1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 
32 #define MQD_SIZE_ALIGNED 768
33 static atomic_t kfd_device_suspended = ATOMIC_INIT(0);
34 
35 #ifdef KFD_SUPPORT_IOMMU_V2
36 static const struct kfd_device_info kaveri_device_info = {
37 	.asic_family = CHIP_KAVERI,
38 	.max_pasid_bits = 16,
39 	/* max num of queues for KV.TODO should be a dynamic value */
40 	.max_no_of_hqd	= 24,
41 	.doorbell_size  = 4,
42 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
43 	.event_interrupt_class = &event_interrupt_class_cik,
44 	.num_of_watch_points = 4,
45 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
46 	.supports_cwsr = false,
47 	.needs_iommu_device = true,
48 	.needs_pci_atomics = false,
49 };
50 
51 static const struct kfd_device_info carrizo_device_info = {
52 	.asic_family = CHIP_CARRIZO,
53 	.max_pasid_bits = 16,
54 	/* max num of queues for CZ.TODO should be a dynamic value */
55 	.max_no_of_hqd	= 24,
56 	.doorbell_size  = 4,
57 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
58 	.event_interrupt_class = &event_interrupt_class_cik,
59 	.num_of_watch_points = 4,
60 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
61 	.supports_cwsr = true,
62 	.needs_iommu_device = true,
63 	.needs_pci_atomics = false,
64 };
65 #endif
66 
67 static const struct kfd_device_info hawaii_device_info = {
68 	.asic_family = CHIP_HAWAII,
69 	.max_pasid_bits = 16,
70 	/* max num of queues for KV.TODO should be a dynamic value */
71 	.max_no_of_hqd	= 24,
72 	.doorbell_size  = 4,
73 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
74 	.event_interrupt_class = &event_interrupt_class_cik,
75 	.num_of_watch_points = 4,
76 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
77 	.supports_cwsr = false,
78 	.needs_iommu_device = false,
79 	.needs_pci_atomics = false,
80 };
81 
82 static const struct kfd_device_info tonga_device_info = {
83 	.asic_family = CHIP_TONGA,
84 	.max_pasid_bits = 16,
85 	.max_no_of_hqd  = 24,
86 	.doorbell_size  = 4,
87 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
88 	.event_interrupt_class = &event_interrupt_class_cik,
89 	.num_of_watch_points = 4,
90 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
91 	.supports_cwsr = false,
92 	.needs_iommu_device = false,
93 	.needs_pci_atomics = true,
94 };
95 
96 static const struct kfd_device_info tonga_vf_device_info = {
97 	.asic_family = CHIP_TONGA,
98 	.max_pasid_bits = 16,
99 	.max_no_of_hqd  = 24,
100 	.doorbell_size  = 4,
101 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
102 	.event_interrupt_class = &event_interrupt_class_cik,
103 	.num_of_watch_points = 4,
104 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
105 	.supports_cwsr = false,
106 	.needs_iommu_device = false,
107 	.needs_pci_atomics = false,
108 };
109 
110 static const struct kfd_device_info fiji_device_info = {
111 	.asic_family = CHIP_FIJI,
112 	.max_pasid_bits = 16,
113 	.max_no_of_hqd  = 24,
114 	.doorbell_size  = 4,
115 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
116 	.event_interrupt_class = &event_interrupt_class_cik,
117 	.num_of_watch_points = 4,
118 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
119 	.supports_cwsr = true,
120 	.needs_iommu_device = false,
121 	.needs_pci_atomics = true,
122 };
123 
124 static const struct kfd_device_info fiji_vf_device_info = {
125 	.asic_family = CHIP_FIJI,
126 	.max_pasid_bits = 16,
127 	.max_no_of_hqd  = 24,
128 	.doorbell_size  = 4,
129 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
130 	.event_interrupt_class = &event_interrupt_class_cik,
131 	.num_of_watch_points = 4,
132 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
133 	.supports_cwsr = true,
134 	.needs_iommu_device = false,
135 	.needs_pci_atomics = false,
136 };
137 
138 
139 static const struct kfd_device_info polaris10_device_info = {
140 	.asic_family = CHIP_POLARIS10,
141 	.max_pasid_bits = 16,
142 	.max_no_of_hqd  = 24,
143 	.doorbell_size  = 4,
