1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "kfd_pm4_headers_aldebaran.h"
30 #include "cwsr_trap_handler.h"
31 #include "kfd_iommu.h"
32 #include "amdgpu_amdkfd.h"
33 #include "kfd_smi_events.h"
34 #include "kfd_migrate.h"
35 
36 #define MQD_SIZE_ALIGNED 768
37 
38 /*
39  * kfd_locked is used to lock the kfd driver during suspend or reset
40  * once locked, kfd driver will stop any further GPU execution.
41  * create process (open) will return -EAGAIN.
42  */
43 static atomic_t kfd_locked = ATOMIC_INIT(0);
44 
45 #ifdef CONFIG_DRM_AMDGPU_CIK
46 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
47 #endif
48 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
49 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
50 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
51 extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
52 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
53 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
54 
55 static const struct kfd2kgd_calls *kfd2kgd_funcs[] = {
56 #ifdef KFD_SUPPORT_IOMMU_V2
57 #ifdef CONFIG_DRM_AMDGPU_CIK
58 	[CHIP_KAVERI] = &gfx_v7_kfd2kgd,
59 #endif
60 	[CHIP_CARRIZO] = &gfx_v8_kfd2kgd,
61 	[CHIP_RAVEN] = &gfx_v9_kfd2kgd,
62 #endif
63 #ifdef CONFIG_DRM_AMDGPU_CIK
64 	[CHIP_HAWAII] = &gfx_v7_kfd2kgd,
65 #endif
66 	[CHIP_TONGA] = &gfx_v8_kfd2kgd,
67 	[CHIP_FIJI] = &gfx_v8_kfd2kgd,
68 	[CHIP_POLARIS10] = &gfx_v8_kfd2kgd,
69 	[CHIP_POLARIS11] = &gfx_v8_kfd2kgd,
70 	[CHIP_POLARIS12] = &gfx_v8_kfd2kgd,
71 	[CHIP_VEGAM] = &gfx_v8_kfd2kgd,
72 	[CHIP_VEGA10] = &gfx_v9_kfd2kgd,
73 	[CHIP_VEGA12] = &gfx_v9_kfd2kgd,
74 	[CHIP_VEGA20] = &gfx_v9_kfd2kgd,
75 	[CHIP_RENOIR] = &gfx_v9_kfd2kgd,
76 	[CHIP_ARCTURUS] = &arcturus_kfd2kgd,
77 	[CHIP_ALDEBARAN] = &aldebaran_kfd2kgd,
78 	[CHIP_NAVI10] = &gfx_v10_kfd2kgd,
79 	[CHIP_NAVI12] = &gfx_v10_kfd2kgd,
80 	[CHIP_NAVI14] = &gfx_v10_kfd2kgd,
81 	[CHIP_SIENNA_CICHLID] = &gfx_v10_3_kfd2kgd,
82 	[CHIP_NAVY_FLOUNDER] = &gfx_v10_3_kfd2kgd,
83 	[CHIP_VANGOGH] = &gfx_v10_3_kfd2kgd,
84 	[CHIP_DIMGREY_CAVEFISH] = &gfx_v10_3_kfd2kgd,
85 };
86 
87 #ifdef KFD_SUPPORT_IOMMU_V2
88 static const struct kfd_device_info kaveri_device_info = {
89 	.asic_family = CHIP_KAVERI,
90 	.asic_name = "kaveri",
91 	.max_pasid_bits = 16,
92 	/* max num of queues for KV.TODO should be a dynamic value */
93 	.max_no_of_hqd	= 24,
94 	.doorbell_size  = 4,
95 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
96 	.event_interrupt_class = &event_interrupt_class_cik,
97 	.num_of_watch_points = 4,
98 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
99 	.supports_cwsr = false,
100 	.needs_iommu_device = true,
101 	.needs_pci_atomics = false,
102 	.num_sdma_engines = 2,
103 	.num_xgmi_sdma_engines = 0,
104 	.num_sdma_queues_per_engine = 2,
105 };
106 
107 static const struct kfd_device_info carrizo_device_info = {
108 	.asic_family = CHIP_CARRIZO,
109 	.asic_name = "carrizo",
110 	.max_pasid_bits = 16,
111 	/* max num of queues for CZ.TODO should be a dynamic value */
112 	.max_no_of_hqd	= 24,
113 	.doorbell_size  = 4,
114 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
115 	.event_interrupt_class = &event_interrupt_class_cik,
116 	.num_of_watch_points = 4,
117 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
118 	.supports_cwsr = true,
119 	.needs_iommu_device = true,
120 	.needs_pci_atomics = false,
121 	.num_sdma_engines = 2,
122 	.num_xgmi_sdma_engines = 0,
123 	.num_sdma_queues_per_engine = 2,
124 };
125 #endif
126 
127 static const struct kfd_device_info raven_device_info = {
128 	.asic_family = CHIP_RAVEN,
129 	.asic_name = "raven",
130 	.max_pasid_bits = 16,
131 	.max_no_of_hqd  = 24,
132 	.doorbell_size  = 8,
133 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
134 	.event_interrupt_class = &event_interrupt_class_v9,
135 	.num_of_watch_points = 4,
136 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
137 	.supports_cwsr = true,
138 	.needs_iommu_device = true,
139 	.needs_pci_atomics = true,
140 	.num_sdma_engines = 1,
141 	.num_xgmi_sdma_engines = 0,
142 	.num_sdma_queues_per_engine = 2,
143 };
144 
145 static const struct kfd_device_info hawaii_device_info = {
146 	.asic_family = CHIP_HAWAII,
147 	.asic_name = "hawaii",
148 	.max_pasid_bits = 16,
149 	/* max num of queues for KV.TODO should be a dynamic value */
150 	.max_no_of_hqd	= 24,
151 	.doorbell_size  = 4,
152 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
153 	.event_interrupt_class = &event_interrupt_class_cik,
154 	.num_of_watch_points = 4,
155 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
156 	.supports_cwsr = false,
157 	.needs_iommu_device = false,
158 	.needs_pci_atomics = false,
159 	.num_sdma_engines = 2,
160 	.num_xgmi_sdma_engines = 0,
161 	.num_sdma_queues_per_engine = 2,
162 };
163 
164 static const struct kfd_device_info tonga_device_info = {
165 	.asic_family = CHIP_TONGA,
166 	.asic_name = "tonga",
167 	.max_pasid_bits = 16,
168 	.max_no_of_hqd  = 24,
169 	.doorbell_size  = 4,
170 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
171 	.event_interrupt_class = &event_interrupt_class_cik,
172 	.num_of_watch_points = 4,
173 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
174 	.supports_cwsr = false,
175 	.needs_iommu_device = false,
176 	.needs_pci_atomics = true,
177 	.num_sdma_engines = 2,
