1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
32 
33 #define MQD_SIZE_ALIGNED 768
34 
35 /*
36  * kfd_locked is used to lock the kfd driver during suspend or reset
37  * once locked, kfd driver will stop any further GPU execution.
38  * create process (open) will return -EAGAIN.
39  */
40 static atomic_t kfd_locked = ATOMIC_INIT(0);
41 
42 #ifdef KFD_SUPPORT_IOMMU_V2
43 static const struct kfd_device_info kaveri_device_info = {
44 	.asic_family = CHIP_KAVERI,
45 	.max_pasid_bits = 16,
46 	/* max num of queues for KV.TODO should be a dynamic value */
47 	.max_no_of_hqd	= 24,
48 	.doorbell_size  = 4,
49 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
50 	.event_interrupt_class = &event_interrupt_class_cik,
51 	.num_of_watch_points = 4,
52 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
53 	.supports_cwsr = false,
54 	.needs_iommu_device = true,
55 	.needs_pci_atomics = false,
56 	.num_sdma_engines = 2,
57 	.num_xgmi_sdma_engines = 0,
58 	.num_sdma_queues_per_engine = 2,
59 };
60 
61 static const struct kfd_device_info carrizo_device_info = {
62 	.asic_family = CHIP_CARRIZO,
63 	.max_pasid_bits = 16,
64 	/* max num of queues for CZ.TODO should be a dynamic value */
65 	.max_no_of_hqd	= 24,
66 	.doorbell_size  = 4,
67 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
68 	.event_interrupt_class = &event_interrupt_class_cik,
69 	.num_of_watch_points = 4,
70 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
71 	.supports_cwsr = true,
72 	.needs_iommu_device = true,
73 	.needs_pci_atomics = false,
74 	.num_sdma_engines = 2,
75 	.num_xgmi_sdma_engines = 0,
76 	.num_sdma_queues_per_engine = 2,
77 };
78 
79 static const struct kfd_device_info raven_device_info = {
80 	.asic_family = CHIP_RAVEN,
81 	.max_pasid_bits = 16,
82 	.max_no_of_hqd  = 24,
83 	.doorbell_size  = 8,
84 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
85 	.event_interrupt_class = &event_interrupt_class_v9,
86 	.num_of_watch_points = 4,
87 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
88 	.supports_cwsr = true,
89 	.needs_iommu_device = true,
90 	.needs_pci_atomics = true,
91 	.num_sdma_engines = 1,
92 	.num_xgmi_sdma_engines = 0,
93 	.num_sdma_queues_per_engine = 2,
94 };
95 #endif
96 
97 static const struct kfd_device_info hawaii_device_info = {
98 	.asic_family = CHIP_HAWAII,
99 	.max_pasid_bits = 16,
100 	/* max num of queues for KV.TODO should be a dynamic value */
101 	.max_no_of_hqd	= 24,
102 	.doorbell_size  = 4,
103 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
104 	.event_interrupt_class = &event_interrupt_class_cik,
105 	.num_of_watch_points = 4,
106 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
107 	.supports_cwsr = false,
108 	.needs_iommu_device = false,
109 	.needs_pci_atomics = false,
110 	.num_sdma_engines = 2,
111 	.num_xgmi_sdma_engines = 0,
112 	.num_sdma_queues_per_engine = 2,
113 };
114 
115 static const struct kfd_device_info tonga_device_info = {
116 	.asic_family = CHIP_TONGA,
117 	.max_pasid_bits = 16,
118 	.max_no_of_hqd  = 24,
119 	.doorbell_size  = 4,
120 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
121 	.event_interrupt_class = &event_interrupt_class_cik,
122 	.num_of_watch_points = 4,
123 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
124 	.supports_cwsr = false,
125 	.needs_iommu_device = false,
126 	.needs_pci_atomics = true,
127 	.num_sdma_engines = 2,
128 	.num_xgmi_sdma_engines = 0,
129 	.num_sdma_queues_per_engine = 2,
130 };
131 
132 static const struct kfd_device_info fiji_device_info = {
133 	.asic_family = CHIP_FIJI,
134 	.max_pasid_bits = 16,
135 	.max_no_of_hqd  = 24,
136 	.doorbell_size  = 4,
137 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
138 	.event_interrupt_class = &event_interrupt_class_cik,
139 	.num_of_watch_points = 4,
140 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
141 	.supports_cwsr = true,
142 	.needs_iommu_device = false,
143 	.needs_pci_atomics = true,
144 	.num_sdma_engines = 2,
145 	.num_xgmi_sdma_engines = 0,
146 	.num_sdma_queues_per_engine = 2,
147 };
148 
149 static const struct kfd_device_info fiji_vf_device_info = {
150 	.asic_family = CHIP_FIJI,
151 	.max_pasid_bits = 16,
152 	.max_no_of_hqd  = 24,
153 	.doorbell_size  = 4,
154 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
155 	.event_interrupt_class = &event_interrupt_class_cik,
156 	.num_of_watch_points = 4,
157 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
