1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "kfd_pm4_headers_aldebaran.h"
30 #include "cwsr_trap_handler.h"
31 #include "kfd_iommu.h"
32 #include "amdgpu_amdkfd.h"
33 #include "kfd_smi_events.h"
34 #include "kfd_migrate.h"
35 
36 #define MQD_SIZE_ALIGNED 768
37 
38 /*
39  * kfd_locked is used to lock the kfd driver during suspend or reset
40  * once locked, kfd driver will stop any further GPU execution.
41  * create process (open) will return -EAGAIN.
42  */
43 static atomic_t kfd_locked = ATOMIC_INIT(0);
44 
45 #ifdef CONFIG_DRM_AMDGPU_CIK
46 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
47 #endif
48 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
49 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
50 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
51 extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
52 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
53 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
54 
55 static const struct kfd2kgd_calls *kfd2kgd_funcs[] = {
56 #ifdef KFD_SUPPORT_IOMMU_V2
57 #ifdef CONFIG_DRM_AMDGPU_CIK
58 	[CHIP_KAVERI] = &gfx_v7_kfd2kgd,
59 #endif
60 	[CHIP_CARRIZO] = &gfx_v8_kfd2kgd,
61 	[CHIP_RAVEN] = &gfx_v9_kfd2kgd,
62 #endif
63 #ifdef CONFIG_DRM_AMDGPU_CIK
64 	[CHIP_HAWAII] = &gfx_v7_kfd2kgd,
65 #endif
66 	[CHIP_TONGA] = &gfx_v8_kfd2kgd,
67 	[CHIP_FIJI] = &gfx_v8_kfd2kgd,
68 	[CHIP_POLARIS10] = &gfx_v8_kfd2kgd,
69 	[CHIP_POLARIS11] = &gfx_v8_kfd2kgd,
70 	[CHIP_POLARIS12] = &gfx_v8_kfd2kgd,
71 	[CHIP_VEGAM] = &gfx_v8_kfd2kgd,
72 	[CHIP_VEGA10] = &gfx_v9_kfd2kgd,
73 	[CHIP_VEGA12] = &gfx_v9_kfd2kgd,
74 	[CHIP_VEGA20] = &gfx_v9_kfd2kgd,
75 	[CHIP_RENOIR] = &gfx_v9_kfd2kgd,
76 	[CHIP_ARCTURUS] = &arcturus_kfd2kgd,
77 	[CHIP_ALDEBARAN] = &aldebaran_kfd2kgd,
78 	[CHIP_NAVI10] = &gfx_v10_kfd2kgd,
79 	[CHIP_NAVI12] = &gfx_v10_kfd2kgd,
80 	[CHIP_NAVI14] = &gfx_v10_kfd2kgd,
81 	[CHIP_SIENNA_CICHLID] = &gfx_v10_3_kfd2kgd,
82 	[CHIP_NAVY_FLOUNDER] = &gfx_v10_3_kfd2kgd,
83 	[CHIP_VANGOGH] = &gfx_v10_3_kfd2kgd,
84 	[CHIP_DIMGREY_CAVEFISH] = &gfx_v10_3_kfd2kgd,
85 	[CHIP_BEIGE_GOBY] = &gfx_v10_3_kfd2kgd,
86 	[CHIP_YELLOW_CARP] = &gfx_v10_3_kfd2kgd,
87 	[CHIP_CYAN_SKILLFISH] = &gfx_v10_kfd2kgd,
88 };
89 
90 #ifdef KFD_SUPPORT_IOMMU_V2
91 static const struct kfd_device_info kaveri_device_info = {
92 	.asic_family = CHIP_KAVERI,
93 	.asic_name = "kaveri",
94 	.max_pasid_bits = 16,
95 	/* max num of queues for KV.TODO should be a dynamic value */
96 	.max_no_of_hqd	= 24,
97 	.doorbell_size  = 4,
98 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
99 	.event_interrupt_class = &event_interrupt_class_cik,
100 	.num_of_watch_points = 4,
101 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
102 	.supports_cwsr = false,
103 	.needs_iommu_device = true,
104 	.needs_pci_atomics = false,
105 	.num_sdma_engines = 2,
106 	.num_xgmi_sdma_engines = 0,
107 	.num_sdma_queues_per_engine = 2,
108 };
109 
110 static const struct kfd_device_info carrizo_device_info = {
111 	.asic_family = CHIP_CARRIZO,
112 	.asic_name = "carrizo",
113 	.max_pasid_bits = 16,
114 	/* max num of queues for CZ.TODO should be a dynamic value */
115 	.max_no_of_hqd	= 24,
116 	.doorbell_size  = 4,
117 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
118 	.event_interrupt_class = &event_interrupt_class_cik,
119 	.num_of_watch_points = 4,
120 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
121 	.supports_cwsr = true,
122 	.needs_iommu_device = true,
123 	.needs_pci_atomics = false,
124 	.num_sdma_engines = 2,
125 	.num_xgmi_sdma_engines = 0,
126 	.num_sdma_queues_per_engine = 2,
127 };
128 #endif
129 
130 static const struct kfd_device_info raven_device_info = {
131 	.asic_family = CHIP_RAVEN,
132 	.asic_name = "raven",
133 	.max_pasid_bits = 16,
134 	.max_no_of_hqd  = 24,
135 	.doorbell_size  = 8,
136 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
137 	.event_interrupt_class = &event_interrupt_class_v9,
138 	.num_of_watch_points = 4,
139 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
140 	.supports_cwsr = true,
141 	.needs_iommu_device = true,
142 	.needs_pci_atomics = true,
143 	.num_sdma_engines = 1,
144 	.num_xgmi_sdma_engines = 0,
145 	.num_sdma_queues_per_engine = 2,
146 };
147 
148 static const struct kfd_device_info hawaii_device_info = {
149 	.asic_family = CHIP_HAWAII,
150 	.asic_name = "hawaii",
151 	.max_pasid_bits = 16,
152 	/* max num of queues for KV.TODO should be a dynamic value */
153 	.max_no_of_hqd	= 24,
154 	.doorbell_size  = 4,
155 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
156 	.event_interrupt_class = &event_interrupt_class_cik,
157 	.num_of_watch_points = 4,
158 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
159 	.supports_cwsr = false,
160 	.needs_iommu_device = false,
161 	.needs_pci_atomics = false,
162 	.num_sdma_engines = 2,
163 	.num_xgmi_sdma_engines = 0,
164 	.num_sdma_queues_per_engine = 2,
165 };
166 
167 static const struct kfd_device_info tonga_device_info = {
168 	.asic_family = CHIP_TONGA,
169 	.asic_name = "tonga",
170 	.max_pasid_bits = 16,
171 	.max_no_of_hqd  = 24,
172 	.doorbell_size  = 4,
173 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
174 	.event_interrupt_class = &event_interrupt_class_cik,
175 	.num_of_watch_points = 4,
176 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
177 	.supports_cwsr = false,
178 	.needs_iommu_device = false,
179 	.needs_pci_atomics = true,
180 	.num_sdma_engines = 2,
181 	.num_xgmi_sdma_engines = 0,
182 	.num_sdma_queues_per_engine = 2,
183 };
184 
185 static const struct kfd_device_info fiji_device_info = {
186 	.asic_family = CHIP_FIJI,
187 	.asic_name = "fiji",