178 	.num_xgmi_sdma_engines = 0,
179 	.num_sdma_queues_per_engine = 2,
180 };
181 
182 static const struct kfd_device_info fiji_device_info = {
183 	.asic_family = CHIP_FIJI,
184 	.asic_name = "fiji",
185 	.max_pasid_bits = 16,
186 	.max_no_of_hqd  = 24,
187 	.doorbell_size  = 4,
188 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
189 	.event_interrupt_class = &event_interrupt_class_cik,
190 	.num_of_watch_points = 4,
191 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
192 	.supports_cwsr = true,
193 	.needs_iommu_device = false,
194 	.needs_pci_atomics = true,
195 	.num_sdma_engines = 2,
196 	.num_xgmi_sdma_engines = 0,
197 	.num_sdma_queues_per_engine = 2,
198 };
199 
200 static const struct kfd_device_info fiji_vf_device_info = {
201 	.asic_family = CHIP_FIJI,
202 	.asic_name = "fiji",
203 	.max_pasid_bits = 16,
204 	.max_no_of_hqd  = 24,
205 	.doorbell_size  = 4,
206 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
207 	.event_interrupt_class = &event_interrupt_class_cik,
208 	.num_of_watch_points = 4,
209 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
210 	.supports_cwsr = true,
211 	.needs_iommu_device = false,
212 	.needs_pci_atomics = false,
213 	.num_sdma_engines = 2,
214 	.num_xgmi_sdma_engines = 0,
215 	.num_sdma_queues_per_engine = 2,
216 };
217 
218 
219 static const struct kfd_device_info polaris10_device_info = {
220 	.asic_family = CHIP_POLARIS10,
221 	.asic_name = "polaris10",
222 	.max_pasid_bits = 16,
223 	.max_no_of_hqd  = 24,
224 	.doorbell_size  = 4,
225 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
226 	.event_interrupt_class = &event_interrupt_class_cik,
227 	.num_of_watch_points = 4,
228 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
229 	.supports_cwsr = true,
230 	.needs_iommu_device = false,
231 	.needs_pci_atomics = true,
232 	.num_sdma_engines = 2,
233 	.num_xgmi_sdma_engines = 0,
234 	.num_sdma_queues_per_engine = 2,
235 };
236 
237 static const struct kfd_device_info polaris10_vf_device_info = {
238 	.asic_family = CHIP_POLARIS10,
239 	.asic_name = "polaris10",
240 	.max_pasid_bits = 16,
241 	.max_no_of_hqd  = 24,
242 	.doorbell_size  = 4,
243 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
244 	.event_interrupt_class = &event_interrupt_class_cik,
245 	.num_of_watch_points = 4,
246 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
247 	.supports_cwsr = true,
248 	.needs_iommu_device = false,
249 	.needs_pci_atomics = false,
250 	.num_sdma_engines = 2,
251 	.num_xgmi_sdma_engines = 0,
252 	.num_sdma_queues_per_engine = 2,
253 };
254 
255 static const struct kfd_device_info polaris11_device_info = {
256 	.asic_family = CHIP_POLARIS11,
257 	.asic_name = "polaris11",
258 	.max_pasid_bits = 16,
259 	.max_no_of_hqd  = 24,
260 	.doorbell_size  = 4,
261 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
262 	.event_interrupt_class = &event_interrupt_class_cik,
263 	.num_of_watch_points = 4,
264 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
265 	.supports_cwsr = true,
266 	.needs_iommu_device = false,
267 	.needs_pci_atomics = true,
268 	.num_sdma_engines = 2,
269 	.num_xgmi_sdma_engines = 0,
270 	.num_sdma_queues_per_engine = 2,
271 };
272 
273 static const struct kfd_device_info polaris12_device_info = {
274 	.asic_family = CHIP_POLARIS12,
275 	.asic_name = "polaris12",
276 	.max_pasid_bits = 16,
277 	.max_no_of_hqd  = 24,
278 	.doorbell_size  = 4,
279 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
280 	.event_interrupt_class = &event_interrupt_class_cik,
281 	.num_of_watch_points = 4,
282 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
283 	.supports_cwsr = true,
284 	.needs_iommu_device = false,
285 	.needs_pci_atomics = true,
286 	.num_sdma_engines = 2,
287 	.num_xgmi_sdma_engines = 0,
288 	.num_sdma_queues_per_engine = 2,
289 };
290 
291 static const struct kfd_device_info vegam_device_info = {
292 	.asic_family = CHIP_VEGAM,
293 	.asic_name = "vegam",
294 	.max_pasid_bits = 16,
295 	.max_no_of_hqd  = 24,
296 	.doorbell_size  = 4,
297 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
298 	.event_interrupt_class = &event_interrupt_class_cik,
299 	.num_of_watch_points = 4,
300 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
301 	.supports_cwsr = true,
302 	.needs_iommu_device = false,
303 	.needs_pci_atomics = true,
304 	.num_sdma_engines = 2,
305 	.num_xgmi_sdma_engines = 0,
306 	.num_sdma_queues_per_engine = 2,
307 };
308 
309 static const struct kfd_device_info vega10_device_info = {
310 	.asic_family = CHIP_VEGA10,
311 	.asic_name = "vega10",
312 	.max_pasid_bits = 16,
313 	.max_no_of_hqd  = 24,
314 	.doorbell_size  = 8,
315 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
316 	.event_interrupt_class = &event_interrupt_class_v9,
317 	.num_of_watch_points = 4,
318 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
319 	.supports_cwsr = true,
320 	.needs_iommu_device = false,
321 	.needs_pci_atomics = false,
322 	.num_sdma_engines = 2,
323 	.num_xgmi_sdma_engines = 0,
324 	.num_sdma_queues_per_engine = 2,
325 };
326 
327 static const struct kfd_device_info vega10_vf_device_info = {
328 	.asic_family = CHIP_VEGA10,
329 	.asic_name = "vega10",
330 	.max_pasid_bits = 16,
331 	.max_no_of_hqd  = 24,
332 	.doorbell_size  = 8,
333 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