158 	.supports_cwsr = true,
159 	.needs_iommu_device = false,
160 	.needs_pci_atomics = false,
161 	.num_sdma_engines = 2,
162 	.num_xgmi_sdma_engines = 0,
163 	.num_sdma_queues_per_engine = 2,
164 };
165 
166 
167 static const struct kfd_device_info polaris10_device_info = {
168 	.asic_family = CHIP_POLARIS10,
169 	.max_pasid_bits = 16,
170 	.max_no_of_hqd  = 24,
171 	.doorbell_size  = 4,
172 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
173 	.event_interrupt_class = &event_interrupt_class_cik,
174 	.num_of_watch_points = 4,
175 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
176 	.supports_cwsr = true,
177 	.needs_iommu_device = false,
178 	.needs_pci_atomics = true,
179 	.num_sdma_engines = 2,
180 	.num_xgmi_sdma_engines = 0,
181 	.num_sdma_queues_per_engine = 2,
182 };
183 
184 static const struct kfd_device_info polaris10_vf_device_info = {
185 	.asic_family = CHIP_POLARIS10,
186 	.max_pasid_bits = 16,
187 	.max_no_of_hqd  = 24,
188 	.doorbell_size  = 4,
189 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
190 	.event_interrupt_class = &event_interrupt_class_cik,
191 	.num_of_watch_points = 4,
192 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
193 	.supports_cwsr = true,
194 	.needs_iommu_device = false,
195 	.needs_pci_atomics = false,
196 	.num_sdma_engines = 2,
197 	.num_xgmi_sdma_engines = 0,
198 	.num_sdma_queues_per_engine = 2,
199 };
200 
201 static const struct kfd_device_info polaris11_device_info = {
202 	.asic_family = CHIP_POLARIS11,
203 	.max_pasid_bits = 16,
204 	.max_no_of_hqd  = 24,
205 	.doorbell_size  = 4,
206 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
207 	.event_interrupt_class = &event_interrupt_class_cik,
208 	.num_of_watch_points = 4,
209 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
210 	.supports_cwsr = true,
211 	.needs_iommu_device = false,
212 	.needs_pci_atomics = true,
213 	.num_sdma_engines = 2,
214 	.num_xgmi_sdma_engines = 0,
215 	.num_sdma_queues_per_engine = 2,
216 };
217 
218 static const struct kfd_device_info polaris12_device_info = {
219 	.asic_family = CHIP_POLARIS12,
220 	.max_pasid_bits = 16,
221 	.max_no_of_hqd  = 24,
222 	.doorbell_size  = 4,
223 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
224 	.event_interrupt_class = &event_interrupt_class_cik,
225 	.num_of_watch_points = 4,
226 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
227 	.supports_cwsr = true,
228 	.needs_iommu_device = false,
229 	.needs_pci_atomics = true,
230 	.num_sdma_engines = 2,
231 	.num_xgmi_sdma_engines = 0,
232 	.num_sdma_queues_per_engine = 2,
233 };
234 
235 static const struct kfd_device_info vegam_device_info = {
236 	.asic_family = CHIP_VEGAM,
237 	.max_pasid_bits = 16,
238 	.max_no_of_hqd  = 24,
239 	.doorbell_size  = 4,
240 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
241 	.event_interrupt_class = &event_interrupt_class_cik,
242 	.num_of_watch_points = 4,
243 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
244 	.supports_cwsr = true,
245 	.needs_iommu_device = false,
246 	.needs_pci_atomics = true,
247 	.num_sdma_engines = 2,
248 	.num_xgmi_sdma_engines = 0,
249 	.num_sdma_queues_per_engine = 2,
250 };
251 
252 static const struct kfd_device_info vega10_device_info = {
253 	.asic_family = CHIP_VEGA10,
254 	.max_pasid_bits = 16,
255 	.max_no_of_hqd  = 24,
256 	.doorbell_size  = 8,
257 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
258 	.event_interrupt_class = &event_interrupt_class_v9,
259 	.num_of_watch_points = 4,
260 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
261 	.supports_cwsr = true,
262 	.needs_iommu_device = false,
263 	.needs_pci_atomics = false,
264 	.num_sdma_engines = 2,
265 	.num_xgmi_sdma_engines = 0,
266 	.num_sdma_queues_per_engine = 2,
267 };
268 
269 static const struct kfd_device_info vega10_vf_device_info = {
270 	.asic_family = CHIP_VEGA10,
271 	.max_pasid_bits = 16,
272 	.max_no_of_hqd  = 24,
273 	.doorbell_size  = 8,
274 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
275 	.event_interrupt_class = &event_interrupt_class_v9,
276 	.num_of_watch_points = 4,
277 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
278 	.supports_cwsr = true,
279 	.needs_iommu_device = false,
280 	.needs_pci_atomics = false,
281 	.num_sdma_engines = 2,
282 	.num_xgmi_sdma_engines = 0,
283 	.num_sdma_queues_per_engine = 2,
284 };
285 
286 static const struct kfd_device_info vega12_device_info = {
287 	.asic_family = CHIP_VEGA12,
