1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/bsearch.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include "kfd_priv.h"
28 #include "kfd_device_queue_manager.h"
29 #include "kfd_pm4_headers_vi.h"
30 #include "kfd_pm4_headers_aldebaran.h"
31 #include "cwsr_trap_handler.h"
32 #include "kfd_iommu.h"
33 #include "amdgpu_amdkfd.h"
34 #include "kfd_smi_events.h"
35 #include "kfd_svm.h"
36 #include "kfd_migrate.h"
37 #include "amdgpu.h"
38 #include "amdgpu_xcp.h"
39 
40 #define MQD_SIZE_ALIGNED 768
41 
42 /*
43  * kfd_locked is used to lock the kfd driver during suspend or reset
44  * once locked, kfd driver will stop any further GPU execution.
45  * create process (open) will return -EAGAIN.
46  */
47 static int kfd_locked;
48 
49 #ifdef CONFIG_DRM_AMDGPU_CIK
50 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
51 #endif
52 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
53 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
54 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
55 extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
56 extern const struct kfd2kgd_calls gc_9_4_3_kfd2kgd;
57 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
58 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
59 extern const struct kfd2kgd_calls gfx_v11_kfd2kgd;
60 
61 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
62 				unsigned int chunk_size);
63 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
64 
65 static int kfd_resume_iommu(struct kfd_dev *kfd);
66 static int kfd_resume(struct kfd_node *kfd);
67 
68 static void kfd_device_info_set_sdma_info(struct kfd_dev *kfd)
69 {
70 	uint32_t sdma_version = kfd->adev->ip_versions[SDMA0_HWIP][0];
71 
72 	switch (sdma_version) {
73 	case IP_VERSION(4, 0, 0):/* VEGA10 */
74 	case IP_VERSION(4, 0, 1):/* VEGA12 */
75 	case IP_VERSION(4, 1, 0):/* RAVEN */
76 	case IP_VERSION(4, 1, 1):/* RAVEN */
77 	case IP_VERSION(4, 1, 2):/* RENOIR */
78 	case IP_VERSION(5, 2, 1):/* VANGOGH */
79 	case IP_VERSION(5, 2, 3):/* YELLOW_CARP */
80 	case IP_VERSION(5, 2, 6):/* GC 10.3.6 */
81 	case IP_VERSION(5, 2, 7):/* GC 10.3.7 */
82 		kfd->device_info.num_sdma_queues_per_engine = 2;
83 		break;
84 	case IP_VERSION(4, 2, 0):/* VEGA20 */
85 	case IP_VERSION(4, 2, 2):/* ARCTURUS */
86 	case IP_VERSION(4, 4, 0):/* ALDEBARAN */
87 	case IP_VERSION(4, 4, 2):
88 	case IP_VERSION(5, 0, 0):/* NAVI10 */
89 	case IP_VERSION(5, 0, 1):/* CYAN_SKILLFISH */
90 	case IP_VERSION(5, 0, 2):/* NAVI14 */
91 	case IP_VERSION(5, 0, 5):/* NAVI12 */
92 	case IP_VERSION(5, 2, 0):/* SIENNA_CICHLID */
93 	case IP_VERSION(5, 2, 2):/* NAVY_FLOUNDER */
94 	case IP_VERSION(5, 2, 4):/* DIMGREY_CAVEFISH */
95 	case IP_VERSION(5, 2, 5):/* BEIGE_GOBY */
96 	case IP_VERSION(6, 0, 0):
97 	case IP_VERSION(6, 0, 1):
98 	case IP_VERSION(6, 0, 2):
99 	case IP_VERSION(6, 0, 3):
100 		kfd->device_info.num_sdma_queues_per_engine = 8;
101 		break;
102 	default:
103 		dev_warn(kfd_device,
104 			"Default sdma queue per engine(8) is set due to mismatch of sdma ip block(SDMA_HWIP:0x%x).\n",
105 			sdma_version);
106 		kfd->device_info.num_sdma_queues_per_engine = 8;
107 	}
108 
109 	bitmap_zero(kfd->device_info.reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
110 
111 	switch (sdma_version) {
112 	case IP_VERSION(6, 0, 0):
113 	case IP_VERSION(6, 0, 1):
114 	case IP_VERSION(6, 0, 2):
115 	case IP_VERSION(6, 0, 3):
116 		/* Reserve 1 for paging and 1 for gfx */
117 		kfd->device_info.num_reserved_sdma_queues_per_engine = 2;
118 		/* BIT(0)=engine-0 queue-0; BIT(1)=engine-1 queue-0; BIT(2)=engine-0 queue-1; ... */
119 		bitmap_set(kfd->device_info.reserved_sdma_queues_bitmap, 0,
120 			   kfd->adev->sdma.num_instances *
121 			   kfd->device_info.num_reserved_sdma_queues_per_engine);
122 		break;
123 	default:
124 		break;
125 	}
126 }
127 
128 static void kfd_device_info_set_event_interrupt_class(struct kfd_dev *kfd)
129 {
130 	uint32_t gc_version = KFD_GC_VERSION(kfd);
131 
132 	switch (gc_version) {
133 	case IP_VERSION(9, 0, 1): /* VEGA10 */
134 	case IP_VERSION(9, 1, 0): /* RAVEN */
135 	case IP_VERSION(9, 2, 1): /* VEGA12 */
136 	case IP_VERSION(9, 2, 2): /* RAVEN */
137 	case IP_VERSION(9, 3, 0): /* RENOIR */
138 	case IP_VERSION(9, 4, 0): /* VEGA20 */
139 	case IP_VERSION(9, 4, 1): /* ARCTURUS */
140 	case IP_VERSION(9, 4, 2): /* ALDEBARAN */
141 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
142 		break;
143 	case IP_VERSION(9, 4, 3): /* GC 9.4.3 */
144 		kfd->device_info.event_interrupt_class =
145 						&event_interrupt_class_v9_4_3;
146 		break;
147 	case IP_VERSION(10, 3, 1): /* VANGOGH */
148 	case IP_VERSION(10, 3, 3): /* YELLOW_CARP */
149 	case IP_VERSION(10, 3, 6): /* GC 10.3.6 */
150 	case IP_VERSION(10, 3, 7): /* GC 10.3.7 */
151 	case IP_VERSION(10, 1, 3): /* CYAN_SKILLFISH */
152 	case IP_VERSION(10, 1, 4):
153 	case IP_VERSION(10, 1, 10): /* NAVI10 */
154 	case IP_VERSION(10, 1, 2): /* NAVI12 */
155 	case IP_VERSION(10, 1, 1): /* NAVI14 */
156 	case IP_VERSION(10, 3, 0): /* SIENNA_CICHLID */
157 	case IP_VERSION(10, 3, 2): /* NAVY_FLOUNDER */
158 	case IP_VERSION(10, 3, 4): /* DIMGREY_CAVEFISH */
159 	case IP_VERSION(10, 3, 5): /* BEIGE_GOBY */
160 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v10;
161 		break;
162 	case IP_VERSION(11, 0, 0):
163 	case IP_VERSION(11, 0, 1):
164 	case IP_VERSION(11, 0, 2):
165 	case IP_VERSION(11, 0, 3):
166 	case IP_VERSION(11, 0, 4):