334 	.event_interrupt_class = &event_interrupt_class_v9,
335 	.num_of_watch_points = 4,
336 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
337 	.supports_cwsr = true,
338 	.needs_iommu_device = false,
339 	.needs_pci_atomics = false,
340 	.num_sdma_engines = 2,
341 	.num_xgmi_sdma_engines = 0,
342 	.num_sdma_queues_per_engine = 2,
343 };
344 
345 static const struct kfd_device_info vega12_device_info = {
346 	.asic_family = CHIP_VEGA12,
347 	.asic_name = "vega12",
348 	.max_pasid_bits = 16,
349 	.max_no_of_hqd  = 24,
350 	.doorbell_size  = 8,
351 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
352 	.event_interrupt_class = &event_interrupt_class_v9,
353 	.num_of_watch_points = 4,
354 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
355 	.supports_cwsr = true,
356 	.needs_iommu_device = false,
357 	.needs_pci_atomics = false,
358 	.num_sdma_engines = 2,
359 	.num_xgmi_sdma_engines = 0,
360 	.num_sdma_queues_per_engine = 2,
361 };
362 
363 static const struct kfd_device_info vega20_device_info = {
364 	.asic_family = CHIP_VEGA20,
365 	.asic_name = "vega20",
366 	.max_pasid_bits = 16,
367 	.max_no_of_hqd	= 24,
368 	.doorbell_size	= 8,
369 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
370 	.event_interrupt_class = &event_interrupt_class_v9,
371 	.num_of_watch_points = 4,
372 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
373 	.supports_cwsr = true,
374 	.needs_iommu_device = false,
375 	.needs_pci_atomics = false,
376 	.num_sdma_engines = 2,
377 	.num_xgmi_sdma_engines = 0,
378 	.num_sdma_queues_per_engine = 8,
379 };
380 
381 static const struct kfd_device_info arcturus_device_info = {
382 	.asic_family = CHIP_ARCTURUS,
383 	.asic_name = "arcturus",
384 	.max_pasid_bits = 16,
385 	.max_no_of_hqd	= 24,
386 	.doorbell_size	= 8,
387 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
388 	.event_interrupt_class = &event_interrupt_class_v9,
389 	.num_of_watch_points = 4,
390 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
391 	.supports_cwsr = true,
392 	.needs_iommu_device = false,
393 	.needs_pci_atomics = false,
394 	.num_sdma_engines = 2,
395 	.num_xgmi_sdma_engines = 6,
396 	.num_sdma_queues_per_engine = 8,
397 };
398 
399 static const struct kfd_device_info aldebaran_device_info = {
400 	.asic_family = CHIP_ALDEBARAN,
401 	.asic_name = "aldebaran",
402 	.max_pasid_bits = 16,
403 	.max_no_of_hqd	= 24,
404 	.doorbell_size	= 8,
405 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
406 	.event_interrupt_class = &event_interrupt_class_v9,
407 	.num_of_watch_points = 4,
408 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
409 	.supports_cwsr = true,
410 	.needs_iommu_device = false,
411 	.needs_pci_atomics = false,
412 	.num_sdma_engines = 2,
413 	.num_xgmi_sdma_engines = 3,
414 	.num_sdma_queues_per_engine = 8,
415 };
416 
417 static const struct kfd_device_info renoir_device_info = {
418 	.asic_family = CHIP_RENOIR,
419 	.asic_name = "renoir",
420 	.max_pasid_bits = 16,
421 	.max_no_of_hqd  = 24,
422 	.doorbell_size  = 8,
423 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
424 	.event_interrupt_class = &event_interrupt_class_v9,
425 	.num_of_watch_points = 4,
426 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
427 	.supports_cwsr = true,
428 	.needs_iommu_device = false,
429 	.needs_pci_atomics = false,
430 	.num_sdma_engines = 1,
431 	.num_xgmi_sdma_engines = 0,
432 	.num_sdma_queues_per_engine = 2,
433 };
434 
435 static const struct kfd_device_info navi10_device_info = {
436 	.asic_family = CHIP_NAVI10,
437 	.asic_name = "navi10",
438 	.max_pasid_bits = 16,
439 	.max_no_of_hqd  = 24,
440 	.doorbell_size  = 8,
441 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
442 	.event_interrupt_class = &event_interrupt_class_v9,
443 	.num_of_watch_points = 4,
444 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
445 	.needs_iommu_device = false,
446 	.supports_cwsr = true,
447 	.needs_pci_atomics = true,
448 	.num_sdma_engines = 2,
449 	.num_xgmi_sdma_engines = 0,
450 	.num_sdma_queues_per_engine = 8,
451 };
452 
453 static const struct kfd_device_info navi12_device_info = {
454 	.asic_family = CHIP_NAVI12,
455 	.asic_name = "navi12",
456 	.max_pasid_bits = 16,
457 	.max_no_of_hqd  = 24,
458 	.doorbell_size  = 8,
459 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
460 	.event_interrupt_class = &event_interrupt_class_v9,
461 	.num_of_watch_points = 4,
462 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
463 	.needs_iommu_device = false,
464 	.supports_cwsr = true,
465 	.needs_pci_atomics = true,
466 	.num_sdma_engines = 2,
467 	.num_xgmi_sdma_engines = 0,
468 	.num_sdma_queues_per_engine = 8,
469 };
470 
471 static const struct kfd_device_info navi14_device_info = {
472 	.asic_family = CHIP_NAVI14,
473 	.asic_name = "navi14",
474 	.max_pasid_bits = 16,
475 	.max_no_of_hqd  = 24,
476 	.doorbell_size  = 8,
477 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
478 	.event_interrupt_class = &event_interrupt_class_v9,
479 	.num_of_watch_points = 4,
480 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
481 	.needs_iommu_device = false,
482 	.supports_cwsr = true,
483 	.needs_pci_atomics = true,
484 	.num_sdma_engines = 2,
485 	.num_xgmi_sdma_engines = 0,
486 	.num_sdma_queues_per_engine = 8,
487 };
488 
489 static const struct kfd_device_info sienna_cichlid_device_info = {