288 	.max_pasid_bits = 16,
289 	.max_no_of_hqd  = 24,
290 	.doorbell_size  = 8,
291 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
292 	.event_interrupt_class = &event_interrupt_class_v9,
293 	.num_of_watch_points = 4,
294 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
295 	.supports_cwsr = true,
296 	.needs_iommu_device = false,
297 	.needs_pci_atomics = false,
298 	.num_sdma_engines = 2,
299 	.num_xgmi_sdma_engines = 0,
300 	.num_sdma_queues_per_engine = 2,
301 };
302 
303 static const struct kfd_device_info vega20_device_info = {
304 	.asic_family = CHIP_VEGA20,
305 	.max_pasid_bits = 16,
306 	.max_no_of_hqd	= 24,
307 	.doorbell_size	= 8,
308 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
309 	.event_interrupt_class = &event_interrupt_class_v9,
310 	.num_of_watch_points = 4,
311 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
312 	.supports_cwsr = true,
313 	.needs_iommu_device = false,
314 	.needs_pci_atomics = false,
315 	.num_sdma_engines = 2,
316 	.num_xgmi_sdma_engines = 0,
317 	.num_sdma_queues_per_engine = 8,
318 };
319 
320 static const struct kfd_device_info arcturus_device_info = {
321 	.asic_family = CHIP_ARCTURUS,
322 	.max_pasid_bits = 16,
323 	.max_no_of_hqd	= 24,
324 	.doorbell_size	= 8,
325 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
326 	.event_interrupt_class = &event_interrupt_class_v9,
327 	.num_of_watch_points = 4,
328 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
329 	.supports_cwsr = true,
330 	.needs_iommu_device = false,
331 	.needs_pci_atomics = false,
332 	.num_sdma_engines = 2,
333 	.num_xgmi_sdma_engines = 6,
334 	.num_sdma_queues_per_engine = 8,
335 };
336 
337 static const struct kfd_device_info navi10_device_info = {
338 	.asic_family = CHIP_NAVI10,
339 	.max_pasid_bits = 16,
340 	.max_no_of_hqd  = 24,
341 	.doorbell_size  = 8,
342 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
343 	.event_interrupt_class = &event_interrupt_class_v9,
344 	.num_of_watch_points = 4,
345 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
346 	.needs_iommu_device = false,
347 	.supports_cwsr = true,
348 	.needs_pci_atomics = false,
349 	.num_sdma_engines = 2,
350 	.num_xgmi_sdma_engines = 0,
351 	.num_sdma_queues_per_engine = 8,
352 };
353 
354 struct kfd_deviceid {
355 	unsigned short did;
356 	const struct kfd_device_info *device_info;
357 };
358 
359 static const struct kfd_deviceid supported_devices[] = {
360 #ifdef KFD_SUPPORT_IOMMU_V2
361 	{ 0x1304, &kaveri_device_info },	/* Kaveri */
362 	{ 0x1305, &kaveri_device_info },	/* Kaveri */
363 	{ 0x1306, &kaveri_device_info },	/* Kaveri */
364 	{ 0x1307, &kaveri_device_info },	/* Kaveri */
365 	{ 0x1309, &kaveri_device_info },	/* Kaveri */
366 	{ 0x130A, &kaveri_device_info },	/* Kaveri */
367 	{ 0x130B, &kaveri_device_info },	/* Kaveri */
368 	{ 0x130C, &kaveri_device_info },	/* Kaveri */
369 	{ 0x130D, &kaveri_device_info },	/* Kaveri */
370 	{ 0x130E, &kaveri_device_info },	/* Kaveri */
371 	{ 0x130F, &kaveri_device_info },	/* Kaveri */
372 	{ 0x1310, &kaveri_device_info },	/* Kaveri */
373 	{ 0x1311, &kaveri_device_info },	/* Kaveri */
374 	{ 0x1312, &kaveri_device_info },	/* Kaveri */
375 	{ 0x1313, &kaveri_device_info },	/* Kaveri */
376 	{ 0x1315, &kaveri_device_info },	/* Kaveri */
377 	{ 0x1316, &kaveri_device_info },	/* Kaveri */
378 	{ 0x1317, &kaveri_device_info },	/* Kaveri */
379 	{ 0x1318, &kaveri_device_info },	/* Kaveri */
380 	{ 0x131B, &kaveri_device_info },	/* Kaveri */
381 	{ 0x131C, &kaveri_device_info },	/* Kaveri */
382 	{ 0x131D, &kaveri_device_info },	/* Kaveri */
383 	{ 0x9870, &carrizo_device_info },	/* Carrizo */
384 	{ 0x9874, &carrizo_device_info },	/* Carrizo */
385 	{ 0x9875, &carrizo_device_info },	/* Carrizo */
386 	{ 0x9876, &carrizo_device_info },	/* Carrizo */
387 	{ 0x9877, &carrizo_device_info },	/* Carrizo */
388 	{ 0x15DD, &raven_device_info },		/* Raven */
389 	{ 0x15D8, &raven_device_info },		/* Raven */
390 #endif
391 	{ 0x67A0, &hawaii_device_info },	/* Hawaii */
392 	{ 0x67A1, &hawaii_device_info },	/* Hawaii */
393 	{ 0x67A2, &hawaii_device_info },	/* Hawaii */
394 	{ 0x67A8, &hawaii_device_info },	/* Hawaii */
395 	{ 0x67A9, &hawaii_device_info },	/* Hawaii */
396 	{ 0x67AA, &hawaii_device_info },	/* Hawaii */
397 	{ 0x67B0, &hawaii_device_info },	/* Hawaii */
398 	{ 0x67B1, &hawaii_device_info },	/* Hawaii */
399 	{ 0x67B8, &hawaii_device_info },	/* Hawaii */
400 	{ 0x67B9, &hawaii_device_info },	/* Hawaii */