167 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
168 		break;
169 	default:
170 		dev_warn(kfd_device, "v9 event interrupt handler is set due to "
171 			"mismatch of gc ip block(GC_HWIP:0x%x).\n", gc_version);
172 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
173 	}
174 }
175 
176 static void kfd_device_info_init(struct kfd_dev *kfd,
177 				 bool vf, uint32_t gfx_target_version)
178 {
179 	uint32_t gc_version = KFD_GC_VERSION(kfd);
180 	uint32_t asic_type = kfd->adev->asic_type;
181 
182 	kfd->device_info.max_pasid_bits = 16;
183 	kfd->device_info.max_no_of_hqd = 24;
184 	kfd->device_info.num_of_watch_points = 4;
185 	kfd->device_info.mqd_size_aligned = MQD_SIZE_ALIGNED;
186 	kfd->device_info.gfx_target_version = gfx_target_version;
187 
188 	if (KFD_IS_SOC15(kfd)) {
189 		kfd->device_info.doorbell_size = 8;
190 		kfd->device_info.ih_ring_entry_size = 8 * sizeof(uint32_t);
191 		kfd->device_info.supports_cwsr = true;
192 
193 		kfd_device_info_set_sdma_info(kfd);
194 
195 		kfd_device_info_set_event_interrupt_class(kfd);
196 
197 		/* Raven */
198 		if (gc_version == IP_VERSION(9, 1, 0) ||
199 		    gc_version == IP_VERSION(9, 2, 2))
200 			kfd->device_info.needs_iommu_device = true;
201 
202 		if (gc_version < IP_VERSION(11, 0, 0)) {
203 			/* Navi2x+, Navi1x+ */
204 			if (gc_version == IP_VERSION(10, 3, 6))
205 				kfd->device_info.no_atomic_fw_version = 14;
206 			else if (gc_version == IP_VERSION(10, 3, 7))
207 				kfd->device_info.no_atomic_fw_version = 3;
208 			else if (gc_version >= IP_VERSION(10, 3, 0))
209 				kfd->device_info.no_atomic_fw_version = 92;
210 			else if (gc_version >= IP_VERSION(10, 1, 1))
211 				kfd->device_info.no_atomic_fw_version = 145;
212 
213 			/* Navi1x+ */
214 			if (gc_version >= IP_VERSION(10, 1, 1))
215 				kfd->device_info.needs_pci_atomics = true;
216 		} else if (gc_version < IP_VERSION(12, 0, 0)) {
217 			/*
218 			 * PCIe atomics support acknowledgment in GFX11 RS64 CPFW requires
219 			 * MEC version >= 509. Prior RS64 CPFW versions (and all F32) require
220 			 * PCIe atomics support.
221 			 */
222 			kfd->device_info.needs_pci_atomics = true;
223 			kfd->device_info.no_atomic_fw_version = kfd->adev->gfx.rs64_enable ? 509 : 0;
224 		}
225 	} else {
226 		kfd->device_info.doorbell_size = 4;
227 		kfd->device_info.ih_ring_entry_size = 4 * sizeof(uint32_t);
228 		kfd->device_info.event_interrupt_class = &event_interrupt_class_cik;
229 		kfd->device_info.num_sdma_queues_per_engine = 2;
230 
231 		if (asic_type != CHIP_KAVERI &&
232 		    asic_type != CHIP_HAWAII &&
233 		    asic_type != CHIP_TONGA)
234 			kfd->device_info.supports_cwsr = true;
235 
236 		if (asic_type == CHIP_KAVERI ||
237 		    asic_type == CHIP_CARRIZO)
238 			kfd->device_info.needs_iommu_device = true;
239 
240 		if (asic_type != CHIP_HAWAII && !vf)
241 			kfd->device_info.needs_pci_atomics = true;
242 	}
243 }
244 
245 struct kfd_dev *kgd2kfd_probe(struct amdgpu_device *adev, bool vf)
246 {
247 	struct kfd_dev *kfd = NULL;
248 	const struct kfd2kgd_calls *f2g = NULL;
249 	uint32_t gfx_target_version = 0;
250 
251 	switch (adev->asic_type) {
252 #ifdef KFD_SUPPORT_IOMMU_V2
253 #ifdef CONFIG_DRM_AMDGPU_CIK
254 	case CHIP_KAVERI:
255 		gfx_target_version = 70000;
256 		if (!vf)
257 			f2g = &gfx_v7_kfd2kgd;
258 		break;
259 #endif
260 	case CHIP_CARRIZO:
261 		gfx_target_version = 80001;
262 		if (!vf)
263 			f2g = &gfx_v8_kfd2kgd;
264 		break;
265 #endif
266 #ifdef CONFIG_DRM_AMDGPU_CIK
267 	case CHIP_HAWAII:
268 		gfx_target_version = 70001;
269 		if (!amdgpu_exp_hw_support)
270 			pr_info(
271 	"KFD support on Hawaii is experimental. See modparam exp_hw_support\n"
272 				);
273 		else if (!vf)
274 			f2g = &gfx_v7_kfd2kgd;
275 		break;
276 #endif
277 	case CHIP_TONGA:
278 		gfx_target_version = 80002;
279 		if (!vf)
280 			f2g = &gfx_v8_kfd2kgd;
281 		break;
282 	case CHIP_FIJI:
283 	case CHIP_POLARIS10:
284 		gfx_target_version = 80003;
285 		f2g = &gfx_v8_kfd2kgd;
286 		break;
287 	case CHIP_POLARIS11:
288 	case CHIP_POLARIS12:
289 	case CHIP_VEGAM:
290 		gfx_target_version = 80003;
291 		if (!vf)
292 			f2g = &gfx_v8_kfd2kgd;
293 		break;
294 	default:
295 		switch (adev->ip_versions[GC_HWIP][0]) {
296 		/* Vega 10 */
297 		case IP_VERSION(9, 0, 1):
298 			gfx_target_version = 90000;
299 			f2g = &gfx_v9_kfd2kgd;
300 			break;
301 #ifdef KFD_SUPPORT_IOMMU_V2
302 		/* Raven */
303 		case IP_VERSION(9, 1, 0):
304 		case IP_VERSION(9, 2, 2):
305 			gfx_target_version = 90002;
306 			if (!vf)
307 				f2g = &gfx_v9_kfd2kgd;
308 			break;
309 #endif
310 		/* Vega12 */
311 		case IP_VERSION(9, 2, 1):
312 			gfx_target_version = 90004;
313 			if (!vf)
314 				f2g = &gfx_v9_kfd2kgd;
315 			break;
316 		/* Renoir */
317 		case IP_VERSION(9, 3, 0):
318 			gfx_target_version = 90012;
319 			if (!vf)
320 				f2g = &gfx_v9_kfd2kgd;
321 			break;
322 		/* Vega20 */
323 		case IP_VERSION(9, 4, 0):
324 			gfx_target_version = 90006;
325 			if (!vf)
326 				f2g = &gfx_v9_kfd2kgd;
327 			break;
328 		/* Arcturus */
329 		case IP_VERSION(9, 4, 1):
330 			gfx_target_version = 90008;
331 			f2g = &arcturus_kfd2kgd;
332 			break;
333 		/* Aldebaran */
334 		case IP_VERSION(9, 4, 2):
335 			gfx_target_version = 90010;
336 			f2g = &aldebaran_kfd2kgd;
337 			break;
338 		case IP_VERSION(9, 4, 3):
339 			gfx_target_version = adev->rev_id >= 1 ? 90402
340 					   : adev->flags & AMD_IS_APU ? 90400
341 					   : 90401;