490 	.asic_family = CHIP_SIENNA_CICHLID,
491 	.asic_name = "sienna_cichlid",
492 	.max_pasid_bits = 16,
493 	.max_no_of_hqd  = 24,
494 	.doorbell_size  = 8,
495 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
496 	.event_interrupt_class = &event_interrupt_class_v9,
497 	.num_of_watch_points = 4,
498 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
499 	.needs_iommu_device = false,
500 	.supports_cwsr = true,
501 	.needs_pci_atomics = true,
502 	.num_sdma_engines = 4,
503 	.num_xgmi_sdma_engines = 0,
504 	.num_sdma_queues_per_engine = 8,
505 };
506 
507 static const struct kfd_device_info navy_flounder_device_info = {
508 	.asic_family = CHIP_NAVY_FLOUNDER,
509 	.asic_name = "navy_flounder",
510 	.max_pasid_bits = 16,
511 	.max_no_of_hqd  = 24,
512 	.doorbell_size  = 8,
513 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
514 	.event_interrupt_class = &event_interrupt_class_v9,
515 	.num_of_watch_points = 4,
516 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
517 	.needs_iommu_device = false,
518 	.supports_cwsr = true,
519 	.needs_pci_atomics = true,
520 	.num_sdma_engines = 2,
521 	.num_xgmi_sdma_engines = 0,
522 	.num_sdma_queues_per_engine = 8,
523 };
524 
525 static const struct kfd_device_info vangogh_device_info = {
526 	.asic_family = CHIP_VANGOGH,
527 	.asic_name = "vangogh",
528 	.max_pasid_bits = 16,
529 	.max_no_of_hqd  = 24,
530 	.doorbell_size  = 8,
531 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
532 	.event_interrupt_class = &event_interrupt_class_v9,
533 	.num_of_watch_points = 4,
534 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
535 	.needs_iommu_device = false,
536 	.supports_cwsr = true,
537 	.needs_pci_atomics = false,
538 	.num_sdma_engines = 1,
539 	.num_xgmi_sdma_engines = 0,
540 	.num_sdma_queues_per_engine = 2,
541 };
542 
543 static const struct kfd_device_info dimgrey_cavefish_device_info = {
544 	.asic_family = CHIP_DIMGREY_CAVEFISH,
545 	.asic_name = "dimgrey_cavefish",
546 	.max_pasid_bits = 16,
547 	.max_no_of_hqd  = 24,
548 	.doorbell_size  = 8,
549 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
550 	.event_interrupt_class = &event_interrupt_class_v9,
551 	.num_of_watch_points = 4,
552 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
553 	.needs_iommu_device = false,
554 	.supports_cwsr = true,
555 	.needs_pci_atomics = true,
556 	.num_sdma_engines = 2,
557 	.num_xgmi_sdma_engines = 0,
558 	.num_sdma_queues_per_engine = 8,
559 };
560 
561 
562 /* For each entry, [0] is regular and [1] is virtualisation device. */
563 static const struct kfd_device_info *kfd_supported_devices[][2] = {
564 #ifdef KFD_SUPPORT_IOMMU_V2
565 	[CHIP_KAVERI] = {&kaveri_device_info, NULL},
566 	[CHIP_CARRIZO] = {&carrizo_device_info, NULL},
567 #endif
568 	[CHIP_RAVEN] = {&raven_device_info, NULL},
569 	[CHIP_HAWAII] = {&hawaii_device_info, NULL},
570 	[CHIP_TONGA] = {&tonga_device_info, NULL},
571 	[CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info},
572 	[CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info},
573 	[CHIP_POLARIS11] = {&polaris11_device_info, NULL},
574 	[CHIP_POLARIS12] = {&polaris12_device_info, NULL},
575 	[CHIP_VEGAM] = {&vegam_device_info, NULL},
576 	[CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info},
577 	[CHIP_VEGA12] = {&vega12_device_info, NULL},
578 	[CHIP_VEGA20] = {&vega20_device_info, NULL},
579 	[CHIP_RENOIR] = {&renoir_device_info, NULL},
580 	[CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info},
581 	[CHIP_ALDEBARAN] = {&aldebaran_device_info, &aldebaran_device_info},
582 	[CHIP_NAVI10] = {&navi10_device_info, NULL},
583 	[CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info},
584 	[CHIP_NAVI14] = {&navi14_device_info, NULL},
585 	[CHIP_SIENNA_CICHLID] = {&sienna_cichlid_device_info, &sienna_cichlid_device_info},
586 	[CHIP_NAVY_FLOUNDER] = {&navy_flounder_device_info, &navy_flounder_device_info},
587 	[CHIP_VANGOGH] = {&vangogh_device_info, NULL},
588 	[CHIP_DIMGREY_CAVEFISH] = {&dimgrey_cavefish_device_info, &dimgrey_cavefish_device_info},
589 };
590 
591 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
592 				unsigned int chunk_size);
593 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
594 
595 static int kfd_resume(struct kfd_dev *kfd);
596 
597 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
598 	struct pci_dev *pdev, unsigned int asic_type, bool vf)
599 {
600 	struct kfd_dev *kfd;
601 	const struct kfd_device_info *device_info;
602 	const struct kfd2kgd_calls *f2g;
603 
604 	if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2)
605 		|| asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) {
606 		dev_err(kfd_device, "asic_type %d out of range\n", asic_type);
607 		return NULL; /* asic_type out of range */
608 	}
609 
610 	device_info = kfd_supported_devices[asic_type][vf];
611 	f2g = kfd2kgd_funcs[asic_type];
612 
613 	if (!device_info || !f2g) {
614 		dev_err(kfd_device, "%s %s not supported in kfd\n",
615 			amdgpu_asic_name[asic_type], vf ? "VF" : "");
616 		return NULL;
617 	}
618 
619 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
620 	if (!kfd)
621 		return NULL;
622 
623 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
624 	 * 32 and 64-bit requests are possible and must be
625 	 * supported.
