARRIZO,
63 	.max_pasid_bits = 16,
64 	/* max num of queues for CZ.TODO should be a dynamic value */
65 	.max_no_of_hqd	= 24,
66 	.doorbell_size  = 4,
67 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
68 	.event_interrupt_class = &event_interrupt_class_cik,
69 	.num_of_watch_points = 4,
70 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
71 	.supports_cwsr = true,
72 	.needs_iommu_device = true,
73 	.needs_pci_atomics = false,
74 	.num_sdma_engines = 2,
75 	.num_xgmi_sdma_engines = 0,
76 	.num_sdma_queues_per_engine = 2,
77 };
78 
79 static const struct kfd_device_info raven_device_info = {
80 	.asic_family = CHIP_RAVEN,
81 	.max_pasid_bits = 16,
82 	.max_no_of_hqd  = 24,
83 	.doorbell_size  = 8,
84 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
85 	.event_interrupt_class = &event_interrupt_class_v9,
86 	.num_of_watch_points = 4,
87 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
88 	.supports_cwsr = true,
89 	.needs_iommu_device = true,
90 	.needs_pci_atomics = true,
91 	.num_sdma_engines = 1,
92 	.num_xgmi_sdma_engines = 0,
93 	.num_sdma_queues_per_engine = 2,
94 };
95 #endif
96 
97 static const struct kfd_device_info hawaii_device_info = {
98 	.asic_family = CHIP_HAWAII,
99 	.max_pasid_bits = 16,
100 	/* max num of queues for KV.TODO should be a dynamic value */
101 	.max_no_of_hqd	= 24,
102 	.doorbell_size  = 4,
103 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
104 	.event_interrupt_class = &event_interrupt_class_cik,
105 	.num_of_watch_points = 4,
106 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
107 	.supports_cwsr = false,
108 	.needs_iommu_device = false,
109 	.needs_pci_atomics = false,
110 	.num_sdma_engines = 2,
111 	.num_xgmi_sdma_engines = 0,
112 	.num_sdma_queues_per_engine = 2,
113 };
114 
115 static const struct kfd_device_info tonga_device_info = {
116 	.asic_family = CHIP_TONGA,
117 	.max_pasid_bits = 16,
118 	.max_no_of_hqd  = 24,
119 	.doorbell_size  = 4,
120 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
121 	.event_interrupt_class = &event_interrupt_class_cik,
122 	.num_of_watch_points = 4,
123 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
124 	.supports_cwsr = false,
125 	.needs_iommu_device = false,
126 	.needs_pci_atomics = true,
127 	.num_sdma_engines = 2,
128 	.num_xgmi_sdma_engines = 0,
129 	.num_sdma_queues_per_engine = 2,
130 };
131 
132 static const struct kfd_device_info fiji_device_info = {
133 	.asic_family = CHIP_FIJI,
134 	.max_pasid_bits = 16,
135 	.max_no_of_hqd  = 24,
136 	.doorbell_size  = 4,
137 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
138 	.event_interrupt_class = &event_interrupt_class_cik,
139 	.num_of_watch_points = 4,
140 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
141 	.supports_cwsr = true,
142 	.needs_iommu_device = false,
143 	.needs_pci_atomics = true,
144 	.num_sdma_engines = 2,
145 	.num_xgmi_sdma_engines = 0,
146 	.num_sdma_queues_per_engine = 2,
147 };
148 
149 static const struct kfd_device_info fiji_vf_device_info = {
150 	.asic_family = CHIP_FIJI,
151 	.max_pasid_bits = 16,
152 	.max_no_of_hqd  = 24,
153 	.doorbell_size  = 4,
154 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
155 	.event_interrupt_class = &event_interrupt_class_cik,
156 	.num_of_watch_points = 4,
157 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
158 	.supports_cwsr = true,
159 	.needs_iommu_device = false,
160 	.needs_pci_atomics = false,
161 	.num_sdma_engines = 2,
162 	.num_xgmi_sdma_engines = 0,
163 	.num_sdma_queues_per_engine = 2,
164 };
165 
166 
167 static const struct kfd_device_info polaris10_device_info = {
168 	.asic_family = CHIP_POLARIS10,
169 	.max_pasid_bits = 16,
170 	.max_no_of_hqd  = 24,
171 	.doorbell_size  = 4,
172 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
173 	.event_interrupt_class = &event_interrupt_class_cik,
174 	.num_of_watch_points = 4,
175 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
176 	.supports_cwsr = true,
177 	.needs_iommu_device = false,
178 	.needs_pci_atomics = true,
179 	.num_sdma_engines = 2,
180 	.num_xgmi_sdma_engines = 0,
181 	.num_sdma_queues_per_engine = 2,
182 };
183 
184 static const struct kfd_device_info polaris10_vf_device_info = {
185 	.asic_family = CHIP_POLARIS10,