144 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
145 	.event_interrupt_class = &event_interrupt_class_cik,
146 	.num_of_watch_points = 4,
147 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
148 	.supports_cwsr = true,
149 	.needs_iommu_device = false,
150 	.needs_pci_atomics = true,
151 };
152 
153 static const struct kfd_device_info polaris10_vf_device_info = {
154 	.asic_family = CHIP_POLARIS10,
155 	.max_pasid_bits = 16,
156 	.max_no_of_hqd  = 24,
157 	.doorbell_size  = 4,
158 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
159 	.event_interrupt_class = &event_interrupt_class_cik,
160 	.num_of_watch_points = 4,
161 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
162 	.supports_cwsr = true,
163 	.needs_iommu_device = false,
164 	.needs_pci_atomics = false,
165 };
166 
167 static const struct kfd_device_info polaris11_device_info = {
168 	.asic_family = CHIP_POLARIS11,
169 	.max_pasid_bits = 16,
170 	.max_no_of_hqd  = 24,
171 	.doorbell_size  = 4,
172 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
173 	.event_interrupt_class = &event_interrupt_class_cik,
174 	.num_of_watch_points = 4,
175 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
176 	.supports_cwsr = true,
177 	.needs_iommu_device = false,
178 	.needs_pci_atomics = true,
179 };
180 
181 static const struct kfd_device_info vega10_device_info = {
182 	.asic_family = CHIP_VEGA10,
183 	.max_pasid_bits = 16,
184 	.max_no_of_hqd  = 24,
185 	.doorbell_size  = 8,
186 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
187 	.event_interrupt_class = &event_interrupt_class_v9,
188 	.num_of_watch_points = 4,
189 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
190 	.supports_cwsr = true,
191 	.needs_iommu_device = false,
192 	.needs_pci_atomics = false,
193 };
194 
195 static const struct kfd_device_info vega10_vf_device_info = {
196 	.asic_family = CHIP_VEGA10,
197 	.max_pasid_bits = 16,
198 	.max_no_of_hqd  = 24,
199 	.doorbell_size  = 8,
200 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
201 	.event_interrupt_class = &event_interrupt_class_v9,
202 	.num_of_watch_points = 4,
203 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
204 	.supports_cwsr = true,
205 	.needs_iommu_device = false,
206 	.needs_pci_atomics = false,
207 };
208 
209 
210 struct kfd_deviceid {
211 	unsigned short did;
212 	const struct kfd_device_info *device_info;
213 };
214 
215 static const struct kfd_deviceid supported_devices[] = {
216 #ifdef KFD_SUPPORT_IOMMU_V2
217 	{ 0x1304, &kaveri_device_info },	/* Kaveri */
218 	{ 0x1305, &kaveri_device_info },	/* Kaveri */
219 	{ 0x1306, &kaveri_device_info },	/* Kaveri */
220 	{ 0x1307, &kaveri_device_info },	/* Kaveri */
221 	{ 0x1309, &kaveri_device_info },	/* Kaveri */
222 	{ 0x130A, &kaveri_device_info },	/* Kaveri */
223 	{ 0x130B, &kaveri_device_info },	/* Kaveri */
224 	{ 0x130C, &kaveri_device_info },	/* Kaveri */
225 	{ 0x130D, &kaveri_device_info },	/* Kaveri */
226 	{ 0x130E, &kaveri_device_info },	/* Kaveri */
227 	{ 0x130F, &kaveri_device_info },	/* Kaveri */
228 	{ 0x1310, &kaveri_device_info },	/* Kaveri */
229 	{ 0x1311, &kaveri_device_info },	/* Kaveri */
230 	{ 0x1312, &kaveri_device_info },	/* Kaveri */
231 	{ 0x1313, &kaveri_device_info },	/* Kaveri */
232 	{ 0x1315, &kaveri_device_info },	/* Kaveri */
233 	{ 0x1316, &kaveri_device_info },	/* Kaveri */
234 	{ 0x1317, &kaveri_device_info },	/* Kaveri */
235 	{ 0x1318, &kaveri_device_info },	/* Kaveri */
236 	{ 0x131B, &kaveri_device_info },	/* Kaveri */
237 	{ 0x131C, &kaveri_device_info },	/* Kaveri */
238 	{ 0x131D, &kaveri_device_info },	/* Kaveri */
239 	{ 0x9870, &carrizo_device_info },	/* Carrizo */
240 	{ 0x9874, &carrizo_device_info },	/* Carrizo */
241 	{ 0x9875, &carrizo_device_info },	/* Carrizo */
242 	{ 0x9876, &carrizo_device_info },	/* Carrizo */
243 	{ 0x9877, &carrizo_device_info },	/* Carrizo */
244 #endif
245 	{ 0x67A0, &hawaii_device_info },	/* Hawaii */