626 	 */
627 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
628 	if (device_info->needs_pci_atomics &&
629 	    !kfd->pci_atomic_requested) {
630 		dev_info(kfd_device,
631 			 "skipped device %x:%x, PCI rejects atomics\n",
632 			 pdev->vendor, pdev->device);
633 		kfree(kfd);
634 		return NULL;
635 	}
636 
637 	kfd->kgd = kgd;
638 	kfd->device_info = device_info;
639 	kfd->pdev = pdev;
640 	kfd->init_complete = false;
641 	kfd->kfd2kgd = f2g;
642 	atomic_set(&kfd->compute_profile, 0);
643 
644 	mutex_init(&kfd->doorbell_mutex);
645 	memset(&kfd->doorbell_available_index, 0,
646 		sizeof(kfd->doorbell_available_index));
647 
648 	atomic_set(&kfd->sram_ecc_flag, 0);
649 
650 	ida_init(&kfd->doorbell_ida);
651 
652 	return kfd;
653 }
654 
655 static void kfd_cwsr_init(struct kfd_dev *kfd)
656 {
657 	if (cwsr_enable && kfd->device_info->supports_cwsr) {
658 		if (kfd->device_info->asic_family < CHIP_VEGA10) {
659 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
660 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
661 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
662 		} else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
663 			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
664 			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
665 			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
666 		} else if (kfd->device_info->asic_family == CHIP_ALDEBARAN) {
667 			BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex) > PAGE_SIZE);
668 			kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
669 			kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
670 		} else if (kfd->device_info->asic_family < CHIP_NAVI10) {
671 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
672 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
673 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
674 		} else if (kfd->device_info->asic_family < CHIP_SIENNA_CICHLID) {
675 			BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE);
676 			kfd->cwsr_isa = cwsr_trap_nv1x_hex;
677 			kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
678 		} else {
679 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
680 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
681 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
682 		}
683 
684 		kfd->cwsr_enabled = true;
685 	}
686 }
687 
688 static int kfd_gws_init(struct kfd_dev *kfd)
689 {
690 	int ret = 0;
691 
692 	if (kfd->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
693 		return 0;
694 
695 	if (hws_gws_support
696 		|| (kfd->device_info->asic_family == CHIP_VEGA10
697 			&& kfd->mec2_fw_version >= 0x81b3)
698 		|| (kfd->device_info->asic_family >= CHIP_VEGA12
699 			&& kfd->device_info->asic_family <= CHIP_RAVEN
700 			&& kfd->mec2_fw_version >= 0x1b3)
701 		|| (kfd->device_info->asic_family == CHIP_ARCTURUS
702 			&& kfd->mec2_fw_version >= 0x30)
703 		|| (kfd->device_info->asic_family == CHIP_ALDEBARAN
704 			&& kfd->mec2_fw_version >= 0x28))
705 		ret = amdgpu_amdkfd_alloc_gws(kfd->kgd,
706 				amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws);
707 
708 	return ret;
709 }
710 
711 static void kfd_smi_init(struct kfd_dev *dev) {
712 	INIT_LIST_HEAD(&dev->smi_clients);
713 	spin_lock_init(&dev->smi_lock);
714 }
715 
716 bool kgd2kfd_device_init(struct kfd_dev *kfd,
717 			 struct drm_device *ddev,
718 			 const struct kgd2kfd_shared_resources *gpu_resources)
719 {
720 	unsigned int size, map_process_packet_size;
721 
722 	kfd->ddev = ddev;
723 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
724 			KGD_ENGINE_MEC1);
725 	kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
726 			KGD_ENGINE_MEC2);
727 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
728 			KGD_ENGINE_SDMA1);
729 	kfd->shared_resources = *gpu_resources;
730 
731 	kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
732 	kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
733 	kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
734 			- kfd->vm_info.first_vmid_kfd + 1;
735 
736 	/* Verify module parameters regarding mapped process number*/
737 	if ((hws_max_conc_proc < 0)
738 			|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
739 		dev_err(kfd_device,
740 			"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
741 			hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
742 			kfd->vm_info.vmid_num_kfd);
743 		kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
744 	} else
745 		kfd->max_proc_per_quantum = hws_max_conc_proc;
746 
747 	/* calculate max size of mqds needed for queues */
748 	size = max_num_of_queues_per_device *
749 			kfd->device_info->mqd_size_aligned;
750 
751 	/*
752 	 * calculate max size of runlist packet.
753 	 * There can be only 2 packets at once
754 	 */
755 	map_process_packet_size =
756 			kfd->device_info->asic_family == CHIP_ALDEBARAN ?