186 	.max_pasid_bits = 16,
187 	.max_no_of_hqd  = 24,
188 	.doorbell_size  = 4,
189 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
190 	.event_interrupt_class = &event_interrupt_class_cik,
191 	.num_of_watch_points = 4,
192 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
193 	.supports_cwsr = true,
194 	.needs_iommu_device = false,
195 	.needs_pci_atomics = false,
196 	.num_sdma_engines = 2,
197 	.num_xgmi_sdma_engines = 0,
198 	.num_sdma_queues_per_engine = 2,
199 };
200 
201 static const struct kfd_device_info polaris11_device_info = {
202 	.asic_family = CHIP_POLARIS11,
203 	.max_pasid_bits = 16,
204 	.max_no_of_hqd  = 24,
205 	.doorbell_size  = 4,
206 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
207 	.event_interrupt_class = &event_interrupt_class_cik,
208 	.num_of_watch_points = 4,
209 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
210 	.supports_cwsr = true,
211 	.needs_iommu_device = false,
212 	.needs_pci_atomics = true,
213 	.num_sdma_engines = 2,
214 	.num_xgmi_sdma_engines = 0,
215 	.num_sdma_queues_per_engine = 2,
216 };
217 
218 static const struct kfd_device_info polaris12_device_info = {
219 	.asic_family = CHIP_POLARIS12,
220 	.max_pasid_bits = 16,
221 	.max_no_of_hqd  = 24,
222 	.doorbell_size  = 4,
223 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
224 	.event_interrupt_class = &event_interrupt_class_cik,
225 	.num_of_watch_points = 4,
226 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
227 	.supports_cwsr = true,
228 	.needs_iommu_device = false,
229 	.needs_pci_atomics = true,
230 	.num_sdma_engines = 2,
231 	.num_xgmi_sdma_engines = 0,
232 	.num_sdma_queues_per_engine = 2,
233 };
234 
235 static const struct kfd_device_info vegam_device_info = {
236 	.asic_family = CHIP_VEGAM,
237 	.max_pasid_bits = 16,
238 	.max_no_of_hqd  = 24,
239 	.doorbell_size  = 4,
240 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
241 	.event_interrupt_class = &event_interrupt_class_cik,
242 	.num_of_watch_points = 4,
243 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
244 	.supports_cwsr = true,
245 	.needs_iommu_device = false,
246 	.needs_pci_atomics = true,
247 	.num_sdma_engines = 2,
248 	.num_xgmi_sdma_engines = 0,
249 	.num_sdma_queues_per_engine = 2,
250 };
251 
252 static const struct kfd_device_info vega10_device_info = {
253 	.asic_family = CHIP_VEGA10,
254 	.max_pasid_bits = 16,
255 	.max_no_of_hqd  = 24,
256 	.doorbell_size  = 8,
257 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
258 	.event_interrupt_class = &event_interrupt_class_v9,
259 	.num_of_watch_points = 4,
260 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
261 	.supports_cwsr = true,
262 	.needs_iommu_device = false,
263 	.needs_pci_atomics = false,
264 	.num_sdma_engines = 2,
265 	.num_xgmi_sdma_engines = 0,
266 	.num_sdma_queues_per_engine = 2,
267 };
268 
269 static const struct kfd_device_info vega10_vf_device_info = {
270 	.asic_family = CHIP_VEGA10,
271 	.max_pasid_bits = 16,
272 	.max_no_of_hqd  = 24,
273 	.doorbell_size  = 8,
274 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
275 	.event_interrupt_class = &event_interrupt_class_v9,
276 	.num_of_watch_points = 4,
277 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
278 	.supports_cwsr = true,
279 	.needs_iommu_device = false,
280 	.needs_pci_atomics = false,
281 	.num_sdma_engines = 2,
282 	.num_xgmi_sdma_engines = 0,
283 	.num_sdma_queues_per_engine = 2,
284 };
285 
286 static const struct kfd_device_info vega12_device_info = {
287 	.asic_family = CHIP_VEGA12,
288 	.max_pasid_bits = 16,
289 	.max_no_of_hqd  = 24,
290 	.doorbell_size  = 8,
291 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
292 	.event_interrupt_class = &event_interrupt_class_v9,
293 	.num_of_watch_points = 4,
294 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
295 	.supports_cwsr = true,
296 	.needs_iommu_device = false,
297 	.needs_pci_atomics = false,
298 	.num_sdma_engines = 2,
299 	.num_xgmi_sdma_engines = 0,
300 	.num_sdma_queues_per_engine = 2,
301 };
302 
303 static const struct kfd_device_info vega20_device_info = {
304 	.asic_family = CHIP_VEGA20,
305 	.max_pasid_bits = 16,
306 	.max_no_of_hqd	= 24,
307 	.doorbell_size	= 8,
308 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
