1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
32 
33 #define MQD_SIZE_ALIGNED 768
34 
35 /*
36  * kfd_locked is used to lock the kfd driver during suspend or reset
37  * once locked, kfd driver will stop any further GPU execution.
38  * create process (open) will return -EAGAIN.
39  */
40 static atomic_t kfd_locked = ATOMIC_INIT(0);
41 
42 #ifdef KFD_SUPPORT_IOMMU_V2
43 static const struct kfd_device_info kaveri_device_info = {
44 	.asic_family = CHIP_KAVERI,
45 	.max_pasid_bits = 16,
46 	/* max num of queues for KV.TODO should be a dynamic value */
47 	.max_no_of_hqd	= 24,
48 	.doorbell_size  = 4,
49 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
50 	.event_interrupt_class = &event_interrupt_class_cik,
51 	.num_of_watch_points = 4,
52 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
53 	.supports_cwsr = false,
54 	.needs_iommu_device = true,
55 	.needs_pci_atomics = false,
56 	.num_sdma_engines = 2,
57 	.num_xgmi_sdma_engines = 0,
58 	.num_sdma_queues_per_engine = 2,
59 };
60 
61 static const struct kfd_device_info carrizo_device_info = {
62 	.asic_family = CHIP_CARRIZO,
63 	.max_pasid_bits = 16,
64 	/* max num of queues for CZ.TODO should be a dynamic value */
65 	.max_no_of_hqd	= 24,
66 	.doorbell_size  = 4,
67 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
68 	.event_interrupt_class = &event_interrupt_class_cik,
69 	.num_of_watch_points = 4,
70 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
71 	.supports_cwsr = true,
72 	.needs_iommu_device = true,
73 	.needs_pci_atomics = false,
74 	.num_sdma_engines = 2,
75 	.num_xgmi_sdma_engines = 0,
76 	.num_sdma_queues_per_engine = 2,
77 };
78 
79 static const struct kfd_device_info raven_device_info = {
80 	.asic_family = CHIP_RAVEN,
81 	.max_pasid_bits = 16,
82 	.max_no_of_hqd  = 24,
83 	.doorbell_size  = 8,
84 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
85 	.event_interrupt_class = &event_interrupt_class_v9,
86 	.num_of_watch_points = 4,
87 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
88 	.supports_cwsr = true,
89 	.needs_iommu_device = true,
90 	.needs_pci_atomics = true,
91 	.num_sdma_engines = 1,
92 	.num_xgmi_sdma_engines = 0,
93 	.num_sdma_queues_per_engine = 2,
94 };
95 #endif
96 
97 static const struct kfd_device_info hawaii_device_info = {
98 	.asic_family = CHIP_HAWAII,
99 	.max_pasid_bits = 16,
100 	/* max num of queues for KV.TODO should be a dynamic value */
101 	.max_no_of_hqd	= 24,
102 	.doorbell_size  = 4,
103 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
104 	.event_interrupt_class = &event_interrupt_class_cik,
105 	.num_of_watch_points = 4,
106 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
107 	.supports_cwsr = false,
108 	.needs_iommu_device = false,
109 	.needs_pci_atomics = false,
110 	.num_sdma_engines = 2,
111 	.num_xgmi_sdma_engines = 0,
112 	.num_sdma_queues_per_engine = 2,
113 };
114 
115 static const struct kfd_device_info tonga_device_info = {
116 	.asic_family = CHIP_TONGA,
117 	.max_pasid_bits = 16,
118 	.max_no_of_hqd  = 24,
119 	.doorbell_size  = 4,
120 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
121 	.event_interrupt_class = &event_interrupt_class_cik,
122 	.num_of_watch_points = 4,
123 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
124 	.supports_cwsr = false,
125 	.needs_iommu_device = false,
126 	.needs_pci_atomics = true,
127 	.num_sdma_engines = 2,
128 	.num_xgmi_sdma_engines = 0,
129 	.num_sdma_queues_per_engine = 2,
130 };
131 
132 static const struct kfd_device_info fiji_device_info = {
133 	.asic_family = CHIP_FIJI,
134 	.max_pasid_bits = 16,
135 	.max_no_of_hqd  = 24,
136 	.doorbell_size  = 4,
137 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
138 	.event_interrupt_class = &event_interrupt_class_cik,
139 	.num_of_watch_points = 4,
140 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
141 	.supports_cwsr = true,
142 	.needs_iommu_device = false,
143 	.needs_pci_atomics = true,
144 	.num_sdma_engines = 2,
145 	.num_xgmi_sdma_engines = 0,
146 	.num_sdma_queues_per_engine = 2,
147 };
148 
149 static const struct kfd_device_info fiji_vf_device_info = {
150 	.asic_family = CHIP_FIJI,
151 	.max_pasid_bits = 16,
152 	.max_no_of_hqd  = 24,
153 	.doorbell_size  = 4,
154 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
155 	.event_interrupt_class = &event_interrupt_class_cik,
156 	.num_of_watch_points = 4,
157 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
158 	.supports_cwsr = true,
159 	.needs_iommu_device = false,
160 	.needs_pci_atomics = false,