188 	.max_pasid_bits = 16,
189 	.max_no_of_hqd  = 24,
190 	.doorbell_size  = 4,
191 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
192 	.event_interrupt_class = &event_interrupt_class_cik,
193 	.num_of_watch_points = 4,
194 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
195 	.supports_cwsr = true,
196 	.needs_iommu_device = false,
197 	.needs_pci_atomics = true,
198 	.num_sdma_engines = 2,
199 	.num_xgmi_sdma_engines = 0,
200 	.num_sdma_queues_per_engine = 2,
201 };
202 
203 static const struct kfd_device_info fiji_vf_device_info = {
204 	.asic_family = CHIP_FIJI,
205 	.asic_name = "fiji",
206 	.max_pasid_bits = 16,
207 	.max_no_of_hqd  = 24,
208 	.doorbell_size  = 4,
209 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
210 	.event_interrupt_class = &event_interrupt_class_cik,
211 	.num_of_watch_points = 4,
212 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
213 	.supports_cwsr = true,
214 	.needs_iommu_device = false,
215 	.needs_pci_atomics = false,
216 	.num_sdma_engines = 2,
217 	.num_xgmi_sdma_engines = 0,
218 	.num_sdma_queues_per_engine = 2,
219 };
220 
221 
222 static const struct kfd_device_info polaris10_device_info = {
223 	.asic_family = CHIP_POLARIS10,
224 	.asic_name = "polaris10",
225 	.max_pasid_bits = 16,
226 	.max_no_of_hqd  = 24,
227 	.doorbell_size  = 4,
228 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
229 	.event_interrupt_class = &event_interrupt_class_cik,
230 	.num_of_watch_points = 4,
231 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
232 	.supports_cwsr = true,
233 	.needs_iommu_device = false,
234 	.needs_pci_atomics = true,
235 	.num_sdma_engines = 2,
236 	.num_xgmi_sdma_engines = 0,
237 	.num_sdma_queues_per_engine = 2,
238 };
239 
240 static const struct kfd_device_info polaris10_vf_device_info = {
241 	.asic_family = CHIP_POLARIS10,
242 	.asic_name = "polaris10",
243 	.max_pasid_bits = 16,
244 	.max_no_of_hqd  = 24,
245 	.doorbell_size  = 4,
246 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
247 	.event_interrupt_class = &event_interrupt_class_cik,
248 	.num_of_watch_points = 4,
249 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
250 	.supports_cwsr = true,
251 	.needs_iommu_device = false,
252 	.needs_pci_atomics = false,
253 	.num_sdma_engines = 2,
254 	.num_xgmi_sdma_engines = 0,
255 	.num_sdma_queues_per_engine = 2,
256 };
257 
258 static const struct kfd_device_info polaris11_device_info = {
259 	.asic_family = CHIP_POLARIS11,
260 	.asic_name = "polaris11",
261 	.max_pasid_bits = 16,
262 	.max_no_of_hqd  = 24,
263 	.doorbell_size  = 4,
264 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
265 	.event_interrupt_class = &event_interrupt_class_cik,
266 	.num_of_watch_points = 4,
267 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
268 	.supports_cwsr = true,
269 	.needs_iommu_device = false,
270 	.needs_pci_atomics = true,
271 	.num_sdma_engines = 2,
272 	.num_xgmi_sdma_engines = 0,
273 	.num_sdma_queues_per_engine = 2,
274 };
275 
276 static const struct kfd_device_info polaris12_device_info = {
277 	.asic_family = CHIP_POLARIS12,
278 	.asic_name = "polaris12",
279 	.max_pasid_bits = 16,
280 	.max_no_of_hqd  = 24,
281 	.doorbell_size  = 4,
282 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
283 	.event_interrupt_class = &event_interrupt_class_cik,
284 	.num_of_watch_points = 4,
285 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
286 	.supports_cwsr = true,
287 	.needs_iommu_device = false,
288 	.needs_pci_atomics = true,
289 	.num_sdma_engines = 2,
290 	.num_xgmi_sdma_engines = 0,
291 	.num_sdma_queues_per_engine = 2,
292 };
293 
294 static const struct kfd_device_info vegam_device_info = {
295 	.asic_family = CHIP_VEGAM,
296 	.asic_name = "vegam",
297 	.max_pasid_bits = 16,
298 	.max_no_of_hqd  = 24,
299 	.doorbell_size  = 4,
300 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
301 	.event_interrupt_class = &event_interrupt_class_cik,
302 	.num_of_watch_points = 4,
303 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
304 	.supports_cwsr = true,
305 	.needs_iommu_device = false,
306 	.needs_pci_atomics = true,
307 	.num_sdma_engines = 2,
308 	.num_xgmi_sdma_engines = 0,
309 	.num_sdma_queues_per_engine = 2,
310 };
311 
312 static const struct kfd_device_info vega10_device_info = {
313 	.asic_family = CHIP_VEGA10,
314 	.asic_name = "vega10",
315 	.max_pasid_bits = 16,
316 	.max_no_of_hqd  = 24,
317 	.doorbell_size  = 8,
318 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
319 	.event_interrupt_class = &event_interrupt_class_v9,
320 	.num_of_watch_points = 4,
321 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
322 	.supports_cwsr = true,
323 	.needs_iommu_device = false,
324 	.needs_pci_atomics = false,
325 	.num_sdma_engines = 2,
326 	.num_xgmi_sdma_engines = 0,
327 	.num_sdma_queues_per_engine = 2,
328 };
329 
330 static const struct kfd_device_info vega10_vf_device_info = {
331 	.asic_family = CHIP_VEGA10,
332 	.asic_name = "vega10",
333 	.max_pasid_bits = 16,
334 	.max_no_of_hqd  = 24,
335 	.doorbell_size  = 8,
336 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
337 	.event_interrupt_class = &event_interrupt_class_v9,
338 	.num_of_watch_points = 4,
339 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
340 	.supports_cwsr = true,
341 	.needs_iommu_device = false,
342 	.needs_pci_atomics = false,
343 	.num_sdma_engines = 2,
344 	.num_xgmi_sdma_engines = 0,
345 	.num_sdma_queues_per_engine = 2,
346 };
347 
348 static const struct kfd_device_info vega12_device_info = {
349 	.asic_family = CHIP_VEGA12,
350 	.asic_name = "vega12",
351 	.max_pasid_bits = 16,
352 	.max_no_of_hqd  = 24,