309 	.event_interrupt_class = &event_interrupt_class_v9,
310 	.num_of_watch_points = 4,
311 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
312 	.supports_cwsr = true,
313 	.needs_iommu_device = false,
314 	.needs_pci_atomics = false,
315 	.num_sdma_engines = 2,
316 	.num_xgmi_sdma_engines = 0,
317 	.num_sdma_queues_per_engine = 8,
318 };
319 
320 static const struct kfd_device_info navi10_device_info = {
321 	.asic_family = CHIP_NAVI10,
322 	.max_pasid_bits = 16,
323 	.max_no_of_hqd  = 24,
324 	.doorbell_size  = 8,
325 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
326 	.event_interrupt_class = &event_interrupt_class_v9,
327 	.num_of_watch_points = 4,
328 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
329 	.needs_iommu_device = false,
330 	.supports_cwsr = true,
331 	.needs_pci_atomics = false,
332 	.num_sdma_engines = 2,
333 	.num_xgmi_sdma_engines = 0,
334 	.num_sdma_queues_per_engine = 8,
335 };
336 
337 struct kfd_deviceid {
338 	unsigned short did;
339 	const struct kfd_device_info *device_info;
340 };
341 
342 static const struct kfd_deviceid supported_devices[] = {
343 #ifdef KFD_SUPPORT_IOMMU_V2
344 	{ 0x1304, &kaveri_device_info },	/* Kaveri */
345 	{ 0x1305, &kaveri_device_info },	/* Kaveri */
346 	{ 0x1306, &kaveri_device_info },	/* Kaveri */
347 	{ 0x1307, &kaveri_device_info },	/* Kaveri */
348 	{ 0x1309, &kaveri_device_info },	/* Kaveri */
349 	{ 0x130A, &kaveri_device_info },	/* Kaveri */
350 	{ 0x130B, &kaveri_device_info },	/* Kaveri */
351 	{ 0x130C, &kaveri_device_info },	/* Kaveri */
352 	{ 0x130D, &kaveri_device_info },	/* Kaveri */
353 	{ 0x130E, &kaveri_device_info },	/* Kaveri */
354 	{ 0x130F, &kaveri_device_info },	/* Kaveri */
355 	{ 0x1310, &kaveri_device_info },	/* Kaveri */
356 	{ 0x1311, &kaveri_device_info },	/* Kaveri */
357 	{ 0x1312, &kaveri_device_info },	/* Kaveri */
358 	{ 0x1313, &kaveri_device_info },	/* Kaveri */
359 	{ 0x1315, &kaveri_device_info },	/* Kaveri */
360 	{ 0x1316, &kaveri_device_info },	/* Kaveri */
361 	{ 0x1317, &kaveri_device_info },	/* Kaveri */
362 	{ 0x1318, &kaveri_device_info },	/* Kaveri */
363 	{ 0x131B, &kaveri_device_info },	/* Kaveri */
364 	{ 0x131C, &kaveri_device_info },	/* Kaveri */
365 	{ 0x131D, &kaveri_device_info },	/* Kaveri */
366 	{ 0x9870, &carrizo_device_info },	/* Carrizo */
367 	{ 0x9874, &carrizo_device_info },	/* Carrizo */
368 	{ 0x9875, &carrizo_device_info },	/* Carrizo */
369 	{ 0x9876, &carrizo_device_info },	/* Carrizo */
370 	{ 0x9877, &carrizo_device_info },	/* Carrizo */
371 	{ 0x15DD, &raven_device_info },		/* Raven */
372 	{ 0x15D8, &raven_device_info },		/* Raven */
373 #endif
374 	{ 0x67A0, &hawaii_device_info },	/* Hawaii */
375 	{ 0x67A1, &hawaii_device_info },	/* Hawaii */
376 	{ 0x67A2, &hawaii_device_info },	/* Hawaii */
377 	{ 0x67A8, &hawaii_device_info },	/* Hawaii */
378 	{ 0x67A9, &hawaii_device_info },	/* Hawaii */
379 	{ 0x67AA, &hawaii_device_info },	/* Hawaii */
380 	{ 0x67B0, &hawaii_device_info },	/* Hawaii */
381 	{ 0x67B1, &hawaii_device_info },	/* Hawaii */
382 	{ 0x67B8, &hawaii_device_info },	/* Hawaii */
383 	{ 0x67B9, &hawaii_device_info },	/* Hawaii */
384 	{ 0x67BA, &hawaii_device_info },	/* Hawaii */
385 	{ 0x67BE, &hawaii_device_info },	/* Hawaii */
386 	{ 0x6920, &tonga_device_info },		/* Tonga */
387 	{ 0x6921, &tonga_device_info },		/* Tonga */
388 	{ 0x6928, &tonga_device_info },		/* Tonga */
389 	{ 0x6929, &tonga_device_info },		/* Tonga */
390 	{ 0x692B, &tonga_device_info },		/* Tonga */
391 	{ 0x6938, &tonga_device_info },		/* Tonga */
392 	{ 0x6939, &tonga_device_info },		/* Tonga */
393 	{ 0x7300, &fiji_device_info },		/* Fiji */
394 	{ 0x730F, &fiji_vf_device_info },	/* Fiji vf*/
395 	{ 0x67C0, &polaris10_device_info },	/* Polaris10 */
396 	{ 0x67C1, &polaris10_device_info },	/* Polaris10 */
397 	{ 0x67C2, &polaris10_device_info },	/* Polaris10 */
398 	{ 0x67C4, &polaris10_device_info },	/* Polaris10 */
399 	{ 0x67C7, &polaris10_device_info },	/* Polaris10 */
400 	{ 0x67C8, &polaris10_device_info },	/* Polaris10 */
401 	{ 0x67C9, &polaris10_device_info },	/* Polaris10 */
402 	{ 0x67CA, &polaris10_device_info },	/* Polaris10 */
403 	{ 0x67CC, &polaris10_device_info },	/* Polaris10 */