161 	.num_sdma_engines = 2,
162 	.num_xgmi_sdma_engines = 0,
163 	.num_sdma_queues_per_engine = 2,
164 };
165 
166 
167 static const struct kfd_device_info polaris10_device_info = {
168 	.asic_family = CHIP_POLARIS10,
169 	.max_pasid_bits = 16,
170 	.max_no_of_hqd  = 24,
171 	.doorbell_size  = 4,
172 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
173 	.event_interrupt_class = &event_interrupt_class_cik,
174 	.num_of_watch_points = 4,
175 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
176 	.supports_cwsr = true,
177 	.needs_iommu_device = false,
178 	.needs_pci_atomics = true,
179 	.num_sdma_engines = 2,
180 	.num_xgmi_sdma_engines = 0,
181 	.num_sdma_queues_per_engine = 2,
182 };
183 
184 static const struct kfd_device_info polaris10_vf_device_info = {
185 	.asic_family = CHIP_POLARIS10,
186 	.max_pasid_bits = 16,
187 	.max_no_of_hqd  = 24,
188 	.doorbell_size  = 4,
189 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
190 	.event_interrupt_class = &event_interrupt_class_cik,
191 	.num_of_watch_points = 4,
192 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
193 	.supports_cwsr = true,
194 	.needs_iommu_device = false,
195 	.needs_pci_atomics = false,
196 	.num_sdma_engines = 2,
197 	.num_xgmi_sdma_engines = 0,
198 	.num_sdma_queues_per_engine = 2,
199 };
200 
201 static const struct kfd_device_info polaris11_device_info = {
202 	.asic_family = CHIP_POLARIS11,
203 	.max_pasid_bits = 16,
204 	.max_no_of_hqd  = 24,
205 	.doorbell_size  = 4,
206 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
207 	.event_interrupt_class = &event_interrupt_class_cik,
208 	.num_of_watch_points = 4,
209 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
210 	.supports_cwsr = true,
211 	.needs_iommu_device = false,
212 	.needs_pci_atomics = true,
213 	.num_sdma_engines = 2,
214 	.num_xgmi_sdma_engines = 0,
215 	.num_sdma_queues_per_engine = 2,
216 };
217 
218 static const struct kfd_device_info polaris12_device_info = {
219 	.asic_family = CHIP_POLARIS12,
220 	.max_pasid_bits = 16,
221 	.max_no_of_hqd  = 24,
222 	.doorbell_size  = 4,
223 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
224 	.event_interrupt_class = &event_interrupt_class_cik,
225 	.num_of_watch_points = 4,
226 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
227 	.supports_cwsr = true,
228 	.needs_iommu_device = false,
229 	.needs_pci_atomics = true,
230 	.num_sdma_engines = 2,
231 	.num_xgmi_sdma_engines = 0,
232 	.num_sdma_queues_per_engine = 2,
233 };
234 
235 static const struct kfd_device_info vegam_device_info = {
236 	.asic_family = CHIP_VEGAM,
237 	.max_pasid_bits = 16,
238 	.max_no_of_hqd  = 24,
239 	.doorbell_size  = 4,
240 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
241 	.event_interrupt_class = &event_interrupt_class_cik,
242 	.num_of_watch_points = 4,
243 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
244 	.supports_cwsr = true,
245 	.needs_iommu_device = false,
246 	.needs_pci_atomics = true,
247 	.num_sdma_engines = 2,
248 	.num_xgmi_sdma_engines = 0,
249 	.num_sdma_queues_per_engine = 2,
250 };
251 
252 static const struct kfd_device_info vega10_device_info = {
253 	.asic_family = CHIP_VEGA10,
254 	.max_pasid_bits = 16,
255 	.max_no_of_hqd  = 24,
256 	.doorbell_size  = 8,
257 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
258 	.event_interrupt_class = &event_interrupt_class_v9,
259 	.num_of_watch_points = 4,
260 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
261 	.supports_cwsr = true,
262 	.needs_iommu_device = false,
263 	.needs_pci_atomics = false,
264 	.num_sdma_engines = 2,
265 	.num_xgmi_sdma_engines = 0,
266 	.num_sdma_queues_per_engine = 2,
267 };
268 
269 static const struct kfd_device_info vega10_vf_device_info = {
270 	.asic_family = CHIP_VEGA10,
271 	.max_pasid_bits = 16,
272 	.max_no_of_hqd  = 24,
273 	.doorbell_size  = 8,
274 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
275 	.event_interrupt_class = &event_interrupt_class_v9,
276 	.num_of_watch_points = 4,
277 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
278 	.supports_cwsr = true,
279 	.needs_iommu_device = false,
280 	.needs_pci_atomics = false,
281 	.num_sdma_engines = 2,
282 	.num_xgmi_sdma_engines = 0,
283 	.num_sdma_queues_per_engine = 2,
284 };
285 
286 static const struct kfd_device_info vega12_device_info = {
287 	.asic_family = CHIP_VEGA12,
288 	.max_pasid_bits = 16,
289 	.max_no_of_hqd  = 24,
290 	.doorbell_size  = 8,
291 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