353 	.doorbell_size  = 8,
354 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
355 	.event_interrupt_class = &event_interrupt_class_v9,
356 	.num_of_watch_points = 4,
357 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
358 	.supports_cwsr = true,
359 	.needs_iommu_device = false,
360 	.needs_pci_atomics = false,
361 	.num_sdma_engines = 2,
362 	.num_xgmi_sdma_engines = 0,
363 	.num_sdma_queues_per_engine = 2,
364 };
365 
366 static const struct kfd_device_info vega20_device_info = {
367 	.asic_family = CHIP_VEGA20,
368 	.asic_name = "vega20",
369 	.max_pasid_bits = 16,
370 	.max_no_of_hqd	= 24,
371 	.doorbell_size	= 8,
372 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
373 	.event_interrupt_class = &event_interrupt_class_v9,
374 	.num_of_watch_points = 4,
375 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
376 	.supports_cwsr = true,
377 	.needs_iommu_device = false,
378 	.needs_pci_atomics = false,
379 	.num_sdma_engines = 2,
380 	.num_xgmi_sdma_engines = 0,
381 	.num_sdma_queues_per_engine = 8,
382 };
383 
384 static const struct kfd_device_info arcturus_device_info = {
385 	.asic_family = CHIP_ARCTURUS,
386 	.asic_name = "arcturus",
387 	.max_pasid_bits = 16,
388 	.max_no_of_hqd	= 24,
389 	.doorbell_size	= 8,
390 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
391 	.event_interrupt_class = &event_interrupt_class_v9,
392 	.num_of_watch_points = 4,
393 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
394 	.supports_cwsr = true,
395 	.needs_iommu_device = false,
396 	.needs_pci_atomics = false,
397 	.num_sdma_engines = 2,
398 	.num_xgmi_sdma_engines = 6,
399 	.num_sdma_queues_per_engine = 8,
400 };
401 
402 static const struct kfd_device_info aldebaran_device_info = {
403 	.asic_family = CHIP_ALDEBARAN,
404 	.asic_name = "aldebaran",
405 	.max_pasid_bits = 16,
406 	.max_no_of_hqd	= 24,
407 	.doorbell_size	= 8,
408 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
409 	.event_interrupt_class = &event_interrupt_class_v9,
410 	.num_of_watch_points = 4,
411 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
412 	.supports_cwsr = true,
413 	.needs_iommu_device = false,
414 	.needs_pci_atomics = false,
415 	.num_sdma_engines = 2,
416 	.num_xgmi_sdma_engines = 3,
417 	.num_sdma_queues_per_engine = 8,
418 };
419 
420 static const struct kfd_device_info renoir_device_info = {
421 	.asic_family = CHIP_RENOIR,
422 	.asic_name = "renoir",
423 	.max_pasid_bits = 16,
424 	.max_no_of_hqd  = 24,
425 	.doorbell_size  = 8,
426 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
427 	.event_interrupt_class = &event_interrupt_class_v9,
428 	.num_of_watch_points = 4,
429 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
430 	.supports_cwsr = true,
431 	.needs_iommu_device = false,
432 	.needs_pci_atomics = false,
433 	.num_sdma_engines = 1,
434 	.num_xgmi_sdma_engines = 0,
435 	.num_sdma_queues_per_engine = 2,
436 };
437 
438 static const struct kfd_device_info navi10_device_info = {
439 	.asic_family = CHIP_NAVI10,
440 	.asic_name = "navi10",
441 	.max_pasid_bits = 16,
442 	.max_no_of_hqd  = 24,
443 	.doorbell_size  = 8,
444 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
445 	.event_interrupt_class = &event_interrupt_class_v9,
446 	.num_of_watch_points = 4,
447 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
448 	.needs_iommu_device = false,
449 	.supports_cwsr = true,
450 	.needs_pci_atomics = true,
451 	.num_sdma_engines = 2,
452 	.num_xgmi_sdma_engines = 0,
453 	.num_sdma_queues_per_engine = 8,
454 };
455 
456 static const struct kfd_device_info navi12_device_info = {
457 	.asic_family = CHIP_NAVI12,
458 	.asic_name = "navi12",
459 	.max_pasid_bits = 16,
460 	.max_no_of_hqd  = 24,
461 	.doorbell_size  = 8,
462 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
463 	.event_interrupt_class = &event_interrupt_class_v9,
464 	.num_of_watch_points = 4,
465 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
466 	.needs_iommu_device = false,
467 	.supports_cwsr = true,
468 	.needs_pci_atomics = true,
469 	.num_sdma_engines = 2,
470 	.num_xgmi_sdma_engines = 0,
471 	.num_sdma_queues_per_engine = 8,
472 };
473 
474 static const struct kfd_device_info navi14_device_info = {
475 	.asic_family = CHIP_NAVI14,
476 	.asic_name = "navi14",
477 	.max_pasid_bits = 16,
478 	.max_no_of_hqd  = 24,
479 	.doorbell_size  = 8,
480 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
481 	.event_interrupt_class = &event_interrupt_class_v9,
482 	.num_of_watch_points = 4,
483 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
484 	.needs_iommu_device = false,
485 	.supports_cwsr = true,
486 	.needs_pci_atomics = true,
487 	.num_sdma_engines = 2,
488 	.num_xgmi_sdma_engines = 0,
489 	.num_sdma_queues_per_engine = 8,
490 };
491 
492 static const struct kfd_device_info sienna_cichlid_device_info = {
493 	.asic_family = CHIP_SIENNA_CICHLID,
494 	.asic_name = "sienna_cichlid",
495 	.max_pasid_bits = 16,
496 	.max_no_of_hqd  = 24,
497 	.doorbell_size  = 8,
498 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
499 	.event_interrupt_class = &event_interrupt_class_v9,
500 	.num_of_watch_points = 4,
501 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
502 	.needs_iommu_device = false,
503 	.supports_cwsr = true,
504 	.needs_pci_atomics = true,
505 	.num_sdma_engines = 4,
506 	.num_xgmi_sdma_engines = 0,
507 	.num_sdma_queues_per_engine = 8,
508 };
509 
510 static const struct kfd_device_info navy_flounder_device_info = {
511 	.asic_family = CHIP_NAVY_FLOUNDER,
512 	.asic_name = "navy_flounder",
513 	.max_pasid_bits = 16,
514 	.max_no_of_hqd  = 24,
515 	.doorbell_size  = 8,