404 	{ 0x67CF, &polaris10_device_info },	/* Polaris10 */
405 	{ 0x67D0, &polaris10_vf_device_info },	/* Polaris10 vf*/
406 	{ 0x67DF, &polaris10_device_info },	/* Polaris10 */
407 	{ 0x6FDF, &polaris10_device_info },	/* Polaris10 */
408 	{ 0x67E0, &polaris11_device_info },	/* Polaris11 */
409 	{ 0x67E1, &polaris11_device_info },	/* Polaris11 */
410 	{ 0x67E3, &polaris11_device_info },	/* Polaris11 */
411 	{ 0x67E7, &polaris11_device_info },	/* Polaris11 */
412 	{ 0x67E8, &polaris11_device_info },	/* Polaris11 */
413 	{ 0x67E9, &polaris11_device_info },	/* Polaris11 */
414 	{ 0x67EB, &polaris11_device_info },	/* Polaris11 */
415 	{ 0x67EF, &polaris11_device_info },	/* Polaris11 */
416 	{ 0x67FF, &polaris11_device_info },	/* Polaris11 */
417 	{ 0x6980, &polaris12_device_info },	/* Polaris12 */
418 	{ 0x6981, &polaris12_device_info },	/* Polaris12 */
419 	{ 0x6985, &polaris12_device_info },	/* Polaris12 */
420 	{ 0x6986, &polaris12_device_info },	/* Polaris12 */
421 	{ 0x6987, &polaris12_device_info },	/* Polaris12 */
422 	{ 0x6995, &polaris12_device_info },	/* Polaris12 */
423 	{ 0x6997, &polaris12_device_info },	/* Polaris12 */
424 	{ 0x699F, &polaris12_device_info },	/* Polaris12 */
425 	{ 0x694C, &vegam_device_info },		/* VegaM */
426 	{ 0x694E, &vegam_device_info },		/* VegaM */
427 	{ 0x694F, &vegam_device_info },		/* VegaM */
428 	{ 0x6860, &vega10_device_info },	/* Vega10 */
429 	{ 0x6861, &vega10_device_info },	/* Vega10 */
430 	{ 0x6862, &vega10_device_info },	/* Vega10 */
431 	{ 0x6863, &vega10_device_info },	/* Vega10 */
432 	{ 0x6864, &vega10_device_info },	/* Vega10 */
433 	{ 0x6867, &vega10_device_info },	/* Vega10 */
434 	{ 0x6868, &vega10_device_info },	/* Vega10 */
435 	{ 0x6869, &vega10_device_info },	/* Vega10 */
436 	{ 0x686A, &vega10_device_info },	/* Vega10 */
437 	{ 0x686B, &vega10_device_info },	/* Vega10 */
438 	{ 0x686C, &vega10_vf_device_info },	/* Vega10  vf*/
439 	{ 0x686D, &vega10_device_info },	/* Vega10 */
440 	{ 0x686E, &vega10_device_info },	/* Vega10 */
441 	{ 0x686F, &vega10_device_info },	/* Vega10 */
442 	{ 0x687F, &vega10_device_info },	/* Vega10 */
443 	{ 0x69A0, &vega12_device_info },	/* Vega12 */
444 	{ 0x69A1, &vega12_device_info },	/* Vega12 */
445 	{ 0x69A2, &vega12_device_info },	/* Vega12 */
446 	{ 0x69A3, &vega12_device_info },	/* Vega12 */
447 	{ 0x69AF, &vega12_device_info },	/* Vega12 */
448 	{ 0x66a0, &vega20_device_info },	/* Vega20 */
449 	{ 0x66a1, &vega20_device_info },	/* Vega20 */
450 	{ 0x66a2, &vega20_device_info },	/* Vega20 */
451 	{ 0x66a3, &vega20_device_info },	/* Vega20 */
452 	{ 0x66a4, &vega20_device_info },	/* Vega20 */
453 	{ 0x66a7, &vega20_device_info },	/* Vega20 */
454 	{ 0x66af, &vega20_device_info },	/* Vega20 */
455 	/* Navi10 */
456 	{ 0x7310, &navi10_device_info },	/* Navi10 */
457 	{ 0x7312, &navi10_device_info },	/* Navi10 */
458 	{ 0x7318, &navi10_device_info },	/* Navi10 */
459 	{ 0x731a, &navi10_device_info },	/* Navi10 */
460 	{ 0x731f, &navi10_device_info },	/* Navi10 */
461 };
462 
463 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
464 				unsigned int chunk_size);
465 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
466 
467 static int kfd_resume(struct kfd_dev *kfd);
468 
469 static const struct kfd_device_info *lookup_device_info(unsigned short did)
470 {
471 	size_t i;
472 
473 	for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
474 		if (supported_devices[i].did == did) {
475 			WARN_ON(!supported_devices[i].device_info);
476 			return supported_devices[i].device_info;
477 		}
478 	}
479 
480 	dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
481 		 did);
482 
483 	return NULL;
484 }
485 
486 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
487 	struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
488 {
489 	struct kfd_dev *kfd;
490 	int ret;
491 	const struct kfd_device_info *device_info =
492 					lookup_device_info(pdev->device);
493 
494 	if (!device_info) {
495 		dev_err(kfd_device, "kgd2kfd_probe failed\n");
496 		return NULL;
497 	}
498 
499 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
500 	if (!kfd)
501 		return NULL;
502 
503 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
504 	 * 32 and 64-bit requests are possible and must be
505 	 * supported.