757 				sizeof(struct pm4_mes_map_process_aldebaran) :
758 					sizeof(struct pm4_mes_map_process);
759 	size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
760 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
761 		+ sizeof(struct pm4_mes_runlist)) * 2;
762 
763 	/* Add size of HIQ & DIQ */
764 	size += KFD_KERNEL_QUEUE_SIZE * 2;
765 
766 	/* add another 512KB for all other allocations on gart (HPD, fences) */
767 	size += 512 * 1024;
768 
769 	if (amdgpu_amdkfd_alloc_gtt_mem(
770 			kfd->kgd, size, &kfd->gtt_mem,
771 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
772 			false)) {
773 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
774 		goto alloc_gtt_mem_failure;
775 	}
776 
777 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
778 
779 	/* Initialize GTT sa with 512 byte chunk size */
780 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
781 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
782 		goto kfd_gtt_sa_init_error;
783 	}
784 
785 	if (kfd_doorbell_init(kfd)) {
786 		dev_err(kfd_device,
787 			"Error initializing doorbell aperture\n");
788 		goto kfd_doorbell_error;
789 	}
790 
791 	kfd->hive_id = amdgpu_amdkfd_get_hive_id(kfd->kgd);
792 
793 	kfd->noretry = amdgpu_amdkfd_get_noretry(kfd->kgd);
794 
795 	if (kfd_interrupt_init(kfd)) {
796 		dev_err(kfd_device, "Error initializing interrupts\n");
797 		goto kfd_interrupt_error;
798 	}
799 
800 	kfd->dqm = device_queue_manager_init(kfd);
801 	if (!kfd->dqm) {
802 		dev_err(kfd_device, "Error initializing queue manager\n");
803 		goto device_queue_manager_error;
804 	}
805 
806 	/* If supported on this device, allocate global GWS that is shared
807 	 * by all KFD processes
808 	 */
809 	if (kfd_gws_init(kfd)) {
810 		dev_err(kfd_device, "Could not allocate %d gws\n",
811 			amdgpu_amdkfd_get_num_gws(kfd->kgd));
812 		goto gws_error;
813 	}
814 
815 	/* If CRAT is broken, won't set iommu enabled */
816 	kfd_double_confirm_iommu_support(kfd);
817 
818 	if (kfd_iommu_device_init(kfd)) {
819 		dev_err(kfd_device, "Error initializing iommuv2\n");
820 		goto device_iommu_error;
821 	}
822 
823 	kfd_cwsr_init(kfd);
824 
825 	svm_migrate_init((struct amdgpu_device *)kfd->kgd);
826 
827 	if (kfd_resume(kfd))
828 		goto kfd_resume_error;
829 
830 	kfd->dbgmgr = NULL;
831 
832 	if (kfd_topology_add_device(kfd)) {
833 		dev_err(kfd_device, "Error adding device to topology\n");
834 		goto kfd_topology_add_device_error;
835 	}
836 
837 	kfd_smi_init(kfd);
838 
839 	kfd->init_complete = true;
840 	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
841 		 kfd->pdev->device);
842 
843 	pr_debug("Starting kfd with the following scheduling policy %d\n",
844 		kfd->dqm->sched_policy);
845 
846 	goto out;
847 
848 kfd_topology_add_device_error:
849 kfd_resume_error:
850 device_iommu_error:
851 gws_error:
852 	device_queue_manager_uninit(kfd->dqm);
853 device_queue_manager_error:
854 	kfd_interrupt_exit(kfd);
855 kfd_interrupt_error:
856 	kfd_doorbell_fini(kfd);
857 kfd_doorbell_error:
858 	kfd_gtt_sa_fini(kfd);
859 kfd_gtt_sa_init_error:
860 	amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
861 alloc_gtt_mem_failure:
862 	if (kfd->gws)
863 		amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
864 	dev_err(kfd_device,
865 		"device %x:%x NOT added due to errors\n",
866 		kfd->pdev->vendor, kfd->pdev->device);
867 out:
868 	return kfd->init_complete;
869 }
870 
871 void kgd2kfd_device_exit(struct kfd_dev *kfd)
872 {
873 	if (kfd->init_complete) {
874 		kgd2kfd_suspend(kfd, false);
875 		svm_migrate_fini((struct amdgpu_device *)kfd->kgd);
876 		device_queue_manager_uninit(kfd->dqm);
877 		kfd_interrupt_exit(kfd);
878 		kfd_topology_remove_device(kfd);
879 		kfd_doorbell_fini(kfd);
880 		ida_destroy(&kfd->doorbell_ida);
881 		kfd_gtt_sa_fini(kfd);
882 		amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
883 		if (kfd->gws)
884 			amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
885 	}
886 
887 	kfree(kfd);
888 }
889 
890 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
891 {
892 	if (!kfd->init_complete)
893 		return 0;
894 
895 	kfd_smi_event_update_gpu_reset(kfd, false);
896 
897 	kfd->dqm->ops.pre_reset(kfd->dqm);
898 
899 	kgd2kfd_suspend(kfd, false);
900 
901 	kfd_signal_reset_event(kfd);
902 	return 0;
903 }
904 
905 /*
906  * Fix me. KFD won't be able to resume existing process for now.
907  * We will keep all existing process in a evicted state and
908  * wait the process to be terminated.