342 			f2g = &gc_9_4_3_kfd2kgd;
343 			break;
344 		/* Navi10 */
345 		case IP_VERSION(10, 1, 10):
346 			gfx_target_version = 100100;
347 			if (!vf)
348 				f2g = &gfx_v10_kfd2kgd;
349 			break;
350 		/* Navi12 */
351 		case IP_VERSION(10, 1, 2):
352 			gfx_target_version = 100101;
353 			f2g = &gfx_v10_kfd2kgd;
354 			break;
355 		/* Navi14 */
356 		case IP_VERSION(10, 1, 1):
357 			gfx_target_version = 100102;
358 			if (!vf)
359 				f2g = &gfx_v10_kfd2kgd;
360 			break;
361 		/* Cyan Skillfish */
362 		case IP_VERSION(10, 1, 3):
363 		case IP_VERSION(10, 1, 4):
364 			gfx_target_version = 100103;
365 			if (!vf)
366 				f2g = &gfx_v10_kfd2kgd;
367 			break;
368 		/* Sienna Cichlid */
369 		case IP_VERSION(10, 3, 0):
370 			gfx_target_version = 100300;
371 			f2g = &gfx_v10_3_kfd2kgd;
372 			break;
373 		/* Navy Flounder */
374 		case IP_VERSION(10, 3, 2):
375 			gfx_target_version = 100301;
376 			f2g = &gfx_v10_3_kfd2kgd;
377 			break;
378 		/* Van Gogh */
379 		case IP_VERSION(10, 3, 1):
380 			gfx_target_version = 100303;
381 			if (!vf)
382 				f2g = &gfx_v10_3_kfd2kgd;
383 			break;
384 		/* Dimgrey Cavefish */
385 		case IP_VERSION(10, 3, 4):
386 			gfx_target_version = 100302;
387 			f2g = &gfx_v10_3_kfd2kgd;
388 			break;
389 		/* Beige Goby */
390 		case IP_VERSION(10, 3, 5):
391 			gfx_target_version = 100304;
392 			f2g = &gfx_v10_3_kfd2kgd;
393 			break;
394 		/* Yellow Carp */
395 		case IP_VERSION(10, 3, 3):
396 			gfx_target_version = 100305;
397 			if (!vf)
398 				f2g = &gfx_v10_3_kfd2kgd;
399 			break;
400 		case IP_VERSION(10, 3, 6):
401 		case IP_VERSION(10, 3, 7):
402 			gfx_target_version = 100306;
403 			if (!vf)
404 				f2g = &gfx_v10_3_kfd2kgd;
405 			break;
406 		case IP_VERSION(11, 0, 0):
407 			gfx_target_version = 110000;
408 			f2g = &gfx_v11_kfd2kgd;
409 			break;
410 		case IP_VERSION(11, 0, 1):
411 		case IP_VERSION(11, 0, 4):
412 			gfx_target_version = 110003;
413 			f2g = &gfx_v11_kfd2kgd;
414 			break;
415 		case IP_VERSION(11, 0, 2):
416 			gfx_target_version = 110002;
417 			f2g = &gfx_v11_kfd2kgd;
418 			break;
419 		case IP_VERSION(11, 0, 3):
420 			if ((adev->pdev->device == 0x7460 &&
421 			     adev->pdev->revision == 0x00) ||
422 			    (adev->pdev->device == 0x7461 &&
423 			     adev->pdev->revision == 0x00))
424 				/* Note: Compiler version is 11.0.5 while HW version is 11.0.3 */
425 				gfx_target_version = 110005;
426 			else
427 				/* Note: Compiler version is 11.0.1 while HW version is 11.0.3 */
428 				gfx_target_version = 110001;
429 			f2g = &gfx_v11_kfd2kgd;
430 			break;
431 		default:
432 			break;
433 		}
434 		break;
435 	}
436 
437 	if (!f2g) {
438 		if (adev->ip_versions[GC_HWIP][0])
439 			dev_err(kfd_device, "GC IP %06x %s not supported in kfd\n",
440 				adev->ip_versions[GC_HWIP][0], vf ? "VF" : "");
441 		else
442 			dev_err(kfd_device, "%s %s not supported in kfd\n",
443 				amdgpu_asic_name[adev->asic_type], vf ? "VF" : "");
444 		return NULL;
445 	}
446 
447 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
448 	if (!kfd)
449 		return NULL;
450 
451 	kfd->adev = adev;
452 	kfd_device_info_init(kfd, vf, gfx_target_version);
453 	kfd->init_complete = false;
454 	kfd->kfd2kgd = f2g;
455 	atomic_set(&kfd->compute_profile, 0);
456 
457 	mutex_init(&kfd->doorbell_mutex);
458 	memset(&kfd->doorbell_available_index, 0,
459 		sizeof(kfd->doorbell_available_index));
460 
461 	ida_init(&kfd->doorbell_ida);
462 
463 	return kfd;
464 }
465 
466 static void kfd_cwsr_init(struct kfd_dev *kfd)
467 {
468 	if (cwsr_enable && kfd->device_info.supports_cwsr) {
469 		if (KFD_GC_VERSION(kfd) < IP_VERSION(9, 0, 1)) {
470 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
471 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
472 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
473 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 1)) {
474 			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
475 			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
476 			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
477 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2)) {
478 			BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex) > PAGE_SIZE);
479 			kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
480 			kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
481 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3)) {
482 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_4_3_hex) > PAGE_SIZE);
483 			kfd->cwsr_isa = cwsr_trap_gfx9_4_3_hex;
484 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_4_3_hex);
485 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 1, 1)) {
486 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
487 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
488 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
489 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 3, 0)) {
490 			BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE);
491 			kfd->cwsr_isa = cwsr_trap_nv1x_hex;
492 			kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
493 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(11, 0, 0)) {
494 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
495 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
496 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
497 		} else {
498 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx11_hex) > PAGE_SIZE);