292 	.event_interrupt_class = &event_interrupt_class_v9,
293 	.num_of_watch_points = 4,
294 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
295 	.supports_cwsr = true,
296 	.needs_iommu_device = false,
297 	.needs_pci_atomics = false,
298 	.num_sdma_engines = 2,
299 	.num_xgmi_sdma_engines = 0,
300 	.num_sdma_queues_per_engine = 2,
301 };
302 
303 static const struct kfd_device_info vega20_device_info = {
304 	.asic_family = CHIP_VEGA20,
305 	.max_pasid_bits = 16,
306 	.max_no_of_hqd	= 24,
307 	.doorbell_size	= 8,
308 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
309 	.event_interrupt_class = &event_interrupt_class_v9,
310 	.num_of_watch_points = 4,
311 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
312 	.supports_cwsr = true,
313 	.needs_iommu_device = false,
314 	.needs_pci_atomics = false,
315 	.num_sdma_engines = 2,
316 	.num_xgmi_sdma_engines = 0,
317 	.num_sdma_queues_per_engine = 8,
318 };
319 
320 static const struct kfd_device_info navi10_device_info = {
321 	.asic_family = CHIP_NAVI10,
322 	.max_pasid_bits = 16,
323 	.max_no_of_hqd  = 24,
324 	.doorbell_size  = 8,
325 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
326 	.event_interrupt_class = &event_interrupt_class_v9,
327 	.num_of_watch_points = 4,
328 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
329 	.needs_iommu_device = false,
330 	.supports_cwsr = true,
331 	.needs_pci_atomics = false,
332 	.num_sdma_engines = 2,
333 	.num_xgmi_sdma_engines = 0,
334 	.num_sdma_queues_per_engine = 8,
335 };
336 
337 struct kfd_deviceid {
338 	unsigned short did;
339 	const struct kfd_device_info *device_info;
340 };
341 
342 static const struct kfd_deviceid supported_devices[] = {
343 #ifdef KFD_SUPPORT_IOMMU_V2
344 	{ 0x1304, &kaveri_device_info },	/* Kaveri */
345 	{ 0x1305, &kaveri_device_info },	/* Kaveri */
346 	{ 0x1306, &kaveri_device_info },	/* Kaveri */
347 	{ 0x1307, &kaveri_device_info },	/* Kaveri */
348 	{ 0x1309, &kaveri_device_info },	/* Kaveri */
349 	{ 0x130A, &kaveri_device_info },	/* Kaveri */
350 	{ 0x130B, &kaveri_device_info },	/* Kaveri */
351 	{ 0x130C, &kaveri_device_info },	/* Kaveri */
352 	{ 0x130D, &kaveri_device_info },	/* Kaveri */
353 	{ 0x130E, &kaveri_device_info },	/* Kaveri */
354 	{ 0x130F, &kaveri_device_info },	/* Kaveri */
355 	{ 0x1310, &kaveri_device_info },	/* Kaveri */
356 	{ 0x1311, &kaveri_device_info },	/* Kaveri */
357 	{ 0x1312, &kaveri_device_info },	/* Kaveri */
358 	{ 0x1313, &kaveri_device_info },	/* Kaveri */
359 	{ 0x1315, &kaveri_device_info },	/* Kaveri */
360 	{ 0x1316, &kaveri_device_info },	/* Kaveri */
361 	{ 0x1317, &kaveri_device_info },	/* Kaveri */
362 	{ 0x1318, &kaveri_device_info },	/* Kaveri */
363 	{ 0x131B, &kaveri_device_info },	/* Kaveri */
364 	{ 0x131C, &kaveri_device_info },	/* Kaveri */
365 	{ 0x131D, &kaveri_device_info },	/* Kaveri */
366 	{ 0x9870, &carrizo_device_info },	/* Carrizo */
367 	{ 0x9874, &carrizo_device_info },	/* Carrizo */
368 	{ 0x9875, &carrizo_device_info },	/* Carrizo */
369 	{ 0x9876, &carrizo_device_info },	/* Carrizo */
370 	{ 0x9877, &carrizo_device_info },	/* Carrizo */
371 	{ 0x15DD, &raven_device_info },		/* Raven */
372 	{ 0x15D8, &raven_device_info },		/* Raven */
373 #endif
374 	{ 0x67A0, &hawaii_device_info },	/* Hawaii */
375 	{ 0x67A1, &hawaii_device_info },	/* Hawaii */
376 	{ 0x67A2, &hawaii_device_info },	/* Hawaii */
377 	{ 0x67A8, &hawaii_device_info },	/* Hawaii */
378 	{ 0x67A9, &hawaii_device_info },	/* Hawaii */
379 	{ 0x67AA, &hawaii_device_info },	/* Hawaii */
380 	{ 0x67B0, &hawaii_device_info },	/* Hawaii */
381 	{ 0x67B1, &hawaii_device_info },	/* Hawaii */
382 	{ 0x67B8, &hawaii_device_info },	/* Hawaii */
383 	{ 0x67B9, &hawaii_device_info },	/* Hawaii */
384 	{ 0x67BA, &hawaii_device_info },	/* Hawaii */
385 	{ 0x67BE, &hawaii_device_info },	/* Hawaii */
386 	{ 0x6920, &tonga_device_info },		/* Tonga */
387 	{ 0x6921, &tonga_device_info },		/* Tonga */
388 	{ 0x6928, &tonga_device_info },		/* Tonga */
389 	{ 0x6929, &tonga_device_info },		/* Tonga */
390 	{ 0x692B, &tonga_device_info },		/* Tonga */
391 	{ 0x6938, &tonga_device_info },		/* Tonga */
392 	{ 0x6939, &tonga_device_info },		/* Tonga */
393 	{ 0x7300, &fiji_device_info },		/* Fiji */
394 	{ 0x730F, &fiji_vf_device_info },	/* Fiji vf*/
395 	{ 0x67C0, &polaris10_device_info },	/* Polaris10 */
396 	{ 0x67C1, &polaris10_device_info },	/* Polaris10 */
397 	{ 0x67C2, &polaris10_device_info },	/* Polaris10 */
398 	{ 0x67C4, &polaris10_device_info },	/* Polaris10 */