516 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
517 	.event_interrupt_class = &event_interrupt_class_v9,
518 	.num_of_watch_points = 4,
519 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
520 	.needs_iommu_device = false,
521 	.supports_cwsr = true,
522 	.needs_pci_atomics = true,
523 	.num_sdma_engines = 2,
524 	.num_xgmi_sdma_engines = 0,
525 	.num_sdma_queues_per_engine = 8,
526 };
527 
528 static const struct kfd_device_info vangogh_device_info = {
529 	.asic_family = CHIP_VANGOGH,
530 	.asic_name = "vangogh",
531 	.max_pasid_bits = 16,
532 	.max_no_of_hqd  = 24,
533 	.doorbell_size  = 8,
534 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
535 	.event_interrupt_class = &event_interrupt_class_v9,
536 	.num_of_watch_points = 4,
537 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
538 	.needs_iommu_device = false,
539 	.supports_cwsr = true,
540 	.needs_pci_atomics = false,
541 	.num_sdma_engines = 1,
542 	.num_xgmi_sdma_engines = 0,
543 	.num_sdma_queues_per_engine = 2,
544 };
545 
546 static const struct kfd_device_info dimgrey_cavefish_device_info = {
547 	.asic_family = CHIP_DIMGREY_CAVEFISH,
548 	.asic_name = "dimgrey_cavefish",
549 	.max_pasid_bits = 16,
550 	.max_no_of_hqd  = 24,
551 	.doorbell_size  = 8,
552 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
553 	.event_interrupt_class = &event_interrupt_class_v9,
554 	.num_of_watch_points = 4,
555 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
556 	.needs_iommu_device = false,
557 	.supports_cwsr = true,
558 	.needs_pci_atomics = true,
559 	.num_sdma_engines = 2,
560 	.num_xgmi_sdma_engines = 0,
561 	.num_sdma_queues_per_engine = 8,
562 };
563 
564 static const struct kfd_device_info beige_goby_device_info = {
565 	.asic_family = CHIP_BEIGE_GOBY,
566 	.asic_name = "beige_goby",
567 	.max_pasid_bits = 16,
568 	.max_no_of_hqd  = 24,
569 	.doorbell_size  = 8,
570 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
571 	.event_interrupt_class = &event_interrupt_class_v9,
572 	.num_of_watch_points = 4,
573 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
574 	.needs_iommu_device = false,
575 	.supports_cwsr = true,
576 	.needs_pci_atomics = true,
577 	.num_sdma_engines = 1,
578 	.num_xgmi_sdma_engines = 0,
579 	.num_sdma_queues_per_engine = 8,
580 };
581 
582 static const struct kfd_device_info yellow_carp_device_info = {
583 	.asic_family = CHIP_YELLOW_CARP,
584 	.asic_name = "yellow_carp",
585 	.max_pasid_bits = 16,
586 	.max_no_of_hqd  = 24,
587 	.doorbell_size  = 8,
588 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
589 	.event_interrupt_class = &event_interrupt_class_v9,
590 	.num_of_watch_points = 4,
591 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
592 	.needs_iommu_device = false,
593 	.supports_cwsr = true,
594 	.needs_pci_atomics = false,
595 	.num_sdma_engines = 1,
596 	.num_xgmi_sdma_engines = 0,
597 	.num_sdma_queues_per_engine = 2,
598 };
599 
600 static const struct kfd_device_info cyan_skillfish_device_info = {
601 	.asic_family = CHIP_CYAN_SKILLFISH,
602 	.asic_name = "cyan_skillfish",
603 	.max_pasid_bits = 16,
604 	.max_no_of_hqd  = 24,
605 	.doorbell_size  = 8,
606 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
607 	.event_interrupt_class = &event_interrupt_class_v9,
608 	.num_of_watch_points = 4,
609 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
610 	.needs_iommu_device = false,
611 	.supports_cwsr = true,
612 	.needs_pci_atomics = true,
613 	.num_sdma_engines = 2,
614 	.num_xgmi_sdma_engines = 0,
615 	.num_sdma_queues_per_engine = 8,
616 };
617 
618 /* For each entry, [0] is regular and [1] is virtualisation device. */
619 static const struct kfd_device_info *kfd_supported_devices[][2] = {
620 #ifdef KFD_SUPPORT_IOMMU_V2
621 	[CHIP_KAVERI] = {&kaveri_device_info, NULL},
622 	[CHIP_CARRIZO] = {&carrizo_device_info, NULL},
623 #endif
624 	[CHIP_RAVEN] = {&raven_device_info, NULL},
625 	[CHIP_HAWAII] = {&hawaii_device_info, NULL},
626 	[CHIP_TONGA] = {&tonga_device_info, NULL},
627 	[CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info},
628 	[CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info},
629 	[CHIP_POLARIS11] = {&polaris11_device_info, NULL},
630 	[CHIP_POLARIS12] = {&polaris12_device_info, NULL},
631 	[CHIP_VEGAM] = {&vegam_device_info, NULL},
632 	[CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info},
633 	[CHIP_VEGA12] = {&vega12_device_info, NULL},
634 	[CHIP_VEGA20] = {&vega20_device_info, NULL},
635 	[CHIP_RENOIR] = {&renoir_device_info, NULL},
636 	[CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info},
637 	[CHIP_ALDEBARAN] = {&aldebaran_device_info, &aldebaran_device_info},
638 	[CHIP_NAVI10] = {&navi10_device_info, NULL},
639 	[CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info},
640 	[CHIP_NAVI14] = {&navi14_device_info, NULL},
641 	[CHIP_SIENNA_CICHLID] = {&sienna_cichlid_device_info, &sienna_cichlid_device_info},
642 	[CHIP_NAVY_FLOUNDER] = {&navy_flounder_device_info, &navy_flounder_device_info},
643 	[CHIP_VANGOGH] = {&vangogh_device_info, NULL},
644 	[CHIP_DIMGREY_CAVEFISH] = {&dimgrey_cavefish_device_info, &dimgrey_cavefish_device_info},
645 	[CHIP_BEIGE_GOBY] = {&beige_goby_device_info, &beige_goby_device_info},
646 	[CHIP_YELLOW_CARP] = {&yellow_carp_device_info, NULL},
647 	[CHIP_CYAN_SKILLFISH] = {&cyan_skillfish_device_info, NULL},
648 };
649 
650 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
651 				unsigned int chunk_size);
652 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
653 
654 static int kfd_resume(struct kfd_dev *kfd);
655 
656 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
657 	struct pci_dev *pdev, unsigned int asic_type, bool vf)