506 	 */
507 	ret = pci_enable_atomic_ops_to_root(pdev,
508 			PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
509 			PCI_EXP_DEVCAP2_ATOMIC_COMP64);
510 	if (device_info->needs_pci_atomics && ret < 0) {
511 		dev_info(kfd_device,
512 			 "skipped device %x:%x, PCI rejects atomics\n",
513 			 pdev->vendor, pdev->device);
514 		kfree(kfd);
515 		return NULL;
516 	} else if (!ret)
517 		kfd->pci_atomic_requested = true;
518 
519 	kfd->kgd = kgd;
520 	kfd->device_info = device_info;
521 	kfd->pdev = pdev;
522 	kfd->init_complete = false;
523 	kfd->kfd2kgd = f2g;
524 	atomic_set(&kfd->compute_profile, 0);
525 
526 	mutex_init(&kfd->doorbell_mutex);
527 	memset(&kfd->doorbell_available_index, 0,
528 		sizeof(kfd->doorbell_available_index));
529 
530 	atomic_set(&kfd->sram_ecc_flag, 0);
531 
532 	return kfd;
533 }
534 
535 static void kfd_cwsr_init(struct kfd_dev *kfd)
536 {
537 	if (cwsr_enable && kfd->device_info->supports_cwsr) {
538 		if (kfd->device_info->asic_family < CHIP_VEGA10) {
539 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
540 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
541 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
542 		} else if (kfd->device_info->asic_family < CHIP_NAVI10) {
543 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
544 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
545 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
546 		} else {
547 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
548 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
549 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
550 		}
551 
552 		kfd->cwsr_enabled = true;
553 	}
554 }
555 
556 bool kgd2kfd_device_init(struct kfd_dev *kfd,
557 			 const struct kgd2kfd_shared_resources *gpu_resources)
558 {
559 	unsigned int size;
560 
561 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
562 			KGD_ENGINE_MEC1);
563 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
564 			KGD_ENGINE_SDMA1);
565 	kfd->shared_resources = *gpu_resources;
566 
567 	kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
568 	kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
569 	kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
570 			- kfd->vm_info.first_vmid_kfd + 1;
571 
572 	/* Verify module parameters regarding mapped process number*/
573 	if ((hws_max_conc_proc < 0)
574 			|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
575 		dev_err(kfd_device,
576 			"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
577 			hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
578 			kfd->vm_info.vmid_num_kfd);
579 		kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
580 	} else
581 		kfd->max_proc_per_quantum = hws_max_conc_proc;
582 
583 	/* Allocate global GWS that is shared by all KFD processes */
584 	if (hws_gws_support && amdgpu_amdkfd_alloc_gws(kfd->kgd,
585 			amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws)) {
586 		dev_err(kfd_device, "Could not allocate %d gws\n",
587 			amdgpu_amdkfd_get_num_gws(kfd->kgd));
588 		goto out;
589 	}
590 	/* calculate max size of mqds needed for queues */
591 	size = max_num_of_queues_per_device *
592 			kfd->device_info->mqd_size_aligned;
593 
594 	/*
595 	 * calculate max size of runlist packet.