399 	{ 0x67C7, &polaris10_device_info },	/* Polaris10 */
400 	{ 0x67C8, &polaris10_device_info },	/* Polaris10 */
401 	{ 0x67C9, &polaris10_device_info },	/* Polaris10 */
402 	{ 0x67CA, &polaris10_device_info },	/* Polaris10 */
403 	{ 0x67CC, &polaris10_device_info },	/* Polaris10 */
404 	{ 0x67CF, &polaris10_device_info },	/* Polaris10 */
405 	{ 0x67D0, &polaris10_vf_device_info },	/* Polaris10 vf*/
406 	{ 0x67DF, &polaris10_device_info },	/* Polaris10 */
407 	{ 0x6FDF, &polaris10_device_info },	/* Polaris10 */
408 	{ 0x67E0, &polaris11_device_info },	/* Polaris11 */
409 	{ 0x67E1, &polaris11_device_info },	/* Polaris11 */
410 	{ 0x67E3, &polaris11_device_info },	/* Polaris11 */
411 	{ 0x67E7, &polaris11_device_info },	/* Polaris11 */
412 	{ 0x67E8, &polaris11_device_info },	/* Polaris11 */
413 	{ 0x67E9, &polaris11_device_info },	/* Polaris11 */
414 	{ 0x67EB, &polaris11_device_info },	/* Polaris11 */
415 	{ 0x67EF, &polaris11_device_info },	/* Polaris11 */
416 	{ 0x67FF, &polaris11_device_info },	/* Polaris11 */
417 	{ 0x6980, &polaris12_device_info },	/* Polaris12 */
418 	{ 0x6981, &polaris12_device_info },	/* Polaris12 */
419 	{ 0x6985, &polaris12_device_info },	/* Polaris12 */
420 	{ 0x6986, &polaris12_device_info },	/* Polaris12 */
421 	{ 0x6987, &polaris12_device_info },	/* Polaris12 */
422 	{ 0x6995, &polaris12_device_info },	/* Polaris12 */
423 	{ 0x6997, &polaris12_device_info },	/* Polaris12 */
424 	{ 0x699F, &polaris12_device_info },	/* Polaris12 */
425 	{ 0x694C, &vegam_device_info },		/* VegaM */
426 	{ 0x694E, &vegam_device_info },		/* VegaM */
427 	{ 0x694F, &vegam_device_info },		/* VegaM */
428 	{ 0x6860, &vega10_device_info },	/* Vega10 */
429 	{ 0x6861, &vega10_device_info },	/* Vega10 */
430 	{ 0x6862, &vega10_device_info },	/* Vega10 */
431 	{ 0x6863, &vega10_device_info },	/* Vega10 */
432 	{ 0x6864, &vega10_device_info },	/* Vega10 */
433 	{ 0x6867, &vega10_device_info },	/* Vega10 */
434 	{ 0x6868, &vega10_device_info },	/* Vega10 */
435 	{ 0x6869, &vega10_device_info },	/* Vega10 */
436 	{ 0x686A, &vega10_device_info },	/* Vega10 */
437 	{ 0x686B, &vega10_device_info },	/* Vega10 */
438 	{ 0x686C, &vega10_vf_device_info },	/* Vega10  vf*/
439 	{ 0x686D, &vega10_device_info },	/* Vega10 */
440 	{ 0x686E, &vega10_device_info },	/* Vega10 */
441 	{ 0x686F, &vega10_device_info },	/* Vega10 */
442 	{ 0x687F, &vega10_device_info },	/* Vega10 */
443 	{ 0x69A0, &vega12_device_info },	/* Vega12 */
444 	{ 0x69A1, &vega12_device_info },	/* Vega12 */
445 	{ 0x69A2, &vega12_device_info },	/* Vega12 */
446 	{ 0x69A3, &vega12_device_info },	/* Vega12 */
447 	{ 0x69AF, &vega12_device_info },	/* Vega12 */
448 	{ 0x66a0, &vega20_device_info },	/* Vega20 */
449 	{ 0x66a1, &vega20_device_info },	/* Vega20 */
450 	{ 0x66a2, &vega20_device_info },	/* Vega20 */
451 	{ 0x66a3, &vega20_device_info },	/* Vega20 */
452 	{ 0x66a4, &vega20_device_info },	/* Vega20 */
453 	{ 0x66a7, &vega20_device_info },	/* Vega20 */
454 	{ 0x66af, &vega20_device_info },	/* Vega20 */
455 	/* Navi10 */
456 	{ 0x7310, &navi10_device_info },	/* Navi10 */
457 	{ 0x7312, &navi10_device_info },	/* Navi10 */
458 	{ 0x7318, &navi10_device_info },	/* Navi10 */
459 	{ 0x731a, &navi10_device_info },	/* Navi10 */
460 	{ 0x731f, &navi10_device_info },	/* Navi10 */
461 };
462 
463 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
464 				unsigned int chunk_size);
465 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
466 
467 static int kfd_resume(struct kfd_dev *kfd);
468 
469 static const struct kfd_device_info *lookup_device_info(unsigned short did)
470 {
471 	size_t i;
472 
473 	for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
474 		if (supported_devices[i].did == did) {
475 			WARN_ON(!supported_devices[i].device_info);
476 			return supported_devices[i].device_info;
477 		}
478 	}
479 
480 	dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
481 		 did);
482 
483 	return NULL;
484 }
485 
486 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
487 	struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
488 {
489 	struct kfd_dev *kfd;
490 	const struct kfd_device_info *device_info =
491 					lookup_device_info(pdev->device);
492 
493 	if (!device_info) {
494 		dev_err(kfd_device, "kgd2kfd_probe failed\n");
495 		return NULL;
496 	}
497 
498 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
499 	if (!kfd)
500 		return NULL;
501 
502 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
503 	 * 32 and 64-bit requests are possible and must be
504 	 * supported.