499 			kfd->cwsr_isa = cwsr_trap_gfx11_hex;
500 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx11_hex);
501 		}
502 
503 		kfd->cwsr_enabled = true;
504 	}
505 }
506 
507 static int kfd_gws_init(struct kfd_node *node)
508 {
509 	int ret = 0;
510 	struct kfd_dev *kfd = node->kfd;
511 
512 	if (node->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
513 		return 0;
514 
515 	if (hws_gws_support || (KFD_IS_SOC15(node) &&
516 		((KFD_GC_VERSION(node) == IP_VERSION(9, 0, 1)
517 			&& kfd->mec2_fw_version >= 0x81b3) ||
518 		(KFD_GC_VERSION(node) <= IP_VERSION(9, 4, 0)
519 			&& kfd->mec2_fw_version >= 0x1b3)  ||
520 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 1)
521 			&& kfd->mec2_fw_version >= 0x30)   ||
522 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 2)
523 			&& kfd->mec2_fw_version >= 0x28) ||
524 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 3)) ||
525 		(KFD_GC_VERSION(node) >= IP_VERSION(10, 3, 0)
526 			&& KFD_GC_VERSION(node) < IP_VERSION(11, 0, 0)
527 			&& kfd->mec2_fw_version >= 0x6b))))
528 		ret = amdgpu_amdkfd_alloc_gws(node->adev,
529 				node->adev->gds.gws_size, &node->gws);
530 
531 	return ret;
532 }
533 
534 static void kfd_smi_init(struct kfd_node *dev)
535 {
536 	INIT_LIST_HEAD(&dev->smi_clients);
537 	spin_lock_init(&dev->smi_lock);
538 }
539 
540 static int kfd_init_node(struct kfd_node *node)
541 {
542 	int err = -1;
543 
544 	if (kfd_interrupt_init(node)) {
545 		dev_err(kfd_device, "Error initializing interrupts\n");
546 		goto kfd_interrupt_error;
547 	}
548 
549 	node->dqm = device_queue_manager_init(node);
550 	if (!node->dqm) {
551 		dev_err(kfd_device, "Error initializing queue manager\n");
552 		goto device_queue_manager_error;
553 	}
554 
555 	if (kfd_gws_init(node)) {
556 		dev_err(kfd_device, "Could not allocate %d gws\n",
557 			node->adev->gds.gws_size);
558 		goto gws_error;
559 	}
560 
561 	if (kfd_resume(node))
562 		goto kfd_resume_error;
563 
564 	if (kfd_topology_add_device(node)) {
565 		dev_err(kfd_device, "Error adding device to topology\n");
566 		goto kfd_topology_add_device_error;
567 	}
568 
569 	kfd_smi_init(node);
570 
571 	return 0;
572 
573 kfd_topology_add_device_error:
574 kfd_resume_error:
575 gws_error:
576 	device_queue_manager_uninit(node->dqm);
577 device_queue_manager_error:
578 	kfd_interrupt_exit(node);
579 kfd_interrupt_error:
580 	if (node->gws)
581 		amdgpu_amdkfd_free_gws(node->adev, node->gws);
582 
583 	/* Cleanup the node memory here */
584 	kfree(node);
585 	return err;
586 }
587 
588 static void kfd_cleanup_nodes(struct kfd_dev *kfd, unsigned int num_nodes)
589 {
590 	struct kfd_node *knode;
591 	unsigned int i;
592 
593 	for (i = 0; i < num_nodes; i++) {
594 		knode = kfd->nodes[i];
595 		device_queue_manager_uninit(knode->dqm);
596 		kfd_interrupt_exit(knode);
597 		kfd_topology_remove_device(knode);
598 		if (knode->gws)
599 			amdgpu_amdkfd_free_gws(knode->adev, knode->gws);
600 		kfree(knode);
601 		kfd->nodes[i] = NULL;
602 	}
603 }
604 
605 static void kfd_setup_interrupt_bitmap(struct kfd_node *node,
606 				       unsigned int kfd_node_idx)
607 {
608 	struct amdgpu_device *adev = node->adev;
609 	uint32_t xcc_mask = node->xcc_mask;
610 	uint32_t xcc, mapped_xcc;
611 	/*
612 	 * Interrupt bitmap is setup for processing interrupts from
613 	 * different XCDs and AIDs.
614 	 * Interrupt bitmap is defined as follows:
615 	 * 1. Bits 0-15 - correspond to the NodeId field.
616 	 *    Each bit corresponds to NodeId number. For example, if
617 	 *    a KFD node has interrupt bitmap set to 0x7, then this
618 	 *    KFD node will process interrupts with NodeId = 0, 1 and 2
619 	 *    in the IH cookie.
620 	 * 2. Bits 16-31 - unused.
621 	 *
622 	 * Please note that the kfd_node_idx argument passed to this
623 	 * function is not related to NodeId field received in the
624 	 * IH cookie.
625 	 *
626 	 * In CPX mode, a KFD node will process an interrupt if:
627 	 * - the Node Id matches the corresponding bit set in
628 	 *   Bits 0-15.
629 	 * - AND VMID reported in the interrupt lies within the
630 	 *   VMID range of the node.
631 	 */
632 	for_each_inst(xcc, xcc_mask) {
633 		mapped_xcc = GET_INST(GC, xcc);
634 		node->interrupt_bitmap |= (mapped_xcc % 2 ? 5 : 3) << (4 * (mapped_xcc / 2));
635 	}
636 	dev_info(kfd_device, "Node: %d, interrupt_bitmap: %x\n", kfd_node_idx,
637 							node->interrupt_bitmap);
638 }
639 
640 bool kgd2kfd_device_init(struct kfd_dev *kfd,
641 			 const struct kgd2kfd_shared_resources *gpu_resources)
642 {
643 	unsigned int size, map_process_packet_size, i;
644 	struct kfd_node *node;
645 	uint32_t first_vmid_kfd, last_vmid_kfd, vmid_num_kfd;
646 	unsigned int max_proc_per_quantum;
647 	int partition_mode;
648 	int xcp_idx;
649 
650 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
651 			KGD_ENGINE_MEC1);
652 	kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
653 			KGD_ENGINE_MEC2);
654 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
655 			KGD_ENGINE_SDMA1);
656 	kfd->shared_resources = *gpu_resources;
657 
658 	kfd->num_nodes = amdgpu_xcp_get_num_xcp(kfd->adev->xcp_mgr);
659 
660 	if (kfd->num_nodes == 0) {
661 		dev_err(kfd_device,
662 			"KFD num nodes cannot be 0, num_xcc_in_node: %d\n",
663 			kfd->adev->gfx.num_xcc_per_xcp);
664 		goto out;
665 	}
666 
667 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
668 	 * 32 and 64-bit requests are possible and must be
669 	 * supported.