658 {
659 	struct kfd_dev *kfd;
660 	const struct kfd_device_info *device_info;
661 	const struct kfd2kgd_calls *f2g;
662 
663 	if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2)
664 		|| asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) {
665 		dev_err(kfd_device, "asic_type %d out of range\n", asic_type);
666 		return NULL; /* asic_type out of range */
667 	}
668 
669 	device_info = kfd_supported_devices[asic_type][vf];
670 	f2g = kfd2kgd_funcs[asic_type];
671 
672 	if (!device_info || !f2g) {
673 		dev_err(kfd_device, "%s %s not supported in kfd\n",
674 			amdgpu_asic_name[asic_type], vf ? "VF" : "");
675 		return NULL;
676 	}
677 
678 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
679 	if (!kfd)
680 		return NULL;
681 
682 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
683 	 * 32 and 64-bit requests are possible and must be
684 	 * supported.
685 	 */
686 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
687 	if (device_info->needs_pci_atomics &&
688 	    !kfd->pci_atomic_requested) {
689 		dev_info(kfd_device,
690 			 "skipped device %x:%x, PCI rejects atomics\n",
691 			 pdev->vendor, pdev->device);
692 		kfree(kfd);
693 		return NULL;
694 	}
695 
696 	kfd->kgd = kgd;
697 	kfd->device_info = device_info;
698 	kfd->pdev = pdev;
699 	kfd->init_complete = false;
700 	kfd->kfd2kgd = f2g;
701 	atomic_set(&kfd->compute_profile, 0);
702 
703 	mutex_init(&kfd->doorbell_mutex);
704 	memset(&kfd->doorbell_available_index, 0,
705 		sizeof(kfd->doorbell_available_index));
706 
707 	atomic_set(&kfd->sram_ecc_flag, 0);
708 
709 	ida_init(&kfd->doorbell_ida);
710 
711 	return kfd;
712 }
713 
714 static void kfd_cwsr_init(struct kfd_dev *kfd)
715 {
716 	if (cwsr_enable && kfd->device_info->supports_cwsr) {
717 		if (kfd->device_info->asic_family < CHIP_VEGA10) {
718 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
719 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
720 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
721 		} else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
722 			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
723 			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
724 			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
725 		} else if (kfd->device_info->asic_family == CHIP_ALDEBARAN) {
726 			BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex) > PAGE_SIZE);
727 			kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
728 			kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
729 		} else if (kfd->device_info->asic_family < CHIP_NAVI10) {
730 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
731 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
732 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
733 		} else if (kfd->device_info->asic_family < CHIP_SIENNA_CICHLID) {
734 			BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE);
735 			kfd->cwsr_isa = cwsr_trap_nv1x_hex;
736 			kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
737 		} else {
738 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
739 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
740 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
741 		}
742 
743 		kfd->cwsr_enabled = true;
744 	}
745 }
746 
747 static int kfd_gws_init(struct kfd_dev *kfd)
748 {
749 	int ret = 0;
750 
751 	if (kfd->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
752 		return 0;
753 
754 	if (hws_gws_support
755 		|| (kfd->device_info->asic_family == CHIP_VEGA10
756 			&& kfd->mec2_fw_version >= 0x81b3)
757 		|| (kfd->device_info->asic_family >= CHIP_VEGA12
758 			&& kfd->device_info->asic_family <= CHIP_RAVEN
759 			&& kfd->mec2_fw_version >= 0x1b3)
760 		|| (kfd->device_info->asic_family == CHIP_ARCTURUS
761 			&& kfd->mec2_fw_version >= 0x30)
762 		|| (kfd->device_info->asic_family == CHIP_ALDEBARAN
763 			&& kfd->mec2_fw_version >= 0x28))
764 		ret = amdgpu_amdkfd_alloc_gws(kfd->kgd,
765 				amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws);
766 
767 	return ret;
768 }
769 
770 static void kfd_smi_init(struct kfd_dev *dev) {
771 	INIT_LIST_HEAD(&dev->smi_clients);
772 	spin_lock_init(&dev->smi_lock);
773 }
774 
775 bool kgd2kfd_device_init(struct kfd_dev *kfd,
776 			 struct drm_device *ddev,
777 			 const struct kgd2kfd_shared_resources *gpu_resources)
778 {
779 	unsigned int size, map_process_packet_size;
780 
781 	kfd->ddev = ddev;
782 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
783 			KGD_ENGINE_MEC1);
784 	kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
785 			KGD_ENGINE_MEC2);
786 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
787 			KGD_ENGINE_SDMA1);
788 	kfd->shared_resources = *gpu_resources;
789 
790 	kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
791 	kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
792 	kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
793 			- kfd->vm_info.first_vmid_kfd + 1;
794 
795 	/* Verify module parameters regarding mapped process number*/
796 	if ((hws_max_conc_proc < 0)
797 			|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
798 		dev_err(kfd_device,
799 			"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
800 			hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
801 			kfd->vm_info.vmid_num_kfd);
802 		kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
803 	} else
804 		kfd->max_proc_per_quantum = hws_max_conc_proc;
805 
806 	/* calculate max size of mqds needed for queues */
807 	size = max_num_of_queues_per_device *
808 			kfd->device_info->mqd_size_aligned;
809 
810 	/*
811 	 * calculate max size of runlist packet.