505 	 */
506 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd);
507 	if (device_info->needs_pci_atomics &&
508 	    !kfd->pci_atomic_requested) {
509 		dev_info(kfd_device,
510 			 "skipped device %x:%x, PCI rejects atomics\n",
511 			 pdev->vendor, pdev->device);
512 		kfree(kfd);
513 		return NULL;
514 	}
515 
516 	kfd->kgd = kgd;
517 	kfd->device_info = device_info;
518 	kfd->pdev = pdev;
519 	kfd->init_complete = false;
520 	kfd->kfd2kgd = f2g;
521 	atomic_set(&kfd->compute_profile, 0);
522 
523 	mutex_init(&kfd->doorbell_mutex);
524 	memset(&kfd->doorbell_available_index, 0,
525 		sizeof(kfd->doorbell_available_index));
526 
527 	atomic_set(&kfd->sram_ecc_flag, 0);
528 
529 	return kfd;
530 }
531 
532 static void kfd_cwsr_init(struct kfd_dev *kfd)
533 {
534 	if (cwsr_enable && kfd->device_info->supports_cwsr) {
535 		if (kfd->device_info->asic_family < CHIP_VEGA10) {
536 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
537 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
538 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
539 		} else if (kfd->device_info->asic_family < CHIP_NAVI10) {
540 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
541 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
542 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
543 		} else {
544 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
545 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
546 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
547 		}
548 
549 		kfd->cwsr_enabled = true;
550 	}
551 }
552 
553 bool kgd2kfd_device_init(struct kfd_dev *kfd,
554 			 const struct kgd2kfd_shared_resources *gpu_resources)
555 {
556 	unsigned int size;
557 
558 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
559 			KGD_ENGINE_MEC1);
560 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
561 			KGD_ENGINE_SDMA1);
562 	kfd->shared_resources = *gpu_resources;
563 
564 	kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
565 	kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
566 	kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
567 			- kfd->vm_info.first_vmid_kfd + 1;
568 
569 	/* Verify module parameters regarding mapped process number*/
570 	if ((hws_max_conc_proc < 0)
571 			|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
572 		dev_err(kfd_device,
573 			"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
574 			hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
575 			kfd->vm_info.vmid_num_kfd);
576 		kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
577 	} else
578 		kfd->max_proc_per_quantum = hws_max_conc_proc;
579 
580 	/* Allocate global GWS that is shared by all KFD processes */
581 	if (hws_gws_support && amdgpu_amdkfd_alloc_gws(kfd->kgd,
582 			amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws)) {
583 		dev_err(kfd_device, "Could not allocate %d gws\n",
584 			amdgpu_amdkfd_get_num_gws(kfd->kgd));
585 		goto out;
586 	}
587 	/* calculate max size of mqds needed for queues */
588 	size = max_num_of_queues_per_device *
589 			kfd->device_info->mqd_size_aligned;
590 
591 	/*
592 	 * calculate max size of runlist packet.