909  */
910 
911 int kgd2kfd_post_reset(struct kfd_dev *kfd)
912 {
913 	int ret;
914 
915 	if (!kfd->init_complete)
916 		return 0;
917 
918 	ret = kfd_resume(kfd);
919 	if (ret)
920 		return ret;
921 	atomic_dec(&kfd_locked);
922 
923 	atomic_set(&kfd->sram_ecc_flag, 0);
924 
925 	kfd_smi_event_update_gpu_reset(kfd, true);
926 
927 	return 0;
928 }
929 
930 bool kfd_is_locked(void)
931 {
932 	return  (atomic_read(&kfd_locked) > 0);
933 }
934 
935 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
936 {
937 	if (!kfd->init_complete)
938 		return;
939 
940 	/* for runtime suspend, skip locking kfd */
941 	if (!run_pm) {
942 		/* For first KFD device suspend all the KFD processes */
943 		if (atomic_inc_return(&kfd_locked) == 1)
944 			kfd_suspend_all_processes();
945 	}
946 
947 	kfd->dqm->ops.stop(kfd->dqm);
948 	kfd_iommu_suspend(kfd);
949 }
950 
951 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
952 {
953 	int ret, count;
954 
955 	if (!kfd->init_complete)
956 		return 0;
957 
958 	ret = kfd_resume(kfd);
959 	if (ret)
960 		return ret;
961 
962 	/* for runtime resume, skip unlocking kfd */
963 	if (!run_pm) {
964 		count = atomic_dec_return(&kfd_locked);
965 		WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
966 		if (count == 0)
967 			ret = kfd_resume_all_processes();
968 	}
969 
970 	return ret;
971 }
972 
973 static int kfd_resume(struct kfd_dev *kfd)
974 {
975 	int err = 0;
976 
977 	err = kfd_iommu_resume(kfd);
978 	if (err) {
979 		dev_err(kfd_device,
980 			"Failed to resume IOMMU for device %x:%x\n",
981 			kfd->pdev->vendor, kfd->pdev->device);
982 		return err;
983 	}
984 
985 	err = kfd->dqm->ops.start(kfd->dqm);
986 	if (err) {
987 		dev_err(kfd_device,
988 			"Error starting queue manager for device %x:%x\n",
989 			kfd->pdev->vendor, kfd->pdev->device);
990 		goto dqm_start_error;
991 	}
992 
993 	return err;
994 
995 dqm_start_error:
996 	kfd_iommu_suspend(kfd);
997 	return err;
998 }
999 
1000 static inline void kfd_queue_work(struct workqueue_struct *wq,
1001 				  struct work_struct *work)
1002 {
1003 	int cpu, new_cpu;
1004 
1005 	cpu = new_cpu = smp_processor_id();
1006 	do {
1007 		new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
1008 		if (cpu_to_node(new_cpu) == numa_node_id())
1009 			break;
1010 	} while (cpu != new_cpu);
1011 
1012 	queue_work_on(new_cpu, wq, work);
1013 }
1014 
1015 /* This is called directly from KGD at ISR. */
1016 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1017 {
1018 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
1019 	bool is_patched = false;
1020 	unsigned long flags;
1021 
1022 	if (!kfd->init_complete)
1023 		return;
1024 
1025 	if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
1026 		dev_err_once(kfd_device, "Ring entry too small\n");
1027 		return;
1028 	}
1029 
1030 	spin_lock_irqsave(&kfd->interrupt_lock, flags);
1031 
1032 	if (kfd->interrupts_active
1033 	    && interrupt_is_wanted(kfd, ih_ring_entry,
1034 				   patched_ihre, &is_patched)
1035 	    && enqueue_ih_ring_entry(kfd,
1036 				     is_patched ? patched_ihre : ih_ring_entry))
1037 		kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work);
1038 
1039 	spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
1040 }
1041 
1042 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
1043 {
1044 	struct kfd_process *p;
1045 	int r;
1046 
1047 	/* Because we are called from arbitrary context (workqueue) as opposed
1048 	 * to process context, kfd_process could attempt to exit while we are
1049 	 * running so the lookup function increments the process ref count.
1050 	 */
1051 	p = kfd_lookup_process_by_mm(mm);
1052 	if (!p)
1053 		return -ESRCH;
1054 
1055 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1056 	r = kfd_process_evict_queues(p);
1057 
1058 	kfd_unref_process(p);
1059 	return r;
1060 }
1061 
1062 int kgd2kfd_resume_mm(struct mm_struct *mm)
1063 {
1064 	struct kfd_process *p;
1065 	int r;
1066 
1067 	/* Because we are called from arbitrary context (workqueue) as opposed
1068 	 * to process context, kfd_process could attempt to exit while we are
1069 	 * running so the lookup function increments the process ref count.
1070 	 */
1071 	p = kfd_lookup_process_by_mm(mm);
1072 	if (!p)
1073 		return -ESRCH;
1074 
1075 	r = kfd_process_restore_queues(p);
1076 
1077 	kfd_unref_process(p);
1078 	return r;
1079 }
1080 
1081 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1082  *   prepare for safe eviction of KFD BOs that belong to the specified
1083  *   process.
1084  *
1085  * @mm: mm_struct that identifies the specified KFD process
1086  * @fence: eviction fence attached to KFD process BOs
1087  *
1088  */
1089 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1090 					       struct dma_fence *fence)
1091 {
1092 	struct kfd_process *p;
1093 	unsigned long active_time;
1094 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1095 
1096 	if (!fence)
1097 		return -EINVAL;
1098 
1099 	if (dma_fence_is_signaled(fence))
1100 		return 0;
1101 
1102 	p = kfd_lookup_process_by_mm(mm);
1103 	if (!p)
1104 		return -ENODEV;
1105 
1106 	if (fence->seqno == p->last_eviction_seqno)
1107 		goto out;
1108 
1109 	p->last_eviction_seqno = fence->seqno;
1110 
1111 	/* Avoid KFD process starvation. Wait for at least
1112 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
1113 	 */
1114 	active_time = get_jiffies_64() - p->last_restore_timestamp;
1115 	if (delay_jiffies > active_time)
1116 		delay_jiffies -= active_time;
1117 	else
1118 		delay_jiffies = 0;
1119 
1120 	/* During process initialization eviction_work.dwork is initialized
1121 	 * to kfd_evict_bo_worker
1122 	 */
1123 	WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1124 	     p->lead_thread->pid, delay_jiffies);
1125 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
1126 out:
1127 	kfd_unref_process(p);
1128 	return 0;
1129 }
1130 
1131 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1132 				unsigned int chunk_size)
1133 {
1134 	unsigned int num_of_longs;
1135 
1136 	if (WARN_ON(buf_size < chunk_size))
1137 		return -EINVAL;
1138 	if (WARN_ON(buf_size == 0))
1139 		return -EINVAL;
1140 	if (WARN_ON(chunk_size == 0))
1141 		return -EINVAL;
1142 
1143 	kfd->gtt_sa_chunk_size = chunk_size;