670 	 */
671 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->adev);
672 	if (!kfd->pci_atomic_requested &&
673 	    kfd->device_info.needs_pci_atomics &&
674 	    (!kfd->device_info.no_atomic_fw_version ||
675 	     kfd->mec_fw_version < kfd->device_info.no_atomic_fw_version)) {
676 		dev_info(kfd_device,
677 			 "skipped device %x:%x, PCI rejects atomics %d<%d\n",
678 			 kfd->adev->pdev->vendor, kfd->adev->pdev->device,
679 			 kfd->mec_fw_version,
680 			 kfd->device_info.no_atomic_fw_version);
681 		return false;
682 	}
683 
684 	first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
685 	last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
686 	vmid_num_kfd = last_vmid_kfd - first_vmid_kfd + 1;
687 
688 	/* For GFX9.4.3, we need special handling for VMIDs depending on
689 	 * partition mode.
690 	 * In CPX mode, the VMID range needs to be shared between XCDs.
691 	 * Additionally, there are 13 VMIDs (3-15) available for KFD. To
692 	 * divide them equally, we change starting VMID to 4 and not use
693 	 * VMID 3.
694 	 * If the VMID range changes for GFX9.4.3, then this code MUST be
695 	 * revisited.
696 	 */
697 	if (kfd->adev->xcp_mgr) {
698 		partition_mode = amdgpu_xcp_query_partition_mode(kfd->adev->xcp_mgr,
699 								 AMDGPU_XCP_FL_LOCKED);
700 		if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
701 		    kfd->num_nodes != 1) {
702 			vmid_num_kfd /= 2;
703 			first_vmid_kfd = last_vmid_kfd + 1 - vmid_num_kfd*2;
704 		}
705 	}
706 
707 	/* Verify module parameters regarding mapped process number*/
708 	if (hws_max_conc_proc >= 0)
709 		max_proc_per_quantum = min((u32)hws_max_conc_proc, vmid_num_kfd);
710 	else
711 		max_proc_per_quantum = vmid_num_kfd;
712 
713 	/* calculate max size of mqds needed for queues */
714 	size = max_num_of_queues_per_device *
715 			kfd->device_info.mqd_size_aligned;
716 
717 	/*
718 	 * calculate max size of runlist packet.
719 	 * There can be only 2 packets at once
720 	 */
721 	map_process_packet_size = KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2) ?
722 				sizeof(struct pm4_mes_map_process_aldebaran) :
723 				sizeof(struct pm4_mes_map_process);
724 	size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
725 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
726 		+ sizeof(struct pm4_mes_runlist)) * 2;
727 
728 	/* Add size of HIQ & DIQ */
729 	size += KFD_KERNEL_QUEUE_SIZE * 2;
730 
731 	/* add another 512KB for all other allocations on gart (HPD, fences) */
732 	size += 512 * 1024;
733 
734 	if (amdgpu_amdkfd_alloc_gtt_mem(
735 			kfd->adev, size, &kfd->gtt_mem,
736 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
737 			false)) {
738 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
739 		goto alloc_gtt_mem_failure;
740 	}
741 
742 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
743 
744 	/* Initialize GTT sa with 512 byte chunk size */
745 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
746 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
747 		goto kfd_gtt_sa_init_error;
748 	}
749 
750 	if (kfd_doorbell_init(kfd)) {
751 		dev_err(kfd_device,
752 			"Error initializing doorbell aperture\n");
753 		goto kfd_doorbell_error;
754 	}
755 
756 	if (amdgpu_use_xgmi_p2p)
757 		kfd->hive_id = kfd->adev->gmc.xgmi.hive_id;
758 
759 	/*
760 	 * For GFX9.4.3, the KFD abstracts all partitions within a socket as
761 	 * xGMI connected in the topology so assign a unique hive id per
762 	 * device based on the pci device location if device is in PCIe mode.
763 	 */
764 	if (!kfd->hive_id && (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3)) && kfd->num_nodes > 1)
765 		kfd->hive_id = pci_dev_id(kfd->adev->pdev);
766 
767 	kfd->noretry = kfd->adev->gmc.noretry;
768 
769 	/* If CRAT is broken, won't set iommu enabled */
770 	kfd_double_confirm_iommu_support(kfd);
771 
772 	if (kfd_iommu_device_init(kfd)) {
773 		kfd->use_iommu_v2 = false;
774 		dev_err(kfd_device, "Error initializing iommuv2\n");
775 		goto device_iommu_error;
776 	}
777 
778 	kfd_cwsr_init(kfd);
779 
780 	dev_info(kfd_device, "Total number of KFD nodes to be created: %d\n",
781 				kfd->num_nodes);
782 
783 	/* Allocate the KFD nodes */
784 	for (i = 0, xcp_idx = 0; i < kfd->num_nodes; i++) {
785 		node = kzalloc(sizeof(struct kfd_node), GFP_KERNEL);
786 		if (!node)
787 			goto node_alloc_error;
788 
789 		node->node_id = i;
790 		node->adev = kfd->adev;
791 		node->kfd = kfd;
792 		node->kfd2kgd = kfd->kfd2kgd;
793 		node->vm_info.vmid_num_kfd = vmid_num_kfd;
794 		node->xcp = amdgpu_get_next_xcp(kfd->adev->xcp_mgr, &xcp_idx);
795 		/* TODO : Check if error handling is needed */
796 		if (node->xcp) {
797 			amdgpu_xcp_get_inst_details(node->xcp, AMDGPU_XCP_GFX,
798 						    &node->xcc_mask);
799 			++xcp_idx;
800 		} else {
801 			node->xcc_mask =
802 				(1U << NUM_XCC(kfd->adev->gfx.xcc_mask)) - 1;
803 		}
804 
805 		if (node->xcp) {
806 			dev_info(kfd_device, "KFD node %d partition %d size %lldM\n",
807 				node->node_id, node->xcp->mem_id,
808 				KFD_XCP_MEMORY_SIZE(node->adev, node->node_id) >> 20);
809 		}
810 
811 		if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) &&
812 		    partition_mode == AMDGPU_CPX_PARTITION_MODE &&
813 		    kfd->num_nodes != 1) {
814 			/* For GFX9.4.3 and CPX mode, first XCD gets VMID range
815 			 * 4-9 and second XCD gets VMID range 10-15.
816 			 */
817 
818 			node->vm_info.first_vmid_kfd = (i%2 == 0) ?
819 						first_vmid_kfd :
820 						first_vmid_kfd+vmid_num_kfd;
821 			node->vm_info.last_vmid_kfd = (i%2 == 0) ?