593 	 * There can be only 2 packets at once
594 	 */
595 	size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
596 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
597 		+ sizeof(struct pm4_mes_runlist)) * 2;
598 
599 	/* Add size of HIQ & DIQ */
600 	size += KFD_KERNEL_QUEUE_SIZE * 2;
601 
602 	/* add another 512KB for all other allocations on gart (HPD, fences) */
603 	size += 512 * 1024;
604 
605 	if (amdgpu_amdkfd_alloc_gtt_mem(
606 			kfd->kgd, size, &kfd->gtt_mem,
607 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
608 			false)) {
609 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
610 		goto alloc_gtt_mem_failure;
611 	}
612 
613 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
614 
615 	/* Initialize GTT sa with 512 byte chunk size */
616 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
617 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
618 		goto kfd_gtt_sa_init_error;
619 	}
620 
621 	if (kfd_doorbell_init(kfd)) {
622 		dev_err(kfd_device,
623 			"Error initializing doorbell aperture\n");
624 		goto kfd_doorbell_error;
625 	}
626 
627 	if (kfd->kfd2kgd->get_hive_id)
628 		kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
629 
630 	if (kfd_interrupt_init(kfd)) {
631 		dev_err(kfd_device, "Error initializing interrupts\n");
632 		goto kfd_interrupt_error;
633 	}
634 
635 	kfd->dqm = device_queue_manager_init(kfd);
636 	if (!kfd->dqm) {
637 		dev_err(kfd_device, "Error initializing queue manager\n");
638 		goto device_queue_manager_error;
639 	}
640 
641 	if (kfd_iommu_device_init(kfd)) {
642 		dev_err(kfd_device, "Error initializing iommuv2\n");
643 		goto device_iommu_error;
644 	}
645 
646 	kfd_cwsr_init(kfd);
647 
648 	if (kfd_resume(kfd))
649 		goto kfd_resume_error;
650 
651 	kfd->dbgmgr = NULL;
652 
653 	if (kfd_topology_add_device(kfd)) {
654 		dev_err(kfd_device, "Error adding device to topology\n");
655 		goto kfd_topology_add_device_error;
656 	}
657 
658 	kfd->init_complete = true;
659 	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
660 		 kfd->pdev->device);
661 
662 	pr_debug("Starting kfd with the following scheduling policy %d\n",
663 		kfd->dqm->sched_policy);
664 
665 	goto out;
666 
667 kfd_topology_add_device_error:
668 kfd_resume_error:
669 device_iommu_error:
670 	device_queue_manager_uninit(kfd->dqm);
671 device_queue_manager_error:
672 	kfd_interrupt_exit(kfd);
673 kfd_interrupt_error:
674 	kfd_doorbell_fini(kfd);
675 kfd_doorbell_error:
676 	kfd_gtt_sa_fini(kfd);
677 kfd_gtt_sa_init_error:
678 	amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
679 alloc_gtt_mem_failure:
680 	if (hws_gws_support)
681 		amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
682 	dev_err(kfd_device,
683 		"device %x:%x NOT added due to errors\n",
684 		kfd->pdev->vendor, kfd->pdev->device);
685 out:
686 	return kfd->init_complete;
687 }
688 
689 void kgd2kfd_device_exit(struct kfd_dev *kfd)
690 {
691 	if (kfd->init_complete) {
692 		kgd2kfd_suspend(kfd);
693 		device_queue_manager_uninit(kfd->dqm);
694 		kfd_interrupt_exit(kfd);
695 		kfd_topology_remove_device(kfd);
696 		kfd_doorbell_fini(kfd);
697 		kfd_gtt_sa_fini(kfd);
698 		amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
699 		if (hws_gws_support)
700 			amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
701 	}
702 
703 	kfree(kfd);
704 }
705 
706 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
707 {
708 	if (!kfd->init_complete)
709 		return 0;
710 	kgd2kfd_suspend(kfd);
711 
712 	/* hold dqm->lock to prevent further execution*/
713 	dqm_lock(kfd->dqm);
714 
715 	kfd_signal_reset_event(kfd);
716 	return 0;
717 }
718 
719 /*
720  * Fix me. KFD won't be able to resume existing process for now.
721  * We will keep all existing process in a evicted state and
722  * wait the process to be terminated.
723  */
724 
725 int kgd2kfd_post_reset(struct kfd_dev *kfd)
726 {
727 	int ret, count;
728 
729 	if (!kfd->init_complete)
730 		return 0;
731 
732 	dqm_unlock(kfd->dqm);
733 
734 	ret = kfd_resume(kfd);
735 	if (ret)
736 		return ret;
737 	count = atomic_dec_return(&kfd_locked);
738 
739 	atomic_set(&kfd->sram_ecc_flag, 0);
740 
741 	return 0;
742 }
743 
744 bool kfd_is_locked(void)
745 {
746 	return  (atomic_read(&kfd_locked) > 0);
747 }
748 
749 void kgd2kfd_suspend(struct kfd_dev *kfd)
750 {
751 	if (!kfd->init_complete)
752 		return;
753 
754 	/* For first KFD device suspend all the KFD processes */
755 	if (atomic_inc_return(&kfd_locked) == 1)
756 		kfd_suspend_all_processes();
757 
758 	kfd->dqm->ops.stop(kfd->dqm);
759 
760 	kfd_iommu_suspend(kfd);
761 }
762 
763 int kgd2kfd_resume(struct kfd_dev *kfd)
764 {
765 	int ret, count;
766 
767 	if (!kfd->init_complete)
768 		return 0;
769 
770 	ret = kfd_resume(kfd);
771 	if (ret)
772 		return ret;
773 
774 	count = atomic_dec_return(&kfd_locked);
775 	WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
776 	if (count == 0)
777 		ret = kfd_resume_all_processes();
778 
779 	return ret;
780 }
781 
782 static int kfd_resume(struct kfd_dev *kfd)
783 {
784 	int err = 0;
785 
786 	err = kfd_iommu_resume(kfd);
787 	if (err) {
788 		dev_err(kfd_device,
789 			"Failed to resume IOMMU for device %x:%x\n",
790 			kfd->pdev->vendor, kfd->pdev->device);
791 		return err;
792 	}
793 
794 	err = kfd->dqm->ops.start(kfd->dqm);
795 	if (err) {
796 		dev_err(kfd_device,
797 			"Error starting queue manager for device %x:%x\n",
798 			kfd->pdev->vendor, kfd->pdev->device);
799 		goto dqm_start_error;
800 	}
801 
802 	return err;
803 
804 dqm_start_error:
805 	kfd_iommu_suspend(kfd);
806 	return err;
807 }
808 
809 /* This is called directly from KGD at ISR. */
810 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
811 {
812 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
813 	bool is_patched = false;
814 	unsigned long flags;
815 
816 	if (!kfd->init_complete)
817 		return;
818 
819 	if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
820 		dev_err_once(kfd_device, "Ring entry too small\n");
821 		return;
822 	}
823 
824 	spin_lock_irqsave(&kfd->interrupt_lock, flags);
825 
826 	if (kfd->interrupts_active
827 	    && interrupt_is_wanted(kfd, ih_ring_entry,
828 				   patched_ihre, &is_patched)
829 	    && enqueue_ih_ring_entry(kfd,
830 				     is_patched ? patched_ihre : ih_ring_entry))
831 		queue_work(kfd->ih_wq, &kfd->interrupt_work);
832 
833 	spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
834 }
835 
836 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
837 {
838 	struct kfd_process *p;
839 	int r;
840 
841 	/* Because we are called from arbitrary context (workqueue) as opposed
842 	 * to process context, kfd_process could attempt to exit while we are
843 	 * running so the lookup function increments the process ref count.