812 	 * There can be only 2 packets at once
813 	 */
814 	map_process_packet_size =
815 			kfd->device_info->asic_family == CHIP_ALDEBARAN ?
816 				sizeof(struct pm4_mes_map_process_aldebaran) :
817 					sizeof(struct pm4_mes_map_process);
818 	size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
819 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
820 		+ sizeof(struct pm4_mes_runlist)) * 2;
821 
822 	/* Add size of HIQ & DIQ */
823 	size += KFD_KERNEL_QUEUE_SIZE * 2;
824 
825 	/* add another 512KB for all other allocations on gart (HPD, fences) */
826 	size += 512 * 1024;
827 
828 	if (amdgpu_amdkfd_alloc_gtt_mem(
829 			kfd->kgd, size, &kfd->gtt_mem,
830 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
831 			false)) {
832 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
833 		goto alloc_gtt_mem_failure;
834 	}
835 
836 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
837 
838 	/* Initialize GTT sa with 512 byte chunk size */
839 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
840 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
841 		goto kfd_gtt_sa_init_error;
842 	}
843 
844 	if (kfd_doorbell_init(kfd)) {
845 		dev_err(kfd_device,
846 			"Error initializing doorbell aperture\n");
847 		goto kfd_doorbell_error;
848 	}
849 
850 	kfd->hive_id = amdgpu_amdkfd_get_hive_id(kfd->kgd);
851 
852 	kfd->noretry = amdgpu_amdkfd_get_noretry(kfd->kgd);
853 
854 	if (kfd_interrupt_init(kfd)) {
855 		dev_err(kfd_device, "Error initializing interrupts\n");
856 		goto kfd_interrupt_error;
857 	}
858 
859 	kfd->dqm = device_queue_manager_init(kfd);
860 	if (!kfd->dqm) {
861 		dev_err(kfd_device, "Error initializing queue manager\n");
862 		goto device_queue_manager_error;
863 	}
864 
865 	/* If supported on this device, allocate global GWS that is shared
866 	 * by all KFD processes
867 	 */
868 	if (kfd_gws_init(kfd)) {
869 		dev_err(kfd_device, "Could not allocate %d gws\n",
870 			amdgpu_amdkfd_get_num_gws(kfd->kgd));
871 		goto gws_error;
872 	}
873 
874 	/* If CRAT is broken, won't set iommu enabled */
875 	kfd_double_confirm_iommu_support(kfd);
876 
877 	if (kfd_iommu_device_init(kfd)) {
878 		dev_err(kfd_device, "Error initializing iommuv2\n");
879 		goto device_iommu_error;
880 	}
881 
882 	kfd_cwsr_init(kfd);
883 
884 	svm_migrate_init((struct amdgpu_device *)kfd->kgd);
885 
886 	if (kfd_resume(kfd))
887 		goto kfd_resume_error;
888 
889 	kfd->dbgmgr = NULL;
890 
891 	if (kfd_topology_add_device(kfd)) {
892 		dev_err(kfd_device, "Error adding device to topology\n");
893 		goto kfd_topology_add_device_error;
894 	}
895 
896 	kfd_smi_init(kfd);
897 
898 	kfd->init_complete = true;
899 	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
900 		 kfd->pdev->device);
901 
902 	pr_debug("Starting kfd with the following scheduling policy %d\n",
903 		kfd->dqm->sched_policy);
904 
905 	goto out;
906 
907 kfd_topology_add_device_error:
908 kfd_resume_error:
909 device_iommu_error:
910 gws_error:
911 	device_queue_manager_uninit(kfd->dqm);
912 device_queue_manager_error:
913 	kfd_interrupt_exit(kfd);
914 kfd_interrupt_error:
915 	kfd_doorbell_fini(kfd);
916 kfd_doorbell_error:
917 	kfd_gtt_sa_fini(kfd);
918 kfd_gtt_sa_init_error:
919 	amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
920 alloc_gtt_mem_failure:
921 	if (kfd->gws)
922 		amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
923 	dev_err(kfd_device,
924 		"device %x:%x NOT added due to errors\n",
925 		kfd->pdev->vendor, kfd->pdev->device);
926 out:
927 	return kfd->init_complete;
928 }
929 
930 void kgd2kfd_device_exit(struct kfd_dev *kfd)
931 {
932 	if (kfd->init_complete) {
933 		svm_migrate_fini((struct amdgpu_device *)kfd->kgd);
934 		device_queue_manager_uninit(kfd->dqm);
935 		kfd_interrupt_exit(kfd);
936 		kfd_topology_remove_device(kfd);
937 		kfd_doorbell_fini(kfd);
938 		ida_destroy(&kfd->doorbell_ida);
939 		kfd_gtt_sa_fini(kfd);
940 		amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
941 		if (kfd->gws)
942 			amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
943 	}
944 
945 	kfree(kfd);
946 }
947 
948 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
949 {
950 	if (!kfd->init_complete)
951 		return 0;
952 
953 	kfd_smi_event_update_gpu_reset(kfd, false);
954 
955 	kfd->dqm->ops.pre_reset(kfd->dqm);
956 
957 	kgd2kfd_suspend(kfd, false);
958 
959 	kfd_signal_reset_event(kfd);
960 	return 0;
961 }
962 
963 /*
964  * Fix me. KFD won't be able to resume existing process for now.
965  * We will keep all existing process in a evicted state and
966  * wait the process to be terminated.