1144 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1145 
1146 	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
1147 		BITS_PER_LONG;
1148 
1149 	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
1150 
1151 	if (!kfd->gtt_sa_bitmap)
1152 		return -ENOMEM;
1153 
1154 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1155 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1156 
1157 	mutex_init(&kfd->gtt_sa_lock);
1158 
1159 	return 0;
1160 
1161 }
1162 
1163 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1164 {
1165 	mutex_destroy(&kfd->gtt_sa_lock);
1166 	kfree(kfd->gtt_sa_bitmap);
1167 }
1168 
1169 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1170 						unsigned int bit_num,
1171 						unsigned int chunk_size)
1172 {
1173 	return start_addr + bit_num * chunk_size;
1174 }
1175 
1176 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1177 						unsigned int bit_num,
1178 						unsigned int chunk_size)
1179 {
1180 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1181 }
1182 
1183 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1184 			struct kfd_mem_obj **mem_obj)
1185 {
1186 	unsigned int found, start_search, cur_size;
1187 
1188 	if (size == 0)
1189 		return -EINVAL;
1190 
1191 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1192 		return -ENOMEM;
1193 
1194 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1195 	if (!(*mem_obj))
1196 		return -ENOMEM;
1197 
1198 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1199 
1200 	start_search = 0;
1201 
1202 	mutex_lock(&kfd->gtt_sa_lock);
1203 
1204 kfd_gtt_restart_search:
1205 	/* Find the first chunk that is free */
1206 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1207 					kfd->gtt_sa_num_of_chunks,
1208 					start_search);
1209 
1210 	pr_debug("Found = %d\n", found);
1211 
1212 	/* If there wasn't any free chunk, bail out */
1213 	if (found == kfd->gtt_sa_num_of_chunks)
1214 		goto kfd_gtt_no_free_chunk;
1215 
1216 	/* Update fields of mem_obj */
1217 	(*mem_obj)->range_start = found;
1218 	(*mem_obj)->range_end = found;
1219 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1220 					kfd->gtt_start_gpu_addr,
1221 					found,
1222 					kfd->gtt_sa_chunk_size);
1223 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1224 					kfd->gtt_start_cpu_ptr,
1225 					found,
1226 					kfd->gtt_sa_chunk_size);
1227 
1228 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1229 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1230 
1231 	/* If we need only one chunk, mark it as allocated and get out */
1232 	if (size <= kfd->gtt_sa_chunk_size) {
1233 		pr_debug("Single bit\n");
1234 		set_bit(found, kfd->gtt_sa_bitmap);
1235 		goto kfd_gtt_out;
1236 	}
1237 
1238 	/* Otherwise, try to see if we have enough contiguous chunks */
1239 	cur_size = size - kfd->gtt_sa_chunk_size;
1240 	do {
1241 		(*mem_obj)->range_end =
1242 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1243 					kfd->gtt_sa_num_of_chunks, ++found);
1244 		/*
1245 		 * If next free chunk is not contiguous than we need to
1246 		 * restart our search from the last free chunk we found (which
1247 		 * wasn't contiguous to the previous ones
1248 		 */
1249 		if ((*mem_obj)->range_end != found) {
1250 			start_search = found;
1251 			goto kfd_gtt_restart_search;
1252 		}
1253 
1254 		/*
1255 		 * If we reached end of buffer, bail out with error
1256 		 */
1257 		if (found == kfd->gtt_sa_num_of_chunks)
1258 			goto kfd_gtt_no_free_chunk;
1259 
1260 		/* Check if we don't need another chunk */
1261 		if (cur_size <= kfd->gtt_sa_chunk_size)
1262 			cur_size = 0;
1263 		else
1264 			cur_size -= kfd->gtt_sa_chunk_size;
1265 
1266 	} while (cur_size > 0);
1267 
1268 	pr_debug("range_start = %d, range_end = %d\n",
1269 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1270 
1271 	/* Mark the chunks as allocated */
1272 	for (found = (*mem_obj)->range_start;
1273 		found <= (*mem_obj)->range_end;
1274 		found++)
1275 		set_bit(found, kfd->gtt_sa_bitmap);
1276 
1277 kfd_gtt_out:
1278 	mutex_unlock(&kfd->gtt_sa_lock);
1279 	return 0;
1280 
1281 kfd_gtt_no_free_chunk:
1282 	pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1283 	mutex_unlock(&kfd->gtt_sa_lock);
1284 	kfree(*mem_obj);
1285 	return -ENOMEM;
1286 }
1287 
1288 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1289 {
1290 	unsigned int bit;
1291 
1292 	/* Act like kfree when trying to free a NULL object */
1293 	if (!mem_obj)
1294 		return 0;
1295 
1296 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1297 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1298 
1299 	mutex_lock(&kfd->gtt_sa_lock);
1300 
1301 	/* Mark the chunks as free */
1302 	for (bit = mem_obj->range_start;
1303 		bit <= mem_obj->range_end;
1304 		bit++)
1305 		clear_bit(bit, kfd->gtt_sa_bitmap);
1306 
1307 	mutex_unlock(&kfd->gtt_sa_lock);
1308 
1309 	kfree(mem_obj);
1310 	return 0;
1311 }
1312 
1313 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1314 {
1315 	if (kfd)
1316 		atomic_inc(&kfd->sram_ecc_flag);
1317 }
1318 
1319 void kfd_inc_compute_active(struct kfd_dev *kfd)
1320 {
1321 	if (atomic_inc_return(&kfd->compute_profile) == 1)
1322 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1323 }
1324 
1325 void kfd_dec_compute_active(struct kfd_dev *kfd)
1326 {
1327 	int count = atomic_dec_return(&kfd->compute_profile);
1328 
1329 	if (count == 0)
1330 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1331 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1332 }
1333 
1334 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint32_t throttle_bitmask)
1335 {
1336 	if (kfd && kfd->init_complete)
1337 		kfd_smi_event_update_thermal_throttling(kfd, throttle_bitmask);
1338 }
1339 
1340 #if defined(CONFIG_DEBUG_FS)
1341 
1342 /* This function will send a package to HIQ to hang the HWS
1343  * which will trigger a GPU reset and bring the HWS back to normal state
1344  */
1345 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1346 {
1347 	int r = 0;
1348 
1349 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1350 		pr_err("HWS is not enabled");
1351 		return -EINVAL;
1352 	}
1353 
1354 	r = pm_debugfs_hang_hws(&dev->dqm->packets);
1355 	if (!r)
1356 		r = dqm_debugfs_execute_queues(dev->dqm);
1357 
1358 	return r;
1359 }
1360 
1361 #endif
1362