844 	 */
845 	p = kfd_lookup_process_by_mm(mm);
846 	if (!p)
847 		return -ESRCH;
848 
849 	r = kfd_process_evict_queues(p);
850 
851 	kfd_unref_process(p);
852 	return r;
853 }
854 
855 int kgd2kfd_resume_mm(struct mm_struct *mm)
856 {
857 	struct kfd_process *p;
858 	int r;
859 
860 	/* Because we are called from arbitrary context (workqueue) as opposed
861 	 * to process context, kfd_process could attempt to exit while we are
862 	 * running so the lookup function increments the process ref count.
863 	 */
864 	p = kfd_lookup_process_by_mm(mm);
865 	if (!p)
866 		return -ESRCH;
867 
868 	r = kfd_process_restore_queues(p);
869 
870 	kfd_unref_process(p);
871 	return r;
872 }
873 
874 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
875  *   prepare for safe eviction of KFD BOs that belong to the specified
876  *   process.
877  *
878  * @mm: mm_struct that identifies the specified KFD process
879  * @fence: eviction fence attached to KFD process BOs
880  *
881  */
882 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
883 					       struct dma_fence *fence)
884 {
885 	struct kfd_process *p;
886 	unsigned long active_time;
887 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
888 
889 	if (!fence)
890 		return -EINVAL;
891 
892 	if (dma_fence_is_signaled(fence))
893 		return 0;
894 
895 	p = kfd_lookup_process_by_mm(mm);
896 	if (!p)
897 		return -ENODEV;
898 
899 	if (fence->seqno == p->last_eviction_seqno)
900 		goto out;
901 
902 	p->last_eviction_seqno = fence->seqno;
903 
904 	/* Avoid KFD process starvation. Wait for at least
905 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
906 	 */
907 	active_time = get_jiffies_64() - p->last_restore_timestamp;
908 	if (delay_jiffies > active_time)
909 		delay_jiffies -= active_time;
910 	else
911 		delay_jiffies = 0;
912 
913 	/* During process initialization eviction_work.dwork is initialized
914 	 * to kfd_evict_bo_worker
915 	 */
916 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
917 out:
918 	kfd_unref_process(p);
919 	return 0;
920 }
921 
922 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
923 				unsigned int chunk_size)
924 {
925 	unsigned int num_of_longs;
926 
927 	if (WARN_ON(buf_size < chunk_size))
928 		return -EINVAL;
929 	if (WARN_ON(buf_size == 0))
930 		return -EINVAL;
931 	if (WARN_ON(chunk_size == 0))
932 		return -EINVAL;
933 
934 	kfd->gtt_sa_chunk_size = chunk_size;
935 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
936 
937 	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
938 		BITS_PER_LONG;
939 
940 	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
941 
942 	if (!kfd->gtt_sa_bitmap)
943 		return -ENOMEM;
944 
945 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
946 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
947 
948 	mutex_init(&kfd->gtt_sa_lock);
949 
950 	return 0;
951 
952 }
953 
954 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
955 {
956 	mutex_destroy(&kfd->gtt_sa_lock);
957 	kfree(kfd->gtt_sa_bitmap);
958 }
959 
960 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
961 						unsigned int bit_num,
962 						unsigned int chunk_size)
963 {
964 	return start_addr + bit_num * chunk_size;
965 }
966 
967 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
968 						unsigned int bit_num,
969 						unsigned int chunk_size)
970 {
971 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
972 }
973 
974 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
975 			struct kfd_mem_obj **mem_obj)
976 {
977 	unsigned int found, start_search, cur_size;
978 
979 	if (size == 0)
980 		return -EINVAL;
981 
982 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
983 		return -ENOMEM;
984 
985 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
986 	if (!(*mem_obj))
987 		return -ENOMEM;
988 
989 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
990 
991 	start_search = 0;
992 
993 	mutex_lock(&kfd->gtt_sa_lock);
994 
995 kfd_gtt_restart_search:
996 	/* Find the first chunk that is free */
997 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
998 					kfd->gtt_sa_num_of_chunks,
999 					start_search);
1000 
1001 	pr_debug("Found = %d\n", found);
1002 
1003 	/* If there wasn't any free chunk, bail out */