401 	{ 0x67BA, &hawaii_device_info },	/* Hawaii */
402 	{ 0x67BE, &hawaii_device_info },	/* Hawaii */
403 	{ 0x6920, &tonga_device_info },		/* Tonga */
404 	{ 0x6921, &tonga_device_info },		/* Tonga */
405 	{ 0x6928, &tonga_device_info },		/* Tonga */
406 	{ 0x6929, &tonga_device_info },		/* Tonga */
407 	{ 0x692B, &tonga_device_info },		/* Tonga */
408 	{ 0x6938, &tonga_device_info },		/* Tonga */
409 	{ 0x6939, &tonga_device_info },		/* Tonga */
410 	{ 0x7300, &fiji_device_info },		/* Fiji */
411 	{ 0x730F, &fiji_vf_device_info },	/* Fiji vf*/
412 	{ 0x67C0, &polaris10_device_info },	/* Polaris10 */
413 	{ 0x67C1, &polaris10_device_info },	/* Polaris10 */
414 	{ 0x67C2, &polaris10_device_info },	/* Polaris10 */
415 	{ 0x67C4, &polaris10_device_info },	/* Polaris10 */
416 	{ 0x67C7, &polaris10_device_info },	/* Polaris10 */
417 	{ 0x67C8, &polaris10_device_info },	/* Polaris10 */
418 	{ 0x67C9, &polaris10_device_info },	/* Polaris10 */
419 	{ 0x67CA, &polaris10_device_info },	/* Polaris10 */
420 	{ 0x67CC, &polaris10_device_info },	/* Polaris10 */
421 	{ 0x67CF, &polaris10_device_info },	/* Polaris10 */
422 	{ 0x67D0, &polaris10_vf_device_info },	/* Polaris10 vf*/
423 	{ 0x67DF, &polaris10_device_info },	/* Polaris10 */
424 	{ 0x6FDF, &polaris10_device_info },	/* Polaris10 */
425 	{ 0x67E0, &polaris11_device_info },	/* Polaris11 */
426 	{ 0x67E1, &polaris11_device_info },	/* Polaris11 */
427 	{ 0x67E3, &polaris11_device_info },	/* Polaris11 */
428 	{ 0x67E7, &polaris11_device_info },	/* Polaris11 */
429 	{ 0x67E8, &polaris11_device_info },	/* Polaris11 */
430 	{ 0x67E9, &polaris11_device_info },	/* Polaris11 */
431 	{ 0x67EB, &polaris11_device_info },	/* Polaris11 */
432 	{ 0x67EF, &polaris11_device_info },	/* Polaris11 */
433 	{ 0x67FF, &polaris11_device_info },	/* Polaris11 */
434 	{ 0x6980, &polaris12_device_info },	/* Polaris12 */
435 	{ 0x6981, &polaris12_device_info },	/* Polaris12 */
436 	{ 0x6985, &polaris12_device_info },	/* Polaris12 */
437 	{ 0x6986, &polaris12_device_info },	/* Polaris12 */
438 	{ 0x6987, &polaris12_device_info },	/* Polaris12 */
439 	{ 0x6995, &polaris12_device_info },	/* Polaris12 */
440 	{ 0x6997, &polaris12_device_info },	/* Polaris12 */
441 	{ 0x699F, &polaris12_device_info },	/* Polaris12 */
442 	{ 0x694C, &vegam_device_info },		/* VegaM */
443 	{ 0x694E, &vegam_device_info },		/* VegaM */
444 	{ 0x694F, &vegam_device_info },		/* VegaM */
445 	{ 0x6860, &vega10_device_info },	/* Vega10 */
446 	{ 0x6861, &vega10_device_info },	/* Vega10 */
447 	{ 0x6862, &vega10_device_info },	/* Vega10 */
448 	{ 0x6863, &vega10_device_info },	/* Vega10 */
449 	{ 0x6864, &vega10_device_info },	/* Vega10 */
450 	{ 0x6867, &vega10_device_info },	/* Vega10 */
451 	{ 0x6868, &vega10_device_info },	/* Vega10 */
452 	{ 0x6869, &vega10_device_info },	/* Vega10 */
453 	{ 0x686A, &vega10_device_info },	/* Vega10 */
454 	{ 0x686B, &vega10_device_info },	/* Vega10 */
455 	{ 0x686C, &vega10_vf_device_info },	/* Vega10  vf*/
456 	{ 0x686D, &vega10_device_info },	/* Vega10 */
457 	{ 0x686E, &vega10_device_info },	/* Vega10 */
458 	{ 0x686F, &vega10_device_info },	/* Vega10 */
459 	{ 0x687F, &vega10_device_info },	/* Vega10 */
460 	{ 0x69A0, &vega12_device_info },	/* Vega12 */
461 	{ 0x69A1, &vega12_device_info },	/* Vega12 */
462 	{ 0x69A2, &vega12_device_info },	/* Vega12 */
463 	{ 0x69A3, &vega12_device_info },	/* Vega12 */
464 	{ 0x69AF, &vega12_device_info },	/* Vega12 */
465 	{ 0x66a0, &vega20_device_info },	/* Vega20 */
466 	{ 0x66a1, &vega20_device_info },	/* Vega20 */
467 	{ 0x66a2, &vega20_device_info },	/* Vega20 */
468 	{ 0x66a3, &vega20_device_info },	/* Vega20 */
469 	{ 0x66a4, &vega20_device_info },	/* Vega20 */
470 	{ 0x66a7, &vega20_device_info },	/* Vega20 */
471 	{ 0x66af, &vega20_device_info },	/* Vega20 */
472 	{ 0x738C, &arcturus_device_info },	/* Arcturus */
473 	{ 0x7388, &arcturus_device_info },	/* Arcturus */
474 	{ 0x738E, &arcturus_device_info },	/* Arcturus */
475 	{ 0x7310, &navi10_device_info },	/* Navi10 */
476 	{ 0x7312, &navi10_device_info },	/* Navi10 */
477 	{ 0x7318, &navi10_device_info },	/* Navi10 */
478 	{ 0x731a, &navi10_device_info },	/* Navi10 */
479 	{ 0x731f, &navi10_device_info },	/* Navi10 */
480 };
481 
482 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
483 				unsigned int chunk_size);
484 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
485 
486 static int kfd_resume(struct kfd_dev *kfd);