246 	{ 0x67A1, &hawaii_device_info },	/* Hawaii */
247 	{ 0x67A2, &hawaii_device_info },	/* Hawaii */
248 	{ 0x67A8, &hawaii_device_info },	/* Hawaii */
249 	{ 0x67A9, &hawaii_device_info },	/* Hawaii */
250 	{ 0x67AA, &hawaii_device_info },	/* Hawaii */
251 	{ 0x67B0, &hawaii_device_info },	/* Hawaii */
252 	{ 0x67B1, &hawaii_device_info },	/* Hawaii */
253 	{ 0x67B8, &hawaii_device_info },	/* Hawaii */
254 	{ 0x67B9, &hawaii_device_info },	/* Hawaii */
255 	{ 0x67BA, &hawaii_device_info },	/* Hawaii */
256 	{ 0x67BE, &hawaii_device_info },	/* Hawaii */
257 	{ 0x6920, &tonga_device_info },		/* Tonga */
258 	{ 0x6921, &tonga_device_info },		/* Tonga */
259 	{ 0x6928, &tonga_device_info },		/* Tonga */
260 	{ 0x6929, &tonga_device_info },		/* Tonga */
261 	{ 0x692B, &tonga_device_info },		/* Tonga */
262 	{ 0x692F, &tonga_vf_device_info },	/* Tonga vf */
263 	{ 0x6938, &tonga_device_info },		/* Tonga */
264 	{ 0x6939, &tonga_device_info },		/* Tonga */
265 	{ 0x7300, &fiji_device_info },		/* Fiji */
266 	{ 0x730F, &fiji_vf_device_info },	/* Fiji vf*/
267 	{ 0x67C0, &polaris10_device_info },	/* Polaris10 */
268 	{ 0x67C1, &polaris10_device_info },	/* Polaris10 */
269 	{ 0x67C2, &polaris10_device_info },	/* Polaris10 */
270 	{ 0x67C4, &polaris10_device_info },	/* Polaris10 */
271 	{ 0x67C7, &polaris10_device_info },	/* Polaris10 */
272 	{ 0x67C8, &polaris10_device_info },	/* Polaris10 */
273 	{ 0x67C9, &polaris10_device_info },	/* Polaris10 */
274 	{ 0x67CA, &polaris10_device_info },	/* Polaris10 */
275 	{ 0x67CC, &polaris10_device_info },	/* Polaris10 */
276 	{ 0x67CF, &polaris10_device_info },	/* Polaris10 */
277 	{ 0x67D0, &polaris10_vf_device_info },	/* Polaris10 vf*/
278 	{ 0x67DF, &polaris10_device_info },	/* Polaris10 */
279 	{ 0x67E0, &polaris11_device_info },	/* Polaris11 */
280 	{ 0x67E1, &polaris11_device_info },	/* Polaris11 */
281 	{ 0x67E3, &polaris11_device_info },	/* Polaris11 */
282 	{ 0x67E7, &polaris11_device_info },	/* Polaris11 */
283 	{ 0x67E8, &polaris11_device_info },	/* Polaris11 */
284 	{ 0x67E9, &polaris11_device_info },	/* Polaris11 */
285 	{ 0x67EB, &polaris11_device_info },	/* Polaris11 */
286 	{ 0x67EF, &polaris11_device_info },	/* Polaris11 */
287 	{ 0x67FF, &polaris11_device_info },	/* Polaris11 */
288 	{ 0x6860, &vega10_device_info },	/* Vega10 */
289 	{ 0x6861, &vega10_device_info },	/* Vega10 */
290 	{ 0x6862, &vega10_device_info },	/* Vega10 */
291 	{ 0x6863, &vega10_device_info },	/* Vega10 */
292 	{ 0x6864, &vega10_device_info },	/* Vega10 */
293 	{ 0x6867, &vega10_device_info },	/* Vega10 */
294 	{ 0x6868, &vega10_device_info },	/* Vega10 */
295 	{ 0x686C, &vega10_vf_device_info },	/* Vega10  vf*/
296 	{ 0x687F, &vega10_device_info },	/* Vega10 */
297 };
298 
299 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
300 				unsigned int chunk_size);
301 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
302 
303 static int kfd_resume(struct kfd_dev *kfd);
304 
305 static const struct kfd_device_info *lookup_device_info(unsigned short did)
306 {
307 	size_t i;
308 
309 	for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
310 		if (supported_devices[i].did == did) {
311 			WARN_ON(!supported_devices[i].device_info);
312 			return supported_devices[i].device_info;
313 		}
314 	}
315 
316 	dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
317 		 did);
318 
319 	return NULL;
320 }
321 
322 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
323 	struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
324 {
325 	struct kfd_dev *kfd;
326 	int ret;
327 	const struct kfd_device_info *device_info =
328 					lookup_device_info(pdev->device);
329 
330 	if (!device_info) {
331 		dev_err(kfd_device, "kgd2kfd_probe failed\n");
332 		return NULL;
333 	}
334 
335 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
336 	 * 32 and 64-bit requests are possible and must be
337 	 * supported.