596 	 * There can be only 2 packets at once
597 	 */
598 	size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
599 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
600 		+ sizeof(struct pm4_mes_runlist)) * 2;
601 
602 	/* Add size of HIQ & DIQ */
603 	size += KFD_KERNEL_QUEUE_SIZE * 2;
604 
605 	/* add another 512KB for all other allocations on gart (HPD, fences) */
606 	size += 512 * 1024;
607 
608 	if (amdgpu_amdkfd_alloc_gtt_mem(
609 			kfd->kgd, size, &kfd->gtt_mem,
610 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
611 			false)) {
612 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
613 		goto alloc_gtt_mem_failure;
614 	}
615 
616 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
617 
618 	/* Initialize GTT sa with 512 byte chunk size */
619 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
620 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
621 		goto kfd_gtt_sa_init_error;
622 	}
623 
624 	if (kfd_doorbell_init(kfd)) {
625 		dev_err(kfd_device,
626 			"Error initializing doorbell aperture\n");
627 		goto kfd_doorbell_error;
628 	}
629 
630 	if (kfd->kfd2kgd->get_hive_id)
631 		kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
632 
633 	if (kfd_interrupt_init(kfd)) {
634 		dev_err(kfd_device, "Error initializing interrupts\n");
635 		goto kfd_interrupt_error;
636 	}
637 
638 	kfd->dqm = device_queue_manager_init(kfd);
639 	if (!kfd->dqm) {
640 		dev_err(kfd_device, "Error initializing queue manager\n");
641 		goto device_queue_manager_error;
642 	}
643 
644 	if (kfd_iommu_device_init(kfd)) {
645 		dev_err(kfd_device, "Error initializing iommuv2\n");
646 		goto device_iommu_error;
647 	}
648 
649 	kfd_cwsr_init(kfd);
650 
651 	if (kfd_resume(kfd))
652 		goto kfd_resume_error;
653 
654 	kfd->dbgmgr = NULL;
655 
656 	if (kfd_topology_add_device(kfd)) {
657 		dev_err(kfd_device, "Error adding device to topology\n");
658 		goto kfd_topology_add_device_error;
659 	}
660 
661 	kfd->init_complete = true;
662 	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
663 		 kfd->pdev->device);
664 
665 	pr_debug("Starting kfd with the following scheduling policy %d\n",
666 		kfd->dqm->sched_policy);
667 
668 	goto out;
669 
670 kfd_topology_add_device_error:
671 kfd_resume_error:
672 device_iommu_error:
673 	device_queue_manager_uninit(kfd->dqm);
674 device_queue_manager_error:
675 	kfd_interrupt_exit(kfd);
676 kfd_interrupt_error:
677 	kfd_doorbell_fini(kfd);
678 kfd_doorbell_error:
679 	kfd_gtt_sa_fini(kfd);
680 kfd_gtt_sa_init_error:
681 	amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
682 alloc_gtt_mem_failure:
683 	if (hws_gws_support)
684 		amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
685 	dev_err(kfd_device,
686 		"device %x:%x NOT added due to errors\n",
687 		kfd->pdev->vendor, kfd->pdev->device);
688 out:
689 	return kfd->init_complete;
690 }
691 
692 void kgd2kfd_device_exit(struct kfd_dev *kfd)
693 {
694 	if (kfd->init_complete) {
695 		kgd2kfd_suspend(kfd);
696 		device_queue_manager_uninit(kfd->dqm);
697 		kfd_interrupt_exit(kfd);
698 		kfd_topology_remove_device(kfd);
699 		kfd_doorbell_fini(kfd);
700 		kfd_gtt_sa_fini(kfd);
701 		amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
702 		if (hws_gws_support)
703 			amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
704 	}
705 
706 	kfree(kfd);
707 }
708 
709 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
710 {
711 	if (!kfd->init_complete)
712 		return 0;
713 	kgd2kfd_suspend(kfd);
714 
715 	/* hold dqm->lock to prevent further execution*/
716 	dqm_lock(kfd->dqm);
717 
718 	kfd_signal_reset_event(kfd);
719 	return 0;
720 }
721 
722 /*
723  * Fix me. KFD won't be able to resume existing process for now.
724  * We will keep all existing process in a evicted state and
725  * wait the process to be terminated.
726  */
727 
728 int kgd2kfd_post_reset(struct kfd_dev *kfd)
729 {
730 	int ret, count;
731 
732 	if (!kfd->init_complete)
733 		return 0;
734 
735 	dqm_unlock(kfd->dqm);
736 
737 	ret = kfd_resume(kfd);
738 	if (ret)
739 		return ret;
740 	count = atomic_dec_return(&kfd_locked);
741 	WARN_ONCE(count != 0, "KFD reset ref. error");
742 
743 	atomic_set(&kfd->sram_ecc_flag, 0);
744 
745 	return 0;
746 }
747 
748 bool kfd_is_locked(void)
749 {
750 	return  (atomic_read(&kfd_locked) > 0);
751 }
752 
753 void kgd2kfd_suspend(struct kfd_dev *kfd)
754 {
755 	if (!kfd->init_complete)
756 		return;
757 
758 	/* For first KFD device suspend all the KFD processes */
759 	if (atomic_inc_return(&kfd_locked) == 1)
760 		kfd_suspend_all_processes();
761 
762 	kfd->dqm->ops.stop(kfd->dqm);
763 
764 	kfd_iommu_suspend(kfd);
765 }
766 
767 int kgd2kfd_resume(struct kfd_dev *kfd)
768 {
769 	int ret, count;
770 
771 	if (!kfd->init_complete)
772 		return 0;
773 
774 	ret = kfd_resume(kfd);
775 	if (ret)
776 		return ret;
777 
778 	count = atomic_dec_return(&kfd_locked);
779 	WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
780 	if (count == 0)
781 		ret = kfd_resume_all_processes();
782 
783 	return ret;
784 }
785 
786 static int kfd_resume(struct kfd_dev *kfd)
787 {
788 	int err = 0;
789 
790 	err = kfd_iommu_resume(kfd);
791 	if (err) {
792 		dev_err(kfd_device,
793 			"Failed to resume IOMMU for device %x:%x\n",
794 			kfd->pdev->vendor, kfd->pdev->device);
795 		return err;
796 	}
797 
798 	err = kfd->dqm->ops.start(kfd->dqm);
799 	if (err) {
800 		dev_err(kfd_device,
801 			"Error starting queue manager for device %x:%x\n",
802 			kfd->pdev->vendor, kfd->pdev->device);
803 		goto dqm_start_error;
804 	}
805 
806 	return err;
807 
808 dqm_start_error:
809 	kfd_iommu_suspend(kfd);
810 	return err;
811 }
812 
813 /* This is called directly from KGD at ISR. */
814 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
815 {
816 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
817 	bool is_patched = false;
818 	unsigned long flags;
819 
820 	if (!kfd->init_complete)
821 		return;
822 
823 	if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
824 		dev_err_once(kfd_device, "Ring entry too small\n");
825 		return;
826 	}
827 
828 	spin_lock_irqsave(&kfd->interrupt_lock, flags);
829 
830 	if (kfd->interrupts_active
831 	    && interrupt_is_wanted(kfd, ih_ring_entry,
832 				   patched_ihre, &is_patched)
833 	    && enqueue_ih_ring_entry(kfd,
834 				     is_patched ? patched_ihre : ih_ring_entry))
835 		queue_work(kfd->ih_wq, &kfd->interrupt_work);
836 
837 	spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
838 }
839 
840 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
841 {
842 	struct kfd_process *p;
843 	int r;
844 
845 	/* Because we are called from arbitrary context (workqueue) as opposed
846 	 * to process context, kfd_process could attempt to exit while we are
847 	 * running so the lookup function increments the process ref count.