487 
488 static const struct kfd_device_info *lookup_device_info(unsigned short did)
489 {
490 	size_t i;
491 
492 	for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
493 		if (supported_devices[i].did == did) {
494 			WARN_ON(!supported_devices[i].device_info);
495 			return supported_devices[i].device_info;
496 		}
497 	}
498 
499 	dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
500 		 did);
501 
502 	return NULL;
503 }
504 
505 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
506 	struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
507 {
508 	struct kfd_dev *kfd;
509 	const struct kfd_device_info *device_info =
510 					lookup_device_info(pdev->device);
511 
512 	if (!device_info) {
513 		dev_err(kfd_device, "kgd2kfd_probe failed\n");
514 		return NULL;
515 	}
516 
517 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
518 	if (!kfd)
519 		return NULL;
520 
521 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
522 	 * 32 and 64-bit requests are possible and must be
523 	 * supported.
524 	 */
525 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
526 	if (device_info->needs_pci_atomics &&
527 	    !kfd->pci_atomic_requested) {
528 		dev_info(kfd_device,
529 			 "skipped device %x:%x, PCI rejects atomics\n",
530 			 pdev->vendor, pdev->device);
531 		kfree(kfd);
532 		return NULL;
533 	}
534 
535 	kfd->kgd = kgd;
536 	kfd->device_info = device_info;
537 	kfd->pdev = pdev;
538 	kfd->init_complete = false;
539 	kfd->kfd2kgd = f2g;
540 	atomic_set(&kfd->compute_profile, 0);
541 
542 	mutex_init(&kfd->doorbell_mutex);
543 	memset(&kfd->doorbell_available_index, 0,
544 		sizeof(kfd->doorbell_available_index));
545 
546 	atomic_set(&kfd->sram_ecc_flag, 0);
547 
548 	return kfd;
549 }
550 
551 static void kfd_cwsr_init(struct kfd_dev *kfd)
552 {
553 	if (cwsr_enable && kfd->device_info->supports_cwsr) {
554 		if (kfd->device_info->asic_family < CHIP_VEGA10) {
555 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
556 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
557 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
558 		} else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
559 			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
560 			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
561 			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
562 		} else if (kfd->device_info->asic_family < CHIP_NAVI10) {
563 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
564 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
565 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
566 		} else {
567 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
568 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
569 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
570 		}
571 
572 		kfd->cwsr_enabled = true;
573 	}
574 }
575 
576 bool kgd2kfd_device_init(struct kfd_dev *kfd,
577 			 const struct kgd2kfd_shared_resources *gpu_resources)
578 {
579 	unsigned int size;
580 
581 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
582 			KGD_ENGINE_MEC1);
583 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
584 			KGD_ENGINE_SDMA1);
585 	kfd->shared_resources = *gpu_resources;
586 
587 	kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
588 	kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
589 	kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
590 			- kfd->vm_info.first_vmid_kfd + 1;
591 
592 	/* Verify module parameters regarding mapped process number*/
593 	if ((hws_max_conc_proc < 0)
594 			|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
595 		dev_err(kfd_device,
596 			"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
597 			hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
598 			kfd->vm_info.vmid_num_kfd);
599 		kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
600 	} else
601 		kfd->max_proc_per_quantum = hws_max_conc_proc;
602 
603 	/* Allocate global GWS that is shared by all KFD processes */
604 	if (hws_gws_support && amdgpu_amdkfd_alloc_gws(kfd->kgd,
605 			amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws)) {
606 		dev_err(kfd_device, "Could not allocate %d gws\n",
607 			amdgpu_amdkfd_get_num_gws(kfd->kgd));
608 		goto out;
609 	}
610 	/* calculate max size of mqds needed for queues */
611 	size = max_num_of_queues_per_device *
612 			kfd->device_info->mqd_size_aligned;
613 
614 	/*
615 	 * calculate max size of runlist packet.