822 						last_vmid_kfd-vmid_num_kfd :
823 						last_vmid_kfd;
824 			node->compute_vmid_bitmap =
825 				((0x1 << (node->vm_info.last_vmid_kfd + 1)) - 1) -
826 				((0x1 << (node->vm_info.first_vmid_kfd)) - 1);
827 		} else {
828 			node->vm_info.first_vmid_kfd = first_vmid_kfd;
829 			node->vm_info.last_vmid_kfd = last_vmid_kfd;
830 			node->compute_vmid_bitmap =
831 				gpu_resources->compute_vmid_bitmap;
832 		}
833 		node->max_proc_per_quantum = max_proc_per_quantum;
834 		atomic_set(&node->sram_ecc_flag, 0);
835 
836 		amdgpu_amdkfd_get_local_mem_info(kfd->adev,
837 					&node->local_mem_info, node->xcp);
838 
839 		if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3))
840 			kfd_setup_interrupt_bitmap(node, i);
841 
842 		/* Initialize the KFD node */
843 		if (kfd_init_node(node)) {
844 			dev_err(kfd_device, "Error initializing KFD node\n");
845 			goto node_init_error;
846 		}
847 		kfd->nodes[i] = node;
848 	}
849 
850 	svm_range_set_max_pages(kfd->adev);
851 
852 	if (kfd_resume_iommu(kfd))
853 		goto kfd_resume_iommu_error;
854 
855 	spin_lock_init(&kfd->watch_points_lock);
856 
857 	kfd->init_complete = true;
858 	dev_info(kfd_device, "added device %x:%x\n", kfd->adev->pdev->vendor,
859 		 kfd->adev->pdev->device);
860 
861 	pr_debug("Starting kfd with the following scheduling policy %d\n",
862 		node->dqm->sched_policy);
863 
864 	goto out;
865 
866 kfd_resume_iommu_error:
867 node_init_error:
868 node_alloc_error:
869 	kfd_cleanup_nodes(kfd, i);
870 device_iommu_error:
871 	kfd_doorbell_fini(kfd);
872 kfd_doorbell_error:
873 	kfd_gtt_sa_fini(kfd);
874 kfd_gtt_sa_init_error:
875 	amdgpu_amdkfd_free_gtt_mem(kfd->adev, kfd->gtt_mem);
876 alloc_gtt_mem_failure:
877 	dev_err(kfd_device,
878 		"device %x:%x NOT added due to errors\n",
879 		kfd->adev->pdev->vendor, kfd->adev->pdev->device);
880 out:
881 	return kfd->init_complete;
882 }
883 
884 void kgd2kfd_device_exit(struct kfd_dev *kfd)
885 {
886 	if (kfd->init_complete) {
887 		/* Cleanup KFD nodes */
888 		kfd_cleanup_nodes(kfd, kfd->num_nodes);
889 		/* Cleanup common/shared resources */
890 		kfd_doorbell_fini(kfd);
891 		ida_destroy(&kfd->doorbell_ida);
892 		kfd_gtt_sa_fini(kfd);
893 		amdgpu_amdkfd_free_gtt_mem(kfd->adev, kfd->gtt_mem);
894 	}
895 
896 	kfree(kfd);
897 }
898 
899 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
900 {
901 	struct kfd_node *node;
902 	int i;
903 
904 	if (!kfd->init_complete)
905 		return 0;
906 
907 	for (i = 0; i < kfd->num_nodes; i++) {
908 		node = kfd->nodes[i];
909 		kfd_smi_event_update_gpu_reset(node, false);
910 		node->dqm->ops.pre_reset(node->dqm);
911 	}
912 
913 	kgd2kfd_suspend(kfd, false);
914 
915 	for (i = 0; i < kfd->num_nodes; i++)
916 		kfd_signal_reset_event(kfd->nodes[i]);
917 
918 	return 0;
919 }
920 
921 /*
922  * Fix me. KFD won't be able to resume existing process for now.
923  * We will keep all existing process in a evicted state and
924  * wait the process to be terminated.
925  */
926 
927 int kgd2kfd_post_reset(struct kfd_dev *kfd)
928 {
929 	int ret;
930 	struct kfd_node *node;
931 	int i;
932 
933 	if (!kfd->init_complete)
934 		return 0;
935 
936 	for (i = 0; i < kfd->num_nodes; i++) {
937 		ret = kfd_resume(kfd->nodes[i]);
938 		if (ret)
939 			return ret;
940 	}
941 
942 	mutex_lock(&kfd_processes_mutex);
943 	--kfd_locked;
944 	mutex_unlock(&kfd_processes_mutex);
945 
946 	for (i = 0; i < kfd->num_nodes; i++) {
947 		node = kfd->nodes[i];
948 		atomic_set(&node->sram_ecc_flag, 0);
949 		kfd_smi_event_update_gpu_reset(node, true);
950 	}
951 
952 	return 0;
953 }
954 
955 bool kfd_is_locked(void)
956 {
957 	lockdep_assert_held(&kfd_processes_mutex);
958 	return  (kfd_locked > 0);
959 }
960 
961 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
962 {
963 	struct kfd_node *node;
964 	int i;
965 	int count;
966 
967 	if (!kfd->init_complete)
968 		return;
969 
970 	/* for runtime suspend, skip locking kfd */
971 	if (!run_pm) {
972 		mutex_lock(&kfd_processes_mutex);
973 		count = ++kfd_locked;
974 		mutex_unlock(&kfd_processes_mutex);
975 
976 		/* For first KFD device suspend all the KFD processes */
977 		if (count == 1)
978 			kfd_suspend_all_processes();
979 	}
980 
981 	for (i = 0; i < kfd->num_nodes; i++) {
982 		node = kfd->nodes[i];
983 		node->dqm->ops.stop(node->dqm);
984 	}
985 	kfd_iommu_suspend(kfd);
986 }
987 
988 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
989 {
990 	int ret, count, i;
991 
992 	if (!kfd->init_complete)
993 		return 0;
994 
995 	for (i = 0; i < kfd->num_nodes; i++) {
996 		ret = kfd_resume(kfd->nodes[i]);
997 		if (ret)
998 			return ret;
999 	}
1000 
1001 	/* for runtime resume, skip unlocking kfd */
1002 	if (!run_pm) {
1003 		mutex_lock(&kfd_processes_mutex);
1004 		count = --kfd_locked;
1005 		mutex_unlock(&kfd_processes_mutex);
1006 
1007 		WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
1008 		if (count == 0)
1009 			ret = kfd_resume_all_processes();
1010 	}
1011 
1012 	return ret;
1013 }
1014 
1015 int kgd2kfd_resume_iommu(struct kfd_dev *kfd)
1016 {
1017 	if (!kfd->init_complete)
1018 		return 0;
1019 
1020 	return kfd_resume_iommu(kfd);
1021 }
1022 
1023 static int kfd_resume_iommu(struct kfd_dev *kfd)
1024 {
1025 	int err = 0;
1026 
1027 	err = kfd_iommu_resume(kfd);
1028 	if (err)
1029 		dev_err(kfd_device,
1030 			"Failed to resume IOMMU for device %x:%x\n",
1031 			kfd->adev->pdev->vendor, kfd->adev->pdev->device);
1032 	return err;
1033 }
1034 
1035 static int kfd_resume(struct kfd_node *node)
1036 {
1037 	int err = 0;
1038 
1039 	err = node->dqm->ops.start(node->dqm);
1040 	if (err)
1041 		dev_err(kfd_device,
1042 			"Error starting queue manager for device %x:%x\n",
1043 			node->adev->pdev->vendor, node->adev->pdev->device);
1044 
1045 	return err;
1046 }
1047 
1048 static inline void kfd_queue_work(struct workqueue_struct *wq,
1049 				  struct work_struct *work)
1050 {
1051 	int cpu, new_cpu;
1052 
1053 	cpu = new_cpu = smp_processor_id();
1054 	do {
1055 		new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
1056 		if (cpu_to_node(new_cpu) == numa_node_id())