338 	 */
339 	ret = pci_enable_atomic_ops_to_root(pdev,
340 			PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
341 			PCI_EXP_DEVCAP2_ATOMIC_COMP64);
342 	if (device_info->needs_pci_atomics && ret < 0) {
343 		dev_info(kfd_device,
344 			 "skipped device %x:%x, PCI rejects atomics\n",
345 			 pdev->vendor, pdev->device);
346 		return NULL;
347 	}
348 
349 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
350 	if (!kfd)
351 		return NULL;
352 
353 	kfd->kgd = kgd;
354 	kfd->device_info = device_info;
355 	kfd->pdev = pdev;
356 	kfd->init_complete = false;
357 	kfd->kfd2kgd = f2g;
358 
359 	mutex_init(&kfd->doorbell_mutex);
360 	memset(&kfd->doorbell_available_index, 0,
361 		sizeof(kfd->doorbell_available_index));
362 
363 	return kfd;
364 }
365 
366 static void kfd_cwsr_init(struct kfd_dev *kfd)
367 {
368 	if (cwsr_enable && kfd->device_info->supports_cwsr) {
369 		if (kfd->device_info->asic_family < CHIP_VEGA10) {
370 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
371 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
372 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
373 		} else {
374 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
375 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
376 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
377 		}
378 
379 		kfd->cwsr_enabled = true;
380 	}
381 }
382 
383 bool kgd2kfd_device_init(struct kfd_dev *kfd,
384 			 const struct kgd2kfd_shared_resources *gpu_resources)
385 {
386 	unsigned int size;
387 
388 	kfd->shared_resources = *gpu_resources;
389 
390 	kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
391 	kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
392 	kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
393 			- kfd->vm_info.first_vmid_kfd + 1;
394 
395 	/* Verify module parameters regarding mapped process number*/
396 	if ((hws_max_conc_proc < 0)
397 			|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
398 		dev_err(kfd_device,
399 			"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
400 			hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
401 			kfd->vm_info.vmid_num_kfd);
402 		kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
403 	} else
404 		kfd->max_proc_per_quantum = hws_max_conc_proc;
405 
406 	/* calculate max size of mqds needed for queues */
407 	size = max_num_of_queues_per_device *
408 			kfd->device_info->mqd_size_aligned;
409 
410 	/*
411 	 * calculate max size of runlist packet.