967  */
968 
969 int kgd2kfd_post_reset(struct kfd_dev *kfd)
970 {
971 	int ret;
972 
973 	if (!kfd->init_complete)
974 		return 0;
975 
976 	ret = kfd_resume(kfd);
977 	if (ret)
978 		return ret;
979 	atomic_dec(&kfd_locked);
980 
981 	atomic_set(&kfd->sram_ecc_flag, 0);
982 
983 	kfd_smi_event_update_gpu_reset(kfd, true);
984 
985 	return 0;
986 }
987 
988 bool kfd_is_locked(void)
989 {
990 	return  (atomic_read(&kfd_locked) > 0);
991 }
992 
993 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
994 {
995 	if (!kfd->init_complete)
996 		return;
997 
998 	/* for runtime suspend, skip locking kfd */
999 	if (!run_pm) {
1000 		/* For first KFD device suspend all the KFD processes */
1001 		if (atomic_inc_return(&kfd_locked) == 1)
1002 			kfd_suspend_all_processes();
1003 	}
1004 
1005 	kfd->dqm->ops.stop(kfd->dqm);
1006 	kfd_iommu_suspend(kfd);
1007 }
1008 
1009 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
1010 {
1011 	int ret, count;
1012 
1013 	if (!kfd->init_complete)
1014 		return 0;
1015 
1016 	ret = kfd_resume(kfd);
1017 	if (ret)
1018 		return ret;
1019 
1020 	/* for runtime resume, skip unlocking kfd */
1021 	if (!run_pm) {
1022 		count = atomic_dec_return(&kfd_locked);
1023 		WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
1024 		if (count == 0)
1025 			ret = kfd_resume_all_processes();
1026 	}
1027 
1028 	return ret;
1029 }
1030 
1031 static int kfd_resume(struct kfd_dev *kfd)
1032 {
1033 	int err = 0;
1034 
1035 	err = kfd_iommu_resume(kfd);
1036 	if (err) {
1037 		dev_err(kfd_device,
1038 			"Failed to resume IOMMU for device %x:%x\n",
1039 			kfd->pdev->vendor, kfd->pdev->device);
1040 		return err;
1041 	}
1042 
1043 	err = kfd->dqm->ops.start(kfd->dqm);
1044 	if (err) {
1045 		dev_err(kfd_device,
1046 			"Error starting queue manager for device %x:%x\n",
1047 			kfd->pdev->vendor, kfd->pdev->device);
1048 		goto dqm_start_error;
1049 	}
1050 
1051 	return err;
1052 
1053 dqm_start_error:
1054 	kfd_iommu_suspend(kfd);
1055 	return err;
1056 }
1057 
1058 static inline void kfd_queue_work(struct workqueue_struct *wq,
1059 				  struct work_struct *work)
1060 {
1061 	int cpu, new_cpu;
1062 
1063 	cpu = new_cpu = smp_processor_id();
1064 	do {
1065 		new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
1066 		if (cpu_to_node(new_cpu) == numa_node_id())
1067 			break;
1068 	} while (cpu != new_cpu);
1069 
1070 	queue_work_on(new_cpu, wq, work);
1071 }
1072 
1073 /* This is called directly from KGD at ISR. */
1074 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1075 {
1076 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
1077 	bool is_patched = false;
1078 	unsigned long flags;
1079 
1080 	if (!kfd->init_complete)
1081 		return;
1082 
1083 	if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
1084 		dev_err_once(kfd_device, "Ring entry too small\n");
1085 		return;
1086 	}
1087 
1088 	spin_lock_irqsave(&kfd->interrupt_lock, flags);
1089 
1090 	if (kfd->interrupts_active
1091 	    && interrupt_is_wanted(kfd, ih_ring_entry,
1092 				   patched_ihre, &is_patched)
1093 	    && enqueue_ih_ring_entry(kfd,
1094 				     is_patched ? patched_ihre : ih_ring_entry))
1095 		kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work);
1096 
1097 	spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
1098 }
1099 
1100 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
1101 {
1102 	struct kfd_process *p;
1103 	int r;
1104 
1105 	/* Because we are called from arbitrary context (workqueue) as opposed
1106 	 * to process context, kfd_process could attempt to exit while we are
1107 	 * running so the lookup function increments the process ref count.
1108 	 */
1109 	p = kfd_lookup_process_by_mm(mm);
1110 	if (!p)
1111 		return -ESRCH;
1112 
1113 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1114 	r = kfd_process_evict_queues(p);
1115 
1116 	kfd_unref_process(p);
1117 	return r;
1118 }
1119 
1120 int kgd2kfd_resume_mm(struct mm_struct *mm)
1121 {
1122 	struct kfd_process *p;
1123 	int r;
1124 
1125 	/* Because we are called from arbitrary context (workqueue) as opposed
1126 	 * to process context, kfd_process could attempt to exit while we are
1127 	 * running so the lookup function increments the process ref count.
1128 	 */
1129 	p = kfd_lookup_process_by_mm(mm);
1130 	if (!p)
1131 		return -ESRCH;
1132 
1133 	r = kfd_process_restore_queues(p);
1134 
1135 	kfd_unref_process(p);
1136 	return r;
1137 }
1138 
1139 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1140  *   prepare for safe eviction of KFD BOs that belong to the specified
1141  *   process.
1142  *
1143  * @mm: mm_struct that identifies the specified KFD process
1144  * @fence: eviction fence attached to KFD process BOs
1145  *
1146  */
1147 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1148 					       struct dma_fence *fence)
1149 {
1150 	struct kfd_process *p;
1151 	unsigned long active_time;
1152 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1153 
1154 	if (!fence)
1155 		return -EINVAL;
1156 
1157 	if (dma_fence_is_signaled(fence))
1158 		return 0;
1159 
1160 	p = kfd_lookup_process_by_mm(mm);
1161 	if (!p)
1162 		return -ENODEV;
1163 
1164 	if (fence->seqno == p->last_eviction_seqno)
1165 		goto out;
1166 
1167 	p->last_eviction_seqno = fence->seqno;
1168 
1169 	/* Avoid KFD process starvation. Wait for at least
1170 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
1171 	 */
1172 	active_time = get_jiffies_64() - p->last_restore_timestamp;
1173 	if (delay_jiffies > active_time)
1174 		delay_jiffies -= active_time;
1175 	else
1176 		delay_jiffies = 0;
1177 
1178 	/* During process initialization eviction_work.dwork is initialized
1179 	 * to kfd_evict_bo_worker
1180 	 */
1181 	WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1182 	     p->lead_thread->pid, delay_jiffies);
1183 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
1184 out:
1185 	kfd_unref_process(p);
1186 	return 0;
1187 }
1188 
1189 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1190 				unsigned int chunk_size)
1191 {
1192 	unsigned int num_of_longs;
1193 
1194 	if (WARN_ON(buf_size < chunk_size))
1195 		return -EINVAL;
1196 	if (WARN_ON(buf_size == 0))
1197 		return -EINVAL;
1198 	if (WARN_ON(chunk_size == 0))
