1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #if defined(CONFIG_AMD_IOMMU_V2_MODULE) || defined(CONFIG_AMD_IOMMU_V2)
24 #include <linux/amd-iommu.h>
25 #endif
26 #include <linux/bsearch.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include "kfd_priv.h"
30 #include "kfd_device_queue_manager.h"
31 #include "kfd_pm4_headers_vi.h"
32 #include "cwsr_trap_handler_gfx8.asm"
33 #include "kfd_iommu.h"
34 
35 #define MQD_SIZE_ALIGNED 768
36 static atomic_t kfd_device_suspended = ATOMIC_INIT(0);
37 
38 #ifdef KFD_SUPPORT_IOMMU_V2
39 static const struct kfd_device_info kaveri_device_info = {
40 	.asic_family = CHIP_KAVERI,
41 	.max_pasid_bits = 16,
42 	/* max num of queues for KV.TODO should be a dynamic value */
43 	.max_no_of_hqd	= 24,
44 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
45 	.event_interrupt_class = &event_interrupt_class_cik,
46 	.num_of_watch_points = 4,
47 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
48 	.supports_cwsr = false,
49 	.needs_iommu_device = true,
50 	.needs_pci_atomics = false,
51 };
52 
53 static const struct kfd_device_info carrizo_device_info = {
54 	.asic_family = CHIP_CARRIZO,
55 	.max_pasid_bits = 16,
56 	/* max num of queues for CZ.TODO should be a dynamic value */
57 	.max_no_of_hqd	= 24,
58 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
59 	.event_interrupt_class = &event_interrupt_class_cik,
60 	.num_of_watch_points = 4,
61 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
62 	.supports_cwsr = true,
63 	.needs_iommu_device = true,
64 	.needs_pci_atomics = false,
65 };
66 #endif
67 
68 static const struct kfd_device_info hawaii_device_info = {
69 	.asic_family = CHIP_HAWAII,
70 	.max_pasid_bits = 16,
71 	/* max num of queues for KV.TODO should be a dynamic value */
72 	.max_no_of_hqd	= 24,
73 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
74 	.event_interrupt_class = &event_interrupt_class_cik,
75 	.num_of_watch_points = 4,
76 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
77 	.supports_cwsr = false,
78 	.needs_iommu_device = false,
79 	.needs_pci_atomics = false,
80 };
81 
82 static const struct kfd_device_info tonga_device_info = {
83 	.asic_family = CHIP_TONGA,
84 	.max_pasid_bits = 16,
85 	.max_no_of_hqd  = 24,
86 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
87 	.event_interrupt_class = &event_interrupt_class_cik,
88 	.num_of_watch_points = 4,
89 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
90 	.supports_cwsr = false,
91 	.needs_iommu_device = false,
92 	.needs_pci_atomics = true,
93 };
94 
95 static const struct kfd_device_info tonga_vf_device_info = {
96 	.asic_family = CHIP_TONGA,
97 	.max_pasid_bits = 16,
98 	.max_no_of_hqd  = 24,
99 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
100 	.event_interrupt_class = &event_interrupt_class_cik,
101 	.num_of_watch_points = 4,
102 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
103 	.supports_cwsr = false,
104 	.needs_iommu_device = false,
105 	.needs_pci_atomics = false,
106 };
107 
108 static const struct kfd_device_info fiji_device_info = {
109 	.asic_family = CHIP_FIJI,
110 	.max_pasid_bits = 16,
111 	.max_no_of_hqd  = 24,
112 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
113 	.event_interrupt_class = &event_interrupt_class_cik,
114 	.num_of_watch_points = 4,
115 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
116 	.supports_cwsr = true,
117 	.needs_iommu_device = false,
118 	.needs_pci_atomics = true,
119 };
120 