1057 			break;
1058 	} while (cpu != new_cpu);
1059 
1060 	queue_work_on(new_cpu, wq, work);
1061 }
1062 
1063 /* This is called directly from KGD at ISR. */
1064 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1065 {
1066 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE], i;
1067 	bool is_patched = false;
1068 	unsigned long flags;
1069 	struct kfd_node *node;
1070 
1071 	if (!kfd->init_complete)
1072 		return;
1073 
1074 	if (kfd->device_info.ih_ring_entry_size > sizeof(patched_ihre)) {
1075 		dev_err_once(kfd_device, "Ring entry too small\n");
1076 		return;
1077 	}
1078 
1079 	for (i = 0; i < kfd->num_nodes; i++) {
1080 		node = kfd->nodes[i];
1081 		spin_lock_irqsave(&node->interrupt_lock, flags);
1082 
1083 		if (node->interrupts_active
1084 		    && interrupt_is_wanted(node, ih_ring_entry,
1085 			    	patched_ihre, &is_patched)
1086 		    && enqueue_ih_ring_entry(node,
1087 			    	is_patched ? patched_ihre : ih_ring_entry)) {
1088 			kfd_queue_work(node->ih_wq, &node->interrupt_work);
1089 			spin_unlock_irqrestore(&node->interrupt_lock, flags);
1090 			return;
1091 		}
1092 		spin_unlock_irqrestore(&node->interrupt_lock, flags);
1093 	}
1094 
1095 }
1096 
1097 int kgd2kfd_quiesce_mm(struct mm_struct *mm, uint32_t trigger)
1098 {
1099 	struct kfd_process *p;
1100 	int r;
1101 
1102 	/* Because we are called from arbitrary context (workqueue) as opposed
1103 	 * to process context, kfd_process could attempt to exit while we are
1104 	 * running so the lookup function increments the process ref count.
1105 	 */
1106 	p = kfd_lookup_process_by_mm(mm);
1107 	if (!p)
1108 		return -ESRCH;
1109 
1110 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1111 	r = kfd_process_evict_queues(p, trigger);
1112 
1113 	kfd_unref_process(p);
1114 	return r;
1115 }
1116 
1117 int kgd2kfd_resume_mm(struct mm_struct *mm)
1118 {
1119 	struct kfd_process *p;
1120 	int r;
1121 
1122 	/* Because we are called from arbitrary context (workqueue) as opposed
1123 	 * to process context, kfd_process could attempt to exit while we are
1124 	 * running so the lookup function increments the process ref count.
1125 	 */
1126 	p = kfd_lookup_process_by_mm(mm);
1127 	if (!p)
1128 		return -ESRCH;
1129 
1130 	r = kfd_process_restore_queues(p);
1131 
1132 	kfd_unref_process(p);
1133 	return r;
1134 }
1135 
1136 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1137  *   prepare for safe eviction of KFD BOs that belong to the specified
1138  *   process.
1139  *
1140  * @mm: mm_struct that identifies the specified KFD process
1141  * @fence: eviction fence attached to KFD process BOs
1142  *
1143  */
1144 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1145 					       struct dma_fence *fence)
1146 {
1147 	struct kfd_process *p;
1148 	unsigned long active_time;
1149 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1150 
1151 	if (!fence)
1152 		return -EINVAL;
1153 
1154 	if (dma_fence_is_signaled(fence))
1155 		return 0;
1156 
1157 	p = kfd_lookup_process_by_mm(mm);
1158 	if (!p)
1159 		return -ENODEV;
1160 
1161 	if (fence->seqno == p->last_eviction_seqno)
1162 		goto out;
1163 
1164 	p->last_eviction_seqno = fence->seqno;
1165 
1166 	/* Avoid KFD process starvation. Wait for at least
1167 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
1168 	 */
1169 	active_time = get_jiffies_64() - p->last_restore_timestamp;
1170 	if (delay_jiffies > active_time)
1171 		delay_jiffies -= active_time;
1172 	else
1173 		delay_jiffies = 0;
1174 
1175 	/* During process initialization eviction_work.dwork is initialized
1176 	 * to kfd_evict_bo_worker
1177 	 */
1178 	WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1179 	     p->lead_thread->pid, delay_jiffies);
1180 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
1181 out:
1182 	kfd_unref_process(p);
1183 	return 0;
1184 }
1185 
1186 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1187 				unsigned int chunk_size)
1188 {
1189 	if (WARN_ON(buf_size < chunk_size))
1190 		return -EINVAL;
1191 	if (WARN_ON(buf_size == 0))
1192 		return -EINVAL;
1193 	if (WARN_ON(chunk_size == 0))
1194 		return -EINVAL;
1195 
1196 	kfd->gtt_sa_chunk_size = chunk_size;
1197 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1198 
1199 	kfd->gtt_sa_bitmap = bitmap_zalloc(kfd->gtt_sa_num_of_chunks,
1200 					   GFP_KERNEL);
1201 	if (!kfd->gtt_sa_bitmap)
1202 		return -ENOMEM;
1203 
1204 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1205 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1206 
1207 	mutex_init(&kfd->gtt_sa_lock);
1208 
1209 	return 0;
1210 }
1211 
1212 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1213 {
1214 	mutex_destroy(&kfd->gtt_sa_lock);
1215 	bitmap_free(kfd->gtt_sa_bitmap);
1216 }
1217 
1218 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1219 						unsigned int bit_num,
1220 						unsigned int chunk_size)
1221 {
1222 	return start_addr + bit_num * chunk_size;
1223 }
1224 
1225 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1226 						unsigned int bit_num,
1227 						unsigned int chunk_size)
1228 {
1229 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1230 }
1231 
1232 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1233 			struct kfd_mem_obj **mem_obj)
1234 {
1235 	unsigned int found, start_search, cur_size;
1236 	struct kfd_dev *kfd = node->kfd;
1237 
1238 	if (size == 0)
1239 		return -EINVAL;
1240 
1241 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1242 		return -ENOMEM;
1243 
1244 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1245 	if (!(*mem_obj))
1246 		return -ENOMEM;
1247 
1248 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1249 
1250 	start_search = 0;
1251 
1252 	mutex_lock(&kfd->gtt_sa_lock);
1253 
1254 kfd_gtt_restart_search:
1255 	/* Find the first chunk that is free */
1256 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1257 					kfd->gtt_sa_num_of_chunks,
1258 					start_search);
1259 
1260 	pr_debug("Found = %d\n", found);
1261 
1262 	/* If there wasn't any free chunk, bail out */
1263 	if (found == kfd->gtt_sa_num_of_chunks)