412 	 * There can be only 2 packets at once
413 	 */
414 	size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
415 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
416 		+ sizeof(struct pm4_mes_runlist)) * 2;
417 
418 	/* Add size of HIQ & DIQ */
419 	size += KFD_KERNEL_QUEUE_SIZE * 2;
420 
421 	/* add another 512KB for all other allocations on gart (HPD, fences) */
422 	size += 512 * 1024;
423 
424 	if (kfd->kfd2kgd->init_gtt_mem_allocation(
425 			kfd->kgd, size, &kfd->gtt_mem,
426 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr)){
427 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
428 		goto out;
429 	}
430 
431 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
432 
433 	/* Initialize GTT sa with 512 byte chunk size */
434 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
435 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
436 		goto kfd_gtt_sa_init_error;
437 	}
438 
439 	if (kfd_doorbell_init(kfd)) {
440 		dev_err(kfd_device,
441 			"Error initializing doorbell aperture\n");
442 		goto kfd_doorbell_error;
443 	}
444 
445 	if (kfd_topology_add_device(kfd)) {
446 		dev_err(kfd_device, "Error adding device to topology\n");
447 		goto kfd_topology_add_device_error;
448 	}
449 
450 	if (kfd_interrupt_init(kfd)) {
451 		dev_err(kfd_device, "Error initializing interrupts\n");
452 		goto kfd_interrupt_error;
453 	}
454 
455 	kfd->dqm = device_queue_manager_init(kfd);
456 	if (!kfd->dqm) {
457 		dev_err(kfd_device, "Error initializing queue manager\n");
458 		goto device_queue_manager_error;
459 	}
460 
461 	if (kfd_iommu_device_init(kfd)) {
462 		dev_err(kfd_device, "Error initializing iommuv2\n");
463 		goto device_iommu_error;
464 	}
465 
466 	kfd_cwsr_init(kfd);
467 
468 	if (kfd_resume(kfd))
469 		goto kfd_resume_error;
470 
471 	kfd->dbgmgr = NULL;
472 
473 	kfd->init_complete = true;
474 	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
475 		 kfd->pdev->device);
476 
477 	pr_debug("Starting kfd with the following scheduling policy %d\n",
478 		kfd->dqm->sched_policy);
479 
480 	goto out;
481 
482 kfd_resume_error:
483 device_iommu_error:
484 	device_queue_manager_uninit(kfd->dqm);
485 device_queue_manager_error:
486 	kfd_interrupt_exit(kfd);
487 kfd_interrupt_error:
488 	kfd_topology_remove_device(kfd);
489 kfd_topology_add_device_error:
490 	kfd_doorbell_fini(kfd);
491 kfd_doorbell_error:
492 	kfd_gtt_sa_fini(kfd);
493 kfd_gtt_sa_init_error:
494 	kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
495 	dev_err(kfd_device,
496 		"device %x:%x NOT added due to errors\n",
497 		kfd->pdev->vendor, kfd->pdev->device);
498 out:
499 	return kfd->init_complete;
500 }
501 
502 void kgd2kfd_device_exit(struct kfd_dev *kfd)
503 {
504 	if (kfd->init_complete) {
505 		kgd2kfd_suspend(kfd);
506 		device_queue_manager_uninit(kfd->dqm);
507 		kfd_interrupt_exit(kfd);
508 		kfd_topology_remove_device(kfd);
509 		kfd_doorbell_fini(kfd);
510 		kfd_gtt_sa_fini(kfd);
511 		kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
512 	}
513 
514 	kfree(kfd);
515 }
516 
517 void kgd2kfd_suspend(struct kfd_dev *kfd)
518 {
519 	if (!kfd->init_complete)
520 		return;
521 
522 	/* For first KFD device suspend all the KFD processes */
523 	if (atomic_inc_return(&kfd_device_suspended) == 1)
524 		kfd_suspend_all_processes();
525 
526 	kfd->dqm->ops.stop(kfd->dqm);
527 
528 	kfd_iommu_suspend(kfd);
529 }
530 
531 int kgd2kfd_resume(struct kfd_dev *kfd)
532 {
533 	int ret, count;
534 
535 	if (!kfd->init_complete)
536 		return 0;
537 
538 	ret = kfd_resume(kfd);
539 	if (ret)
540 		return ret;
541 
542 	count = atomic_dec_return(&kfd_device_suspended);
543 	WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
544 	if (count == 0)
545 		ret = kfd_resume_all_processes();
546 
547 	return ret;
548 }
549 
550 static int kfd_resume(struct kfd_dev *kfd)
551 {
552 	int err = 0;
553 
554 	err = kfd_iommu_resume(kfd);
555 	if (err) {
556 		dev_err(kfd_device,
557 			"Failed to resume IOMMU for device %x:%x\n",
558 			kfd->pdev->vendor, kfd->pdev->device);
559 		return err;
560 	}
561 
562 	err = kfd->dqm->ops.start(kfd->dqm);
563 	if (err) {
564 		dev_err(kfd_device,
565 			"Error starting queue manager for device %x:%x\n",
566 			kfd->pdev->vendor, kfd->pdev->device);
567 		goto dqm_start_error;
568 	}
569 
570 	return err;
571 
572 dqm_start_error:
573 	kfd_iommu_suspend(kfd);
574 	return err;
575 }
576 
577 /* This is called directly from KGD at ISR. */
578 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
579 {
580 	if (!kfd->init_complete)
581 		return;
582 
583 	spin_lock(&kfd->interrupt_lock);
584 
585 	if (kfd->interrupts_active
586 	    && interrupt_is_wanted(kfd, ih_ring_entry)
587 	    && enqueue_ih_ring_entry(kfd, ih_ring_entry))
588 		queue_work(kfd->ih_wq, &kfd->interrupt_work);
589 
590 	spin_unlock(&kfd->interrupt_lock);
591 }
592 
593 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
594 {
595 	struct kfd_process *p;
596 	int r;
597 
598 	/* Because we are called from arbitrary context (workqueue) as opposed
599 	 * to process context, kfd_process could attempt to exit while we are
600 	 * running so the lookup function increments the process ref count.