616 	 * There can be only 2 packets at once
617 	 */
618 	size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
619 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
620 		+ sizeof(struct pm4_mes_runlist)) * 2;
621 
622 	/* Add size of HIQ & DIQ */
623 	size += KFD_KERNEL_QUEUE_SIZE * 2;
624 
625 	/* add another 512KB for all other allocations on gart (HPD, fences) */
626 	size += 512 * 1024;
627 
628 	if (amdgpu_amdkfd_alloc_gtt_mem(
629 			kfd->kgd, size, &kfd->gtt_mem,
630 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
631 			false)) {
632 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
633 		goto alloc_gtt_mem_failure;
634 	}
635 
636 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
637 
638 	/* Initialize GTT sa with 512 byte chunk size */
639 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
640 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
641 		goto kfd_gtt_sa_init_error;
642 	}
643 
644 	if (kfd_doorbell_init(kfd)) {
645 		dev_err(kfd_device,
646 			"Error initializing doorbell aperture\n");
647 		goto kfd_doorbell_error;
648 	}
649 
650 	if (kfd->kfd2kgd->get_hive_id)
651 		kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
652 
653 	if (kfd_interrupt_init(kfd)) {
654 		dev_err(kfd_device, "Error initializing interrupts\n");
655 		goto kfd_interrupt_error;
656 	}
657 
658 	kfd->dqm = device_queue_manager_init(kfd);
659 	if (!kfd->dqm) {
660 		dev_err(kfd_device, "Error initializing queue manager\n");
661 		goto device_queue_manager_error;
662 	}
663 
664 	if (kfd_iommu_device_init(kfd)) {
665 		dev_err(kfd_device, "Error initializing iommuv2\n");
666 		goto device_iommu_error;
667 	}
668 
669 	kfd_cwsr_init(kfd);
670 
671 	if (kfd_resume(kfd))
672 		goto kfd_resume_error;
673 
674 	kfd->dbgmgr = NULL;
675 
676 	if (kfd_topology_add_device(kfd)) {
677 		dev_err(kfd_device, "Error adding device to topology\n");
678 		goto kfd_topology_add_device_error;
679 	}
680 
681 	kfd->init_complete = true;
682 	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
683 		 kfd->pdev->device);
684 
685 	pr_debug("Starting kfd with the following scheduling policy %d\n",
686 		kfd->dqm->sched_policy);
687 
688 	goto out;
689 
690 kfd_topology_add_device_error:
691 kfd_resume_error:
692 device_iommu_error:
693 	device_queue_manager_uninit(kfd->dqm);
694 device_queue_manager_error:
695 	kfd_interrupt_exit(kfd);
696 kfd_interrupt_error:
697 	kfd_doorbell_fini(kfd);
698 kfd_doorbell_error:
699 	kfd_gtt_sa_fini(kfd);
700 kfd_gtt_sa_init_error:
701 	amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
702 alloc_gtt_mem_failure:
703 	if (hws_gws_support)
704 		amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
705 	dev_err(kfd_device,
706 		"device %x:%x NOT added due to errors\n",
707 		kfd->pdev->vendor, kfd->pdev->device);
708 out:
709 	return kfd->init_complete;
710 }
711 
712 void kgd2kfd_device_exit(struct kfd_dev *kfd)
713 {
714 	if (kfd->init_complete) {
715 		kgd2kfd_suspend(kfd);
716 		device_queue_manager_uninit(kfd->dqm);
717 		kfd_interrupt_exit(kfd);
718 		kfd_topology_remove_device(kfd);
719 		kfd_doorbell_fini(kfd);
720 		kfd_gtt_sa_fini(kfd);
721 		amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
722 		if (hws_gws_support)
723 			amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
724 	}
725 
726 	kfree(kfd);
727 }
728 
729 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
730 {
731 	if (!kfd->init_complete)
732 		return 0;
733 	kgd2kfd_suspend(kfd);
734 
735 	/* hold dqm->lock to prevent further execution*/
736 	dqm_lock(kfd->dqm);
737 
738 	kfd_signal_reset_event(kfd);
739 	return 0;
740 }
741 
742 /*
743  * Fix me. KFD won't be able to resume existing process for now.
744  * We will keep all existing process in a evicted state and
745  * wait the process to be terminated.
746  */
747 
748 int kgd2kfd_post_reset(struct kfd_dev *kfd)
749 {
750 	int ret, count;
751 
752 	if (!kfd->init_complete)
753 		return 0;
754 
755 	dqm_unlock(kfd->dqm);
756 
757 	ret = kfd_resume(kfd);
758 	if (ret)
759 		return ret;
760 	count = atomic_dec_return(&kfd_locked);
761 
762 	atomic_set(&kfd->sram_ecc_flag, 0);
763 
764 	return 0;
765 }
766 
767 bool kfd_is_locked(void)
768 {
769 	return  (atomic_read(&kfd_locked) > 0);
770 }
771 
772 void kgd2kfd_suspend(struct kfd_dev *kfd)
773 {
774 	if (!kfd->init_complete)
775 		return;
776 
777 	/* For first KFD device suspend all the KFD processes */
778 	if (atomic_inc_return(&kfd_locked) == 1)
779 		kfd_suspend_all_processes();
780 
781 	kfd->dqm->ops.stop(kfd->dqm);
782 
783 	kfd_iommu_suspend(kfd);
784 }
785 
786 int kgd2kfd_resume(struct kfd_dev *kfd)
787 {
788 	int ret, count;
789 
790 	if (!kfd->init_complete)
791 		return 0;
792 
793 	ret = kfd_resume(kfd);
794 	if (ret)
795 		return ret;
796 
797 	count = atomic_dec_return(&kfd_locked);
798 	WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
799 	if (count == 0)
800 		ret = kfd_resume_all_processes();
801 
802 	return ret;
803 }
804 
805 static int kfd_resume(struct kfd_dev *kfd)
806 {
807 	int err = 0;
808 