1004 	if (found == kfd->gtt_sa_num_of_chunks)
1005 		goto kfd_gtt_no_free_chunk;
1006 
1007 	/* Update fields of mem_obj */
1008 	(*mem_obj)->range_start = found;
1009 	(*mem_obj)->range_end = found;
1010 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1011 					kfd->gtt_start_gpu_addr,
1012 					found,
1013 					kfd->gtt_sa_chunk_size);
1014 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1015 					kfd->gtt_start_cpu_ptr,
1016 					found,
1017 					kfd->gtt_sa_chunk_size);
1018 
1019 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1020 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1021 
1022 	/* If we need only one chunk, mark it as allocated and get out */
1023 	if (size <= kfd->gtt_sa_chunk_size) {
1024 		pr_debug("Single bit\n");
1025 		set_bit(found, kfd->gtt_sa_bitmap);
1026 		goto kfd_gtt_out;
1027 	}
1028 
1029 	/* Otherwise, try to see if we have enough contiguous chunks */
1030 	cur_size = size - kfd->gtt_sa_chunk_size;
1031 	do {
1032 		(*mem_obj)->range_end =
1033 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1034 					kfd->gtt_sa_num_of_chunks, ++found);
1035 		/*
1036 		 * If next free chunk is not contiguous than we need to
1037 		 * restart our search from the last free chunk we found (which
1038 		 * wasn't contiguous to the previous ones
1039 		 */
1040 		if ((*mem_obj)->range_end != found) {
1041 			start_search = found;
1042 			goto kfd_gtt_restart_search;
1043 		}
1044 
1045 		/*
1046 		 * If we reached end of buffer, bail out with error
1047 		 */
1048 		if (found == kfd->gtt_sa_num_of_chunks)
1049 			goto kfd_gtt_no_free_chunk;
1050 
1051 		/* Check if we don't need another chunk */
1052 		if (cur_size <= kfd->gtt_sa_chunk_size)
1053 			cur_size = 0;
1054 		else
1055 			cur_size -= kfd->gtt_sa_chunk_size;
1056 
1057 	} while (cur_size > 0);
1058 
1059 	pr_debug("range_start = %d, range_end = %d\n",
1060 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1061 
1062 	/* Mark the chunks as allocated */
1063 	for (found = (*mem_obj)->range_start;
1064 		found <= (*mem_obj)->range_end;
1065 		found++)
1066 		set_bit(found, kfd->gtt_sa_bitmap);
1067 
1068 kfd_gtt_out:
1069 	mutex_unlock(&kfd->gtt_sa_lock);
1070 	return 0;
1071 
1072 kfd_gtt_no_free_chunk:
1073 	pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
1074 	mutex_unlock(&kfd->gtt_sa_lock);
1075 	kfree(mem_obj);
1076 	return -ENOMEM;
1077 }
1078 
1079 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1080 {
1081 	unsigned int bit;
1082 
1083 	/* Act like kfree when trying to free a NULL object */
1084 	if (!mem_obj)
1085 		return 0;
1086 
1087 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1088 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1089 
1090 	mutex_lock(&kfd->gtt_sa_lock);
1091 
1092 	/* Mark the chunks as free */
1093 	for (bit = mem_obj->range_start;
1094 		bit <= mem_obj->range_end;
1095 		bit++)
1096 		clear_bit(bit, kfd->gtt_sa_bitmap);
1097 
1098 	mutex_unlock(&kfd->gtt_sa_lock);
1099 
1100 	kfree(mem_obj);
1101 	return 0;
1102 }
1103 
1104 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1105 {
1106 	if (kfd)
1107 		atomic_inc(&kfd->sram_ecc_flag);
1108 }
1109 
1110 void kfd_inc_compute_active(struct kfd_dev *kfd)
1111 {
1112 	if (atomic_inc_return(&kfd->compute_profile) == 1)
1113 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1114 }
1115 
1116 void kfd_dec_compute_active(struct kfd_dev *kfd)
1117 {
1118 	int count = atomic_dec_return(&kfd->compute_profile);
1119 
1120 	if (count == 0)
1121 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1122 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1123 }
1124 
1125 #if defined(CONFIG_DEBUG_FS)
1126 
1127 /* This function will send a package to HIQ to hang the HWS
1128  * which will trigger a GPU reset and bring the HWS back to normal state
1129  */
1130 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1131 {
1132 	int r = 0;
1133 
1134 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1135 		pr_err("HWS is not enabled");
1136 		return -EINVAL;
1137 	}
1138 
1139 	r = pm_debugfs_hang_hws(&dev->dqm->packets);
1140 	if (!r)
1141 		r = dqm_debugfs_execute_queues(dev->dqm);
1142 
1143 	return r;
1144 }
1145 
1146 #endif
1147