121 static const struct kfd_device_info fiji_vf_device_info = {
122 	.asic_family = CHIP_FIJI,
123 	.max_pasid_bits = 16,
124 	.max_no_of_hqd  = 24,
125 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
126 	.event_interrupt_class = &event_interrupt_class_cik,
127 	.num_of_watch_points = 4,
128 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
129 	.supports_cwsr = true,
130 	.needs_iommu_device = false,
131 	.needs_pci_atomics = false,
132 };
133 
134 
135 static const struct kfd_device_info polaris10_device_info = {
136 	.asic_family = CHIP_POLARIS10,
137 	.max_pasid_bits = 16,
138 	.max_no_of_hqd  = 24,
139 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
140 	.event_interrupt_class = &event_interrupt_class_cik,
141 	.num_of_watch_points = 4,
142 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
143 	.supports_cwsr = true,
144 	.needs_iommu_device = false,
145 	.needs_pci_atomics = true,
146 };
147 
148 static const struct kfd_device_info polaris10_vf_device_info = {
149 	.asic_family = CHIP_POLARIS10,
150 	.max_pasid_bits = 16,
151 	.max_no_of_hqd  = 24,
152 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
153 	.event_interrupt_class = &event_interrupt_class_cik,
154 	.num_of_watch_points = 4,
155 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
156 	.supports_cwsr = true,
157 	.needs_iommu_device = false,
158 	.needs_pci_atomics = false,
159 };
160 
161 static const struct kfd_device_info polaris11_device_info = {
162 	.asic_family = CHIP_POLARIS11,
163 	.max_pasid_bits = 16,
164 	.max_no_of_hqd  = 24,
165 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
166 	.event_interrupt_class = &event_interrupt_class_cik,
167 	.num_of_watch_points = 4,
168 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
169 	.supports_cwsr = true,
170 	.needs_iommu_device = false,
171 	.needs_pci_atomics = true,
172 };
173 
174 
175 struct kfd_deviceid {
176 	unsigned short did;
177 	const struct kfd_device_info *device_info;
178 };
179 
180 static const struct kfd_deviceid supported_devices[] = {
181 #ifdef KFD_SUPPORT_IOMMU_V2
182 	{ 0x1304, &kaveri_device_info },	/* Kaveri */
183 	{ 0x1305, &kaveri_device_info },	/* Kaveri */
184 	{ 0x1306, &kaveri_device_info },	/* Kaveri */
185 	{ 0x1307, &kaveri_device_info },	/* Kaveri */
186 	{ 0x1309, &kaveri_device_info },	/* Kaveri */
187 	{ 0x130A, &kaveri_device_info },	/* Kaveri */
188 	{ 0x130B, &kaveri_device_info },	/* Kaveri */
189 	{ 0x130C, &kaveri_device_info },	/* Kaveri */
190 	{ 0x130D, &kaveri_device_info },	/* Kaveri */
191 	{ 0x130E, &kaveri_device_info },	/* Kaveri */
192 	{ 0x130F, &kaveri_device_info },	/* Kaveri */
193 	{ 0x1310, &kaveri_device_info },	/* Kaveri */
194 	{ 0x1311, &kaveri_device_info },	/* Kaveri */
195 	{ 0x1312, &kaveri_device_info },	/* Kaveri */
196 	{ 0x1313, &kaveri_device_info },	/* Kaveri */
197 	{ 0x1315, &kaveri_device_info },	/* Kaveri */
198 	{ 0x1316, &kaveri_device_info },	/* Kaveri */
199 	{ 0x1317, &kaveri_device_info },	/* Kaveri */
200 	{ 0x1318, &kaveri_device_info },	/* Kaveri */
201 	{ 0x131B, &kaveri_device_info },	/* Kaveri */
202 	{ 0x131C, &kaveri_device_info },	/* Kaveri */
203 	{ 0x131D, &kaveri_device_info },	/* Kaveri */
204 	{ 0x9870, &carrizo_device_info },	/* Carrizo */
205 	{ 0x9874, &carrizo_device_info },	/* Carrizo */
206 	{ 0x9875, &carrizo_device_info },	/* Carrizo */
207 	{ 0x9876, &carrizo_device_info },	/* Carrizo */
208 	{ 0x9877, &carrizo_device_info },	/* Carrizo */
209 #endif
210 	{ 0x67A0, &hawaii_device_info },	/* Hawaii */