809 	err = kfd_iommu_resume(kfd);
810 	if (err) {
811 		dev_err(kfd_device,
812 			"Failed to resume IOMMU for device %x:%x\n",
813 			kfd->pdev->vendor, kfd->pdev->device);
814 		return err;
815 	}
816 
817 	err = kfd->dqm->ops.start(kfd->dqm);
818 	if (err) {
819 		dev_err(kfd_device,
820 			"Error starting queue manager for device %x:%x\n",
821 			kfd->pdev->vendor, kfd->pdev->device);
822 		goto dqm_start_error;
823 	}
824 
825 	return err;
826 
827 dqm_start_error:
828 	kfd_iommu_suspend(kfd);
829 	return err;
830 }
831 
832 /* This is called directly from KGD at ISR. */
833 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
834 {
835 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
836 	bool is_patched = false;
837 	unsigned long flags;
838 
839 	if (!kfd->init_complete)
840 		return;
841 
842 	if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
843 		dev_err_once(kfd_device, "Ring entry too small\n");
844 		return;
845 	}
846 
847 	spin_lock_irqsave(&kfd->interrupt_lock, flags);
848 
849 	if (kfd->interrupts_active
850 	    && interrupt_is_wanted(kfd, ih_ring_entry,
851 				   patched_ihre, &is_patched)
852 	    && enqueue_ih_ring_entry(kfd,
853 				     is_patched ? patched_ihre : ih_ring_entry))
854 		queue_work(kfd->ih_wq, &kfd->interrupt_work);
855 
856 	spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
857 }
858 
859 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
860 {
861 	struct kfd_process *p;
862 	int r;
863 
864 	/* Because we are called from arbitrary context (workqueue) as opposed
865 	 * to process context, kfd_process could attempt to exit while we are
866 	 * running so the lookup function increments the process ref count.
867 	 */
868 	p = kfd_lookup_process_by_mm(mm);
869 	if (!p)
870 		return -ESRCH;
871 
872 	r = kfd_process_evict_queues(p);
873 
874 	kfd_unref_process(p);
875 	return r;
876 }
877 
878 int kgd2kfd_resume_mm(struct mm_struct *mm)
879 {
880 	struct kfd_process *p;
881 	int r;
882 
883 	/* Because we are called from arbitrary context (workqueue) as opposed
884 	 * to process context, kfd_process could attempt to exit while we are
885 	 * running so the lookup function increments the process ref count.
886 	 */
887 	p = kfd_lookup_process_by_mm(mm);
888 	if (!p)
889 		return -ESRCH;
890 
891 	r = kfd_process_restore_queues(p);
892 
893 	kfd_unref_process(p);
894 	return r;
895 }
896 
897 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
898  *   prepare for safe eviction of KFD BOs that belong to the specified
899  *   process.
900  *
901  * @mm: mm_struct that identifies the specified KFD process
902  * @fence: eviction fence attached to KFD process BOs
903  *
904  */
905 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
906 					       struct dma_fence *fence)
907 {
908 	struct kfd_process *p;
909 	unsigned long active_time;
910 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
911 
912 	if (!fence)
913 		return -EINVAL;
914 
915 	if (dma_fence_is_signaled(fence))
916 		return 0;
917 
918 	p = kfd_lookup_process_by_mm(mm);
919 	if (!p)
920 		return -ENODEV;
921 
922 	if (fence->seqno == p->last_eviction_seqno)
923 		goto out;
924 
925 	p->last_eviction_seqno = fence->seqno;
926 
927 	/* Avoid KFD process starvation. Wait for at least
928 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
929 	 */
930 	active_time = get_jiffies_64() - p->last_restore_timestamp;
931 	if (delay_jiffies > active_time)
932 		delay_jiffies -= active_time;
933 	else
934 		delay_jiffies = 0;
935 
936 	/* During process initialization eviction_work.dwork is initialized
937 	 * to kfd_evict_bo_worker
938 	 */
939 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
940 out:
941 	kfd_unref_process(p);
942 	return 0;
943 }
944 
945 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
946 				unsigned int chunk_size)
947 {
948 	unsigned int num_of_longs;
949 
950 	if (WARN_ON(buf_size < chunk_size))
951 		return -EINVAL;
952 	if (WARN_ON(buf_size == 0))
953 		return -EINVAL;
954 	if (WARN_ON(chunk_size == 0))
955 		return -EINVAL;
956 
957 	kfd->gtt_sa_chunk_size = chunk_size;
958 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
959 
960 	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
961 		BITS_PER_LONG;
962 
963 	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
964 
965 	if (!kfd->gtt_sa_bitmap)
966 		return -ENOMEM;
967 
968 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
969 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
970 
971 	mutex_init(&kfd->gtt_sa_lock);
972 
973 	return 0;
974 
975 }
976 
977 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
978 {
979 	mutex_destroy(&kfd->gtt_sa_lock);
980 	kfree(kfd->gtt_sa_bitmap);
981 }
982 
983 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
984 						unsigned int bit_num,
985 						unsigned int chunk_size)
986 {
987 	return start_addr + bit_num * chunk_size;
988 }
989 
990 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
991 						unsigned int bit_num,
992 						unsigned int chunk_size)
993 {
994 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