848 	 */
849 	p = kfd_lookup_process_by_mm(mm);
850 	if (!p)
851 		return -ESRCH;
852 
853 	r = kfd_process_evict_queues(p);
854 
855 	kfd_unref_process(p);
856 	return r;
857 }
858 
859 int kgd2kfd_resume_mm(struct mm_struct *mm)
860 {
861 	struct kfd_process *p;
862 	int r;
863 
864 	/* Because we are called from arbitrary context (workqueue) as opposed
865 	 * to process context, kfd_process could attempt to exit while we are
866 	 * running so the lookup function increments the process ref count.
867 	 */
868 	p = kfd_lookup_process_by_mm(mm);
869 	if (!p)
870 		return -ESRCH;
871 
872 	r = kfd_process_restore_queues(p);
873 
874 	kfd_unref_process(p);
875 	return r;
876 }
877 
878 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
879  *   prepare for safe eviction of KFD BOs that belong to the specified
880  *   process.
881  *
882  * @mm: mm_struct that identifies the specified KFD process
883  * @fence: eviction fence attached to KFD process BOs
884  *
885  */
886 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
887 					       struct dma_fence *fence)
888 {
889 	struct kfd_process *p;
890 	unsigned long active_time;
891 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
892 
893 	if (!fence)
894 		return -EINVAL;
895 
896 	if (dma_fence_is_signaled(fence))
897 		return 0;
898 
899 	p = kfd_lookup_process_by_mm(mm);
900 	if (!p)
901 		return -ENODEV;
902 
903 	if (fence->seqno == p->last_eviction_seqno)
904 		goto out;
905 
906 	p->last_eviction_seqno = fence->seqno;
907 
908 	/* Avoid KFD process starvation. Wait for at least
909 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
910 	 */
911 	active_time = get_jiffies_64() - p->last_restore_timestamp;
912 	if (delay_jiffies > active_time)
913 		delay_jiffies -= active_time;
914 	else
915 		delay_jiffies = 0;
916 
917 	/* During process initialization eviction_work.dwork is initialized
918 	 * to kfd_evict_bo_worker
919 	 */
920 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
921 out:
922 	kfd_unref_process(p);
923 	return 0;
924 }
925 
926 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
927 				unsigned int chunk_size)
928 {
929 	unsigned int num_of_longs;
930 
931 	if (WARN_ON(buf_size < chunk_size))
932 		return -EINVAL;
933 	if (WARN_ON(buf_size == 0))
934 		return -EINVAL;
935 	if (WARN_ON(chunk_size == 0))
936 		return -EINVAL;
937 
938 	kfd->gtt_sa_chunk_size = chunk_size;
939 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
940 
941 	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
942 		BITS_PER_LONG;
943 
944 	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
945 
946 	if (!kfd->gtt_sa_bitmap)
947 		return -ENOMEM;
948 
949 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
950 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
951 
952 	mutex_init(&kfd->gtt_sa_lock);
953 
954 	return 0;
955 
956 }
957 
958 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
959 {
960 	mutex_destroy(&kfd->gtt_sa_lock);
961 	kfree(kfd->gtt_sa_bitmap);
962 }
963 
964 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
965 						unsigned int bit_num,
966 						unsigned int chunk_size)
967 {
968 	return start_addr + bit_num * chunk_size;
969 }
970 
971 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
972 						unsigned int bit_num,
973 						unsigned int chunk_size)
974 {
975 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
976 }
977 
978 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
979 			struct kfd_mem_obj **mem_obj)
980 {
981 	unsigned int found, start_search, cur_size;
982 
983 	if (size == 0)
984 		return -EINVAL;
985 
986 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
987 		return -ENOMEM;
988 
989 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
990 	if (!(*mem_obj))
991 		return -ENOMEM;
992 
993 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
994 
995 	start_search = 0;
996 
997 	mutex_lock(&kfd->gtt_sa_lock);
998 
999 kfd_gtt_restart_search:
1000 	/* Find the first chunk that is free */
1001 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1002 					kfd->gtt_sa_num_of_chunks,
1003 					start_search);
1004 
1005 	pr_debug("Found = %d\n", found);
1006 
1007 	/* If there wasn't any free chunk, bail out */