211 	{ 0x67A1, &hawaii_device_info },	/* Hawaii */
212 	{ 0x67A2, &hawaii_device_info },	/* Hawaii */
213 	{ 0x67A8, &hawaii_device_info },	/* Hawaii */
214 	{ 0x67A9, &hawaii_device_info },	/* Hawaii */
215 	{ 0x67AA, &hawaii_device_info },	/* Hawaii */
216 	{ 0x67B0, &hawaii_device_info },	/* Hawaii */
217 	{ 0x67B1, &hawaii_device_info },	/* Hawaii */
218 	{ 0x67B8, &hawaii_device_info },	/* Hawaii */
219 	{ 0x67B9, &hawaii_device_info },	/* Hawaii */
220 	{ 0x67BA, &hawaii_device_info },	/* Hawaii */
221 	{ 0x67BE, &hawaii_device_info },	/* Hawaii */
222 	{ 0x6920, &tonga_device_info },		/* Tonga */
223 	{ 0x6921, &tonga_device_info },		/* Tonga */
224 	{ 0x6928, &tonga_device_info },		/* Tonga */
225 	{ 0x6929, &tonga_device_info },		/* Tonga */
226 	{ 0x692B, &tonga_device_info },		/* Tonga */
227 	{ 0x692F, &tonga_vf_device_info },	/* Tonga vf */
228 	{ 0x6938, &tonga_device_info },		/* Tonga */
229 	{ 0x6939, &tonga_device_info },		/* Tonga */
230 	{ 0x7300, &fiji_device_info },		/* Fiji */
231 	{ 0x730F, &fiji_vf_device_info },	/* Fiji vf*/
232 	{ 0x67C0, &polaris10_device_info },	/* Polaris10 */
233 	{ 0x67C1, &polaris10_device_info },	/* Polaris10 */
234 	{ 0x67C2, &polaris10_device_info },	/* Polaris10 */
235 	{ 0x67C4, &polaris10_device_info },	/* Polaris10 */
236 	{ 0x67C7, &polaris10_device_info },	/* Polaris10 */
237 	{ 0x67C8, &polaris10_device_info },	/* Polaris10 */
238 	{ 0x67C9, &polaris10_device_info },	/* Polaris10 */
239 	{ 0x67CA, &polaris10_device_info },	/* Polaris10 */
240 	{ 0x67CC, &polaris10_device_info },	/* Polaris10 */
241 	{ 0x67CF, &polaris10_device_info },	/* Polaris10 */
242 	{ 0x67D0, &polaris10_vf_device_info },	/* Polaris10 vf*/
243 	{ 0x67DF, &polaris10_device_info },	/* Polaris10 */
244 	{ 0x67E0, &polaris11_device_info },	/* Polaris11 */
245 	{ 0x67E1, &polaris11_device_info },	/* Polaris11 */
246 	{ 0x67E3, &polaris11_device_info },	/* Polaris11 */
247 	{ 0x67E7, &polaris11_device_info },	/* Polaris11 */
248 	{ 0x67E8, &polaris11_device_info },	/* Polaris11 */
249 	{ 0x67E9, &polaris11_device_info },	/* Polaris11 */
250 	{ 0x67EB, &polaris11_device_info },	/* Polaris11 */
251 	{ 0x67EF, &polaris11_device_info },	/* Polaris11 */
252 	{ 0x67FF, &polaris11_device_info },	/* Polaris11 */
253 };
254 
255 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
256 				unsigned int chunk_size);
257 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
258 
259 static int kfd_resume(struct kfd_dev *kfd);
260 
261 static const struct kfd_device_info *lookup_device_info(unsigned short did)
262 {
263 	size_t i;
264 
265 	for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
266 		if (supported_devices[i].did == did) {
267 			WARN_ON(!supported_devices[i].device_info);
268 			return supported_devices[i].device_info;
269 		}
270 	}
271 
272 	dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
273 		 did);
274 
275 	return NULL;
276 }
277 
278 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
279 	struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
280 {
281 	struct kfd_dev *kfd;
282 
283 	const struct kfd_device_info *device_info =
284 					lookup_device_info(pdev->device);
285 
286 	if (!device_info) {
287 		dev_err(kfd_device, "kgd2kfd_probe failed\n");
288 		return NULL;
289 	}
290 
291 	if (device_info->needs_pci_atomics) {
292 		/* Allow BIF to recode atomics to PCIe 3.0
293 		 * AtomicOps. 32 and 64-bit requests are possible and
294 		 * must be supported.