995 }
996 
997 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
998 			struct kfd_mem_obj **mem_obj)
999 {
1000 	unsigned int found, start_search, cur_size;
1001 
1002 	if (size == 0)
1003 		return -EINVAL;
1004 
1005 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1006 		return -ENOMEM;
1007 
1008 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1009 	if (!(*mem_obj))
1010 		return -ENOMEM;
1011 
1012 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1013 
1014 	start_search = 0;
1015 
1016 	mutex_lock(&kfd->gtt_sa_lock);
1017 
1018 kfd_gtt_restart_search:
1019 	/* Find the first chunk that is free */
1020 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1021 					kfd->gtt_sa_num_of_chunks,
1022 					start_search);
1023 
1024 	pr_debug("Found = %d\n", found);
1025 
1026 	/* If there wasn't any free chunk, bail out */
1027 	if (found == kfd->gtt_sa_num_of_chunks)
1028 		goto kfd_gtt_no_free_chunk;
1029 
1030 	/* Update fields of mem_obj */
1031 	(*mem_obj)->range_start = found;
1032 	(*mem_obj)->range_end = found;
1033 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1034 					kfd->gtt_start_gpu_addr,
1035 					found,
1036 					kfd->gtt_sa_chunk_size);
1037 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1038 					kfd->gtt_start_cpu_ptr,
1039 					found,
1040 					kfd->gtt_sa_chunk_size);
1041 
1042 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1043 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1044 
1045 	/* If we need only one chunk, mark it as allocated and get out */
1046 	if (size <= kfd->gtt_sa_chunk_size) {
1047 		pr_debug("Single bit\n");
1048 		set_bit(found, kfd->gtt_sa_bitmap);
1049 		goto kfd_gtt_out;
1050 	}
1051 
1052 	/* Otherwise, try to see if we have enough contiguous chunks */
1053 	cur_size = size - kfd->gtt_sa_chunk_size;
1054 	do {
1055 		(*mem_obj)->range_end =
1056 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1057 					kfd->gtt_sa_num_of_chunks, ++found);
1058 		/*
1059 		 * If next free chunk is not contiguous than we need to
1060 		 * restart our search from the last free chunk we found (which
1061 		 * wasn't contiguous to the previous ones
1062 		 */
1063 		if ((*mem_obj)->range_end != found) {
1064 			start_search = found;
1065 			goto kfd_gtt_restart_search;
1066 		}
1067 
1068 		/*
1069 		 * If we reached end of buffer, bail out with error
1070 		 */
1071 		if (found == kfd->gtt_sa_num_of_chunks)
1072 			goto kfd_gtt_no_free_chunk;
1073 
1074 		/* Check if we don't need another chunk */
1075 		if (cur_size <= kfd->gtt_sa_chunk_size)
1076 			cur_size = 0;
1077 		else
1078 			cur_size -= kfd->gtt_sa_chunk_size;
1079 
1080 	} while (cur_size > 0);
1081 
1082 	pr_debug("range_start = %d, range_end = %d\n",
1083 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1084 
1085 	/* Mark the chunks as allocated */
1086 	for (found = (*mem_obj)->range_start;
1087 		found <= (*mem_obj)->range_end;
1088 		found++)
1089 		set_bit(found, kfd->gtt_sa_bitmap);
1090 
1091 kfd_gtt_out:
1092 	mutex_unlock(&kfd->gtt_sa_lock);
1093 	return 0;
1094 
1095 kfd_gtt_no_free_chunk:
1096 	pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
1097 	mutex_unlock(&kfd->gtt_sa_lock);
1098 	kfree(mem_obj);
1099 	return -ENOMEM;
1100 }
1101 
1102 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1103 {
1104 	unsigned int bit;
1105 
1106 	/* Act like kfree when trying to free a NULL object */
1107 	if (!mem_obj)
1108 		return 0;
1109 
1110 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1111 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1112 
1113 	mutex_lock(&kfd->gtt_sa_lock);
1114 
1115 	/* Mark the chunks as free */
1116 	for (bit = mem_obj->range_start;
1117 		bit <= mem_obj->range_end;
1118 		bit++)
1119 		clear_bit(bit, kfd->gtt_sa_bitmap);
1120 
1121 	mutex_unlock(&kfd->gtt_sa_lock);
1122 
1123 	kfree(mem_obj);
1124 	return 0;
1125 }
1126 
1127 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1128 {
1129 	if (kfd)
1130 		atomic_inc(&kfd->sram_ecc_flag);
1131 }
1132 
1133 void kfd_inc_compute_active(struct kfd_dev *kfd)
1134 {
1135 	if (atomic_inc_return(&kfd->compute_profile) == 1)
1136 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1137 }
1138 
1139 void kfd_dec_compute_active(struct kfd_dev *kfd)
1140 {
1141 	int count = atomic_dec_return(&kfd->compute_profile);
1142 
1143 	if (count == 0)
1144 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1145 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1146 }
1147 
1148 #if defined(CONFIG_DEBUG_FS)
1149 
1150 /* This function will send a package to HIQ to hang the HWS
1151  * which will trigger a GPU reset and bring the HWS back to normal state
1152  */
1153 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1154 {
1155 	int r = 0;
1156 
1157 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1158 		pr_err("HWS is not enabled");
1159 		return -EINVAL;
1160 	}
1161 
1162 	r = pm_debugfs_hang_hws(&dev->dqm->packets);
1163 	if (!r)
1164 		r = dqm_debugfs_execute_queues(dev->dqm);
1165 
1166 	return r;
1167 }
1168 
1169 #endif
1170