601 	 */
602 	p = kfd_lookup_process_by_mm(mm);
603 	if (!p)
604 		return -ESRCH;
605 
606 	r = kfd_process_evict_queues(p);
607 
608 	kfd_unref_process(p);
609 	return r;
610 }
611 
612 int kgd2kfd_resume_mm(struct mm_struct *mm)
613 {
614 	struct kfd_process *p;
615 	int r;
616 
617 	/* Because we are called from arbitrary context (workqueue) as opposed
618 	 * to process context, kfd_process could attempt to exit while we are
619 	 * running so the lookup function increments the process ref count.
620 	 */
621 	p = kfd_lookup_process_by_mm(mm);
622 	if (!p)
623 		return -ESRCH;
624 
625 	r = kfd_process_restore_queues(p);
626 
627 	kfd_unref_process(p);
628 	return r;
629 }
630 
631 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
632  *   prepare for safe eviction of KFD BOs that belong to the specified
633  *   process.
634  *
635  * @mm: mm_struct that identifies the specified KFD process
636  * @fence: eviction fence attached to KFD process BOs
637  *
638  */
639 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
640 					       struct dma_fence *fence)
641 {
642 	struct kfd_process *p;
643 	unsigned long active_time;
644 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
645 
646 	if (!fence)
647 		return -EINVAL;
648 
649 	if (dma_fence_is_signaled(fence))
650 		return 0;
651 
652 	p = kfd_lookup_process_by_mm(mm);
653 	if (!p)
654 		return -ENODEV;
655 
656 	if (fence->seqno == p->last_eviction_seqno)
657 		goto out;
658 
659 	p->last_eviction_seqno = fence->seqno;
660 
661 	/* Avoid KFD process starvation. Wait for at least
662 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
663 	 */
664 	active_time = get_jiffies_64() - p->last_restore_timestamp;
665 	if (delay_jiffies > active_time)
666 		delay_jiffies -= active_time;
667 	else
668 		delay_jiffies = 0;
669 
670 	/* During process initialization eviction_work.dwork is initialized
671 	 * to kfd_evict_bo_worker
672 	 */
673 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
674 out:
675 	kfd_unref_process(p);
676 	return 0;
677 }
678 
679 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
680 				unsigned int chunk_size)
681 {
682 	unsigned int num_of_longs;
683 
684 	if (WARN_ON(buf_size < chunk_size))
685 		return -EINVAL;
686 	if (WARN_ON(buf_size == 0))
687 		return -EINVAL;
688 	if (WARN_ON(chunk_size == 0))
689 		return -EINVAL;
690 
691 	kfd->gtt_sa_chunk_size = chunk_size;
692 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
693 
694 	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
695 		BITS_PER_LONG;
696 
697 	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
698 
699 	if (!kfd->gtt_sa_bitmap)
700 		return -ENOMEM;
701 
702 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
703 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
704 
705 	mutex_init(&kfd->gtt_sa_lock);
706 
707 	return 0;
708 
709 }
710 
711 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
712 {
713 	mutex_destroy(&kfd->gtt_sa_lock);
714 	kfree(kfd->gtt_sa_bitmap);
715 }
716 
717 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
718 						unsigned int bit_num,
719 						unsigned int chunk_size)
720 {
721 	return start_addr + bit_num * chunk_size;
722 }
723 
724 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
725 						unsigned int bit_num,
726 						unsigned int chunk_size)
727 {
728 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
729 }
730 
731 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
732 			struct kfd_mem_obj **mem_obj)
733 {
734 	unsigned int found, start_search, cur_size;
735 
736 	if (size == 0)