1199 		return -EINVAL;
1200 
1201 	kfd->gtt_sa_chunk_size = chunk_size;
1202 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1203 
1204 	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
1205 		BITS_PER_LONG;
1206 
1207 	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
1208 
1209 	if (!kfd->gtt_sa_bitmap)
1210 		return -ENOMEM;
1211 
1212 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1213 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1214 
1215 	mutex_init(&kfd->gtt_sa_lock);
1216 
1217 	return 0;
1218 
1219 }
1220 
1221 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1222 {
1223 	mutex_destroy(&kfd->gtt_sa_lock);
1224 	kfree(kfd->gtt_sa_bitmap);
1225 }
1226 
1227 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1228 						unsigned int bit_num,
1229 						unsigned int chunk_size)
1230 {
1231 	return start_addr + bit_num * chunk_size;
1232 }
1233 
1234 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1235 						unsigned int bit_num,
1236 						unsigned int chunk_size)
1237 {
1238 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1239 }
1240 
1241 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1242 			struct kfd_mem_obj **mem_obj)
1243 {
1244 	unsigned int found, start_search, cur_size;
1245 
1246 	if (size == 0)
1247 		return -EINVAL;
1248 
1249 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1250 		return -ENOMEM;
1251 
1252 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1253 	if (!(*mem_obj))
1254 		return -ENOMEM;
1255 
1256 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1257 
1258 	start_search = 0;
1259 
1260 	mutex_lock(&kfd->gtt_sa_lock);
1261 
1262 kfd_gtt_restart_search:
1263 	/* Find the first chunk that is free */
1264 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1265 					kfd->gtt_sa_num_of_chunks,
1266 					start_search);
1267 
1268 	pr_debug("Found = %d\n", found);
1269 
1270 	/* If there wasn't any free chunk, bail out */
1271 	if (found == kfd->gtt_sa_num_of_chunks)
1272 		goto kfd_gtt_no_free_chunk;
1273 
1274 	/* Update fields of mem_obj */
1275 	(*mem_obj)->range_start = found;
1276 	(*mem_obj)->range_end = found;
1277 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1278 					kfd->gtt_start_gpu_addr,
1279 					found,
1280 					kfd->gtt_sa_chunk_size);
1281 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1282 					kfd->gtt_start_cpu_ptr,
1283 					found,
1284 					kfd->gtt_sa_chunk_size);
1285 
1286 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1287 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1288 
1289 	/* If we need only one chunk, mark it as allocated and get out */
1290 	if (size <= kfd->gtt_sa_chunk_size) {
1291 		pr_debug("Single bit\n");
1292 		set_bit(found, kfd->gtt_sa_bitmap);
1293 		goto kfd_gtt_out;
1294 	}
1295 
1296 	/* Otherwise, try to see if we have enough contiguous chunks */
1297 	cur_size = size - kfd->gtt_sa_chunk_size;
1298 	do {
1299 		(*mem_obj)->range_end =
1300 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1301 					kfd->gtt_sa_num_of_chunks, ++found);
1302 		/*
1303 		 * If next free chunk is not contiguous than we need to
1304 		 * restart our search from the last free chunk we found (which
1305 		 * wasn't contiguous to the previous ones
1306 		 */
1307 		if ((*mem_obj)->range_end != found) {
1308 			start_search = found;
1309 			goto kfd_gtt_restart_search;
1310 		}
1311 
1312 		/*
1313 		 * If we reached end of buffer, bail out with error
1314 		 */
1315 		if (found == kfd->gtt_sa_num_of_chunks)
1316 			goto kfd_gtt_no_free_chunk;
1317 
1318 		/* Check if we don't need another chunk */
1319 		if (cur_size <= kfd->gtt_sa_chunk_size)
1320 			cur_size = 0;
1321 		else
1322 			cur_size -= kfd->gtt_sa_chunk_size;
1323 
1324 	} while (cur_size > 0);
1325 
1326 	pr_debug("range_start = %d, range_end = %d\n",
1327 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1328 
1329 	/* Mark the chunks as allocated */
1330 	for (found = (*mem_obj)->range_start;
1331 		found <= (*mem_obj)->range_end;
1332 		found++)
1333 		set_bit(found, kfd->gtt_sa_bitmap);
1334 
1335 kfd_gtt_out:
1336 	mutex_unlock(&kfd->gtt_sa_lock);
1337 	return 0;
1338 
1339 kfd_gtt_no_free_chunk:
1340 	pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1341 	mutex_unlock(&kfd->gtt_sa_lock);
1342 	kfree(*mem_obj);
1343 	return -ENOMEM;
1344 }
1345 
1346 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1347 {
1348 	unsigned int bit;
1349 
1350 	/* Act like kfree when trying to free a NULL object */
1351 	if (!mem_obj)
1352 		return 0;
1353 
1354 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1355 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1356 
1357 	mutex_lock(&kfd->gtt_sa_lock);
1358 
1359 	/* Mark the chunks as free */
1360 	for (bit = mem_obj->range_start;
1361 		bit <= mem_obj->range_end;
1362 		bit++)
1363 		clear_bit(bit, kfd->gtt_sa_bitmap);
1364 
1365 	mutex_unlock(&kfd->gtt_sa_lock);
1366 
1367 	kfree(mem_obj);
1368 	return 0;
1369 }
1370 
1371 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1372 {
1373 	if (kfd)
1374 		atomic_inc(&kfd->sram_ecc_flag);
1375 }
1376 
1377 void kfd_inc_compute_active(struct kfd_dev *kfd)
1378 {
1379 	if (atomic_inc_return(&kfd->compute_profile) == 1)
1380 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1381 }
1382 
1383 void kfd_dec_compute_active(struct kfd_dev *kfd)
1384 {
1385 	int count = atomic_dec_return(&kfd->compute_profile);
1386 
1387 	if (count == 0)
1388 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1389 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1390 }
1391 
1392 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
1393 {
1394 	if (kfd && kfd->init_complete)
1395 		kfd_smi_event_update_thermal_throttling(kfd, throttle_bitmask);
1396 }
1397 
1398 #if defined(CONFIG_DEBUG_FS)
1399 
1400 /* This function will send a package to HIQ to hang the HWS
1401  * which will trigger a GPU reset and bring the HWS back to normal state
1402  */
1403 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1404 {
1405 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1406 		pr_err("HWS is not enabled");
1407 		return -EINVAL;
1408 	}
1409 
1410 	return dqm_debugfs_hang_hws(dev->dqm);
1411 }
1412 
1413 #endif
1414