1264 		goto kfd_gtt_no_free_chunk;
1265 
1266 	/* Update fields of mem_obj */
1267 	(*mem_obj)->range_start = found;
1268 	(*mem_obj)->range_end = found;
1269 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1270 					kfd->gtt_start_gpu_addr,
1271 					found,
1272 					kfd->gtt_sa_chunk_size);
1273 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1274 					kfd->gtt_start_cpu_ptr,
1275 					found,
1276 					kfd->gtt_sa_chunk_size);
1277 
1278 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1279 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1280 
1281 	/* If we need only one chunk, mark it as allocated and get out */
1282 	if (size <= kfd->gtt_sa_chunk_size) {
1283 		pr_debug("Single bit\n");
1284 		__set_bit(found, kfd->gtt_sa_bitmap);
1285 		goto kfd_gtt_out;
1286 	}
1287 
1288 	/* Otherwise, try to see if we have enough contiguous chunks */
1289 	cur_size = size - kfd->gtt_sa_chunk_size;
1290 	do {
1291 		(*mem_obj)->range_end =
1292 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1293 					kfd->gtt_sa_num_of_chunks, ++found);
1294 		/*
1295 		 * If next free chunk is not contiguous than we need to
1296 		 * restart our search from the last free chunk we found (which
1297 		 * wasn't contiguous to the previous ones
1298 		 */
1299 		if ((*mem_obj)->range_end != found) {
1300 			start_search = found;
1301 			goto kfd_gtt_restart_search;
1302 		}
1303 
1304 		/*
1305 		 * If we reached end of buffer, bail out with error
1306 		 */
1307 		if (found == kfd->gtt_sa_num_of_chunks)
1308 			goto kfd_gtt_no_free_chunk;
1309 
1310 		/* Check if we don't need another chunk */
1311 		if (cur_size <= kfd->gtt_sa_chunk_size)
1312 			cur_size = 0;
1313 		else
1314 			cur_size -= kfd->gtt_sa_chunk_size;
1315 
1316 	} while (cur_size > 0);
1317 
1318 	pr_debug("range_start = %d, range_end = %d\n",
1319 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1320 
1321 	/* Mark the chunks as allocated */
1322 	bitmap_set(kfd->gtt_sa_bitmap, (*mem_obj)->range_start,
1323 		   (*mem_obj)->range_end - (*mem_obj)->range_start + 1);
1324 
1325 kfd_gtt_out:
1326 	mutex_unlock(&kfd->gtt_sa_lock);
1327 	return 0;
1328 
1329 kfd_gtt_no_free_chunk:
1330 	pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1331 	mutex_unlock(&kfd->gtt_sa_lock);
1332 	kfree(*mem_obj);
1333 	return -ENOMEM;
1334 }
1335 
1336 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj)
1337 {
1338 	struct kfd_dev *kfd = node->kfd;
1339 
1340 	/* Act like kfree when trying to free a NULL object */
1341 	if (!mem_obj)
1342 		return 0;
1343 
1344 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1345 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1346 
1347 	mutex_lock(&kfd->gtt_sa_lock);
1348 
1349 	/* Mark the chunks as free */
1350 	bitmap_clear(kfd->gtt_sa_bitmap, mem_obj->range_start,
1351 		     mem_obj->range_end - mem_obj->range_start + 1);
1352 
1353 	mutex_unlock(&kfd->gtt_sa_lock);
1354 
1355 	kfree(mem_obj);
1356 	return 0;
1357 }
1358 
1359 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1360 {
1361 	/*
1362 	 * TODO: Currently update SRAM ECC flag for first node.
1363 	 * This needs to be updated later when we can
1364 	 * identify SRAM ECC error on other nodes also.
1365 	 */
1366 	if (kfd)
1367 		atomic_inc(&kfd->nodes[0]->sram_ecc_flag);
1368 }
1369 
1370 void kfd_inc_compute_active(struct kfd_node *node)
1371 {
1372 	if (atomic_inc_return(&node->kfd->compute_profile) == 1)
1373 		amdgpu_amdkfd_set_compute_idle(node->adev, false);
1374 }
1375 
1376 void kfd_dec_compute_active(struct kfd_node *node)
1377 {
1378 	int count = atomic_dec_return(&node->kfd->compute_profile);
1379 
1380 	if (count == 0)
1381 		amdgpu_amdkfd_set_compute_idle(node->adev, true);
1382 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1383 }
1384 
1385 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
1386 {
1387 	/*
1388 	 * TODO: For now, raise the throttling event only on first node.
1389 	 * This will need to change after we are able to determine
1390 	 * which node raised the throttling event.
1391 	 */
1392 	if (kfd && kfd->init_complete)
1393 		kfd_smi_event_update_thermal_throttling(kfd->nodes[0],
1394 							throttle_bitmask);
1395 }
1396 
1397 /* kfd_get_num_sdma_engines returns the number of PCIe optimized SDMA and
1398  * kfd_get_num_xgmi_sdma_engines returns the number of XGMI SDMA.
1399  * When the device has more than two engines, we reserve two for PCIe to enable
1400  * full-duplex and the rest are used as XGMI.
1401  */
1402 unsigned int kfd_get_num_sdma_engines(struct kfd_node *node)
1403 {
1404 	/* If XGMI is not supported, all SDMA engines are PCIe */
1405 	if (!node->adev->gmc.xgmi.supported)
1406 		return node->adev->sdma.num_instances/(int)node->kfd->num_nodes;
1407 
1408 	return min(node->adev->sdma.num_instances/(int)node->kfd->num_nodes, 2);
1409 }
1410 
1411 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *node)
1412 {
1413 	/* After reserved for PCIe, the rest of engines are XGMI */
1414 	return node->adev->sdma.num_instances/(int)node->kfd->num_nodes -
1415 		kfd_get_num_sdma_engines(node);
1416 }
1417 
1418 int kgd2kfd_check_and_lock_kfd(void)
1419 {
1420 	mutex_lock(&kfd_processes_mutex);
1421 	if (!hash_empty(kfd_processes_table) || kfd_is_locked()) {
1422 		mutex_unlock(&kfd_processes_mutex);
1423 		return -EBUSY;
1424 	}
1425 
1426 	++kfd_locked;
1427 	mutex_unlock(&kfd_processes_mutex);
1428 
1429 	return 0;
1430 }
1431 
1432 void kgd2kfd_unlock_kfd(void)
1433 {
1434 	mutex_lock(&kfd_processes_mutex);
1435 	--kfd_locked;
1436 	mutex_unlock(&kfd_processes_mutex);
1437 }
1438 
1439 #if defined(CONFIG_DEBUG_FS)
1440 
1441 /* This function will send a package to HIQ to hang the HWS
1442  * which will trigger a GPU reset and bring the HWS back to normal state
1443  */
1444 int kfd_debugfs_hang_hws(struct kfd_node *dev)
1445 {
1446 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1447 		pr_err("HWS is not enabled");
1448 		return -EINVAL;
1449 	}
1450 
1451 	return dqm_debugfs_hang_hws(dev->dqm);
1452 }
1453 
1454 #endif
1455