737 		return -EINVAL;
738 
739 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
740 		return -ENOMEM;
741 
742 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_NOIO);
743 	if ((*mem_obj) == NULL)
744 		return -ENOMEM;
745 
746 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
747 
748 	start_search = 0;
749 
750 	mutex_lock(&kfd->gtt_sa_lock);
751 
752 kfd_gtt_restart_search:
753 	/* Find the first chunk that is free */
754 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
755 					kfd->gtt_sa_num_of_chunks,
756 					start_search);
757 
758 	pr_debug("Found = %d\n", found);
759 
760 	/* If there wasn't any free chunk, bail out */
761 	if (found == kfd->gtt_sa_num_of_chunks)
762 		goto kfd_gtt_no_free_chunk;
763 
764 	/* Update fields of mem_obj */
765 	(*mem_obj)->range_start = found;
766 	(*mem_obj)->range_end = found;
767 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
768 					kfd->gtt_start_gpu_addr,
769 					found,
770 					kfd->gtt_sa_chunk_size);
771 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
772 					kfd->gtt_start_cpu_ptr,
773 					found,
774 					kfd->gtt_sa_chunk_size);
775 
776 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
777 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
778 
779 	/* If we need only one chunk, mark it as allocated and get out */
780 	if (size <= kfd->gtt_sa_chunk_size) {
781 		pr_debug("Single bit\n");
782 		set_bit(found, kfd->gtt_sa_bitmap);
783 		goto kfd_gtt_out;
784 	}
785 
786 	/* Otherwise, try to see if we have enough contiguous chunks */
787 	cur_size = size - kfd->gtt_sa_chunk_size;
788 	do {
789 		(*mem_obj)->range_end =
790 			find_next_zero_bit(kfd->gtt_sa_bitmap,
791 					kfd->gtt_sa_num_of_chunks, ++found);
792 		/*
793 		 * If next free chunk is not contiguous than we need to
794 		 * restart our search from the last free chunk we found (which
795 		 * wasn't contiguous to the previous ones
796 		 */
797 		if ((*mem_obj)->range_end != found) {
798 			start_search = found;
799 			goto kfd_gtt_restart_search;
800 		}
801 
802 		/*
803 		 * If we reached end of buffer, bail out with error
804 		 */
805 		if (found == kfd->gtt_sa_num_of_chunks)
806 			goto kfd_gtt_no_free_chunk;
807 
808 		/* Check if we don't need another chunk */
809 		if (cur_size <= kfd->gtt_sa_chunk_size)
810 			cur_size = 0;
811 		else
812 			cur_size -= kfd->gtt_sa_chunk_size;
813 
814 	} while (cur_size > 0);
815 
816 	pr_debug("range_start = %d, range_end = %d\n",
817 		(*mem_obj)->range_start, (*mem_obj)->range_end);
818 
819 	/* Mark the chunks as allocated */
820 	for (found = (*mem_obj)->range_start;
821 		found <= (*mem_obj)->range_end;
822 		found++)
823 		set_bit(found, kfd->gtt_sa_bitmap);
824 
825 kfd_gtt_out:
826 	mutex_unlock(&kfd->gtt_sa_lock);
827 	return 0;
828 
829 kfd_gtt_no_free_chunk:
830 	pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
831 	mutex_unlock(&kfd->gtt_sa_lock);
832 	kfree(mem_obj);
833 	return -ENOMEM;
834 }
835 
836 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
837 {
838 	unsigned int bit;
839 
840 	/* Act like kfree when trying to free a NULL object */
841 	if (!mem_obj)
842 		return 0;
843 
844 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
845 			mem_obj, mem_obj->range_start, mem_obj->range_end);
846 
847 	mutex_lock(&kfd->gtt_sa_lock);
848 
849 	/* Mark the chunks as free */
850 	for (bit = mem_obj->range_start;
851 		bit <= mem_obj->range_end;
852 		bit++)
853 		clear_bit(bit, kfd->gtt_sa_bitmap);
854 
855 	mutex_unlock(&kfd->gtt_sa_lock);
856 
857 	kfree(mem_obj);
858 	return 0;
859 }
860