1008 	if (found == kfd->gtt_sa_num_of_chunks)
1009 		goto kfd_gtt_no_free_chunk;
1010 
1011 	/* Update fields of mem_obj */
1012 	(*mem_obj)->range_start = found;
1013 	(*mem_obj)->range_end = found;
1014 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1015 					kfd->gtt_start_gpu_addr,
1016 					found,
1017 					kfd->gtt_sa_chunk_size);
1018 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1019 					kfd->gtt_start_cpu_ptr,
1020 					found,
1021 					kfd->gtt_sa_chunk_size);
1022 
1023 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1024 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1025 
1026 	/* If we need only one chunk, mark it as allocated and get out */
1027 	if (size <= kfd->gtt_sa_chunk_size) {
1028 		pr_debug("Single bit\n");
1029 		set_bit(found, kfd->gtt_sa_bitmap);
1030 		goto kfd_gtt_out;
1031 	}
1032 
1033 	/* Otherwise, try to see if we have enough contiguous chunks */
1034 	cur_size = size - kfd->gtt_sa_chunk_size;
1035 	do {
1036 		(*mem_obj)->range_end =
1037 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1038 					kfd->gtt_sa_num_of_chunks, ++found);
1039 		/*
1040 		 * If next free chunk is not contiguous than we need to
1041 		 * restart our search from the last free chunk we found (which
1042 		 * wasn't contiguous to the previous ones
1043 		 */
1044 		if ((*mem_obj)->range_end != found) {
1045 			start_search = found;
1046 			goto kfd_gtt_restart_search;
1047 		}
1048 
1049 		/*
1050 		 * If we reached end of buffer, bail out with error
1051 		 */
1052 		if (found == kfd->gtt_sa_num_of_chunks)
1053 			goto kfd_gtt_no_free_chunk;
1054 
1055 		/* Check if we don't need another chunk */
1056 		if (cur_size <= kfd->gtt_sa_chunk_size)
1057 			cur_size = 0;
1058 		else
1059 			cur_size -= kfd->gtt_sa_chunk_size;
1060 
1061 	} while (cur_size > 0);
1062 
1063 	pr_debug("range_start = %d, range_end = %d\n",
1064 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1065 
1066 	/* Mark the chunks as allocated */
1067 	for (found = (*mem_obj)->range_start;
1068 		found <= (*mem_obj)->range_end;
1069 		found++)
1070 		set_bit(found, kfd->gtt_sa_bitmap);
1071 
1072 kfd_gtt_out:
1073 	mutex_unlock(&kfd->gtt_sa_lock);
1074 	return 0;
1075 
1076 kfd_gtt_no_free_chunk:
1077 	pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
1078 	mutex_unlock(&kfd->gtt_sa_lock);
1079 	kfree(mem_obj);
1080 	return -ENOMEM;
1081 }
1082 
1083 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1084 {
1085 	unsigned int bit;
1086 
1087 	/* Act like kfree when trying to free a NULL object */
1088 	if (!mem_obj)
1089 		return 0;
1090 
1091 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1092 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1093 
1094 	mutex_lock(&kfd->gtt_sa_lock);
1095 
1096 	/* Mark the chunks as free */
1097 	for (bit = mem_obj->range_start;
1098 		bit <= mem_obj->range_end;
1099 		bit++)
1100 		clear_bit(bit, kfd->gtt_sa_bitmap);
1101 
1102 	mutex_unlock(&kfd->gtt_sa_lock);
1103 
1104 	kfree(mem_obj);
1105 	return 0;
1106 }
1107 
1108 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1109 {
1110 	if (kfd)
1111 		atomic_inc(&kfd->sram_ecc_flag);
1112 }
1113 
1114 void kfd_inc_compute_active(struct kfd_dev *kfd)
1115 {
1116 	if (atomic_inc_return(&kfd->compute_profile) == 1)
1117 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1118 }
1119 
1120 void kfd_dec_compute_active(struct kfd_dev *kfd)
1121 {
1122 	int count = atomic_dec_return(&kfd->compute_profile);
1123 
1124 	if (count == 0)
1125 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1126 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1127 }
1128 
1129 #if defined(CONFIG_DEBUG_FS)
1130 
1131 /* This function will send a package to HIQ to hang the HWS
1132  * which will trigger a GPU reset and bring the HWS back to normal state
1133  */
1134 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1135 {
1136 	int r = 0;
1137 
1138 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1139 		pr_err("HWS is not enabled");
1140 		return -EINVAL;
1141 	}
1142 
1143 	r = pm_debugfs_hang_hws(&dev->dqm->packets);
1144 	if (!r)
1145 		r = dqm_debugfs_execute_queues(dev->dqm);
1146 
1147 	return r;
1148 }
1149 
1150 #endif
1151