295 		 */
296 		if (pci_enable_atomic_ops_to_root(pdev,
297 				PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
298 				PCI_EXP_DEVCAP2_ATOMIC_COMP64) < 0) {
299 			dev_info(kfd_device,
300 				"skipped device %x:%x, PCI rejects atomics",
301 				 pdev->vendor, pdev->device);
302 			return NULL;
303 		}
304 	}
305 
306 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
307 	if (!kfd)
308 		return NULL;
309 
310 	kfd->kgd = kgd;
311 	kfd->device_info = device_info;
312 	kfd->pdev = pdev;
313 	kfd->init_complete = false;
314 	kfd->kfd2kgd = f2g;
315 
316 	mutex_init(&kfd->doorbell_mutex);
317 	memset(&kfd->doorbell_available_index, 0,
318 		sizeof(kfd->doorbell_available_index));
319 
320 	return kfd;
321 }
322 
323 static void kfd_cwsr_init(struct kfd_dev *kfd)
324 {
325 	if (cwsr_enable && kfd->device_info->supports_cwsr) {
326 		BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
327 
328 		kfd->cwsr_isa = cwsr_trap_gfx8_hex;
329 		kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
330 		kfd->cwsr_enabled = true;
331 	}
332 }
333 
334 bool kgd2kfd_device_init(struct kfd_dev *kfd,
335 			 const struct kgd2kfd_shared_resources *gpu_resources)
336 {
337 	unsigned int size;
338 
339 	kfd->shared_resources = *gpu_resources;
340 
341 	kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
342 	kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
343 	kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
344 			- kfd->vm_info.first_vmid_kfd + 1;
345 
346 	/* Verify module parameters regarding mapped process number*/
347 	if ((hws_max_conc_proc < 0)
348 			|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
349 		dev_err(kfd_device,
350 			"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
351 			hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
352 			kfd->vm_info.vmid_num_kfd);
353 		kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
354 	} else
355 		kfd->max_proc_per_quantum = hws_max_conc_proc;
356 
357 	/* calculate max size of mqds needed for queues */
358 	size = max_num_of_queues_per_device *
359 			kfd->device_info->mqd_size_aligned;
360 
361 	/*
362 	 * calculate max size of runlist packet.
363 	 * There can be only 2 packets at once
364 	 */
365 	size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
366 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
367 		+ sizeof(struct pm4_mes_runlist)) * 2;
368 
369 	/* Add size of HIQ & DIQ */
370 	size += KFD_KERNEL_QUEUE_SIZE * 2;
371 
372 	/* add another 512KB for all other allocations on gart (HPD, fences) */
373 	size += 512 * 1024;
374 
375 	if (kfd->kfd2kgd->init_gtt_mem_allocation(
376 			kfd->kgd, size, &kfd->gtt_mem,
377 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr)){
378 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
379 		goto out;
380 	}
381 
382 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
383 
384 	/* Initialize GTT sa with 512 byte chunk size */
385 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
386 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
387 		goto kfd_gtt_sa_init_error;
388 	}
389 
390 	if (kfd_doorbell_init(kfd)) {
391 		dev_err(kfd_device,
392 			"Error initializing doorbell aperture\n");
393 		goto kfd_doorbell_error;
394 	}
395 
396 	if (kfd_topology_add_device(kfd)) {
397 		dev_err(kfd_device, "Error adding device to topology\n");
398 		goto kfd_topology_add_device_error;
399 	}
400 
401 	if (kfd_interrupt_init(kfd)) {
402 		dev_err(kfd_device, "Error initializing interrupts\n");
403 		goto kfd_interrupt_error;
404 	}
405 
406 	kfd->dqm = device_queue_manager_init(kfd);
407 	if (!kfd->dqm) {
408 		dev_err(kfd_device, "Error initializing queue manager\n");
409 		goto device_queue_manager_error;
410 	}
411 
412 	if (kfd_iommu_device_init(kfd)) {
413 		dev_err(kfd_device, "Error initializing iommuv2\n");
414 		goto device_iommu_error;
415 	}
416 
417 	kfd_cwsr_init(kfd);
418 
419 	if (kfd_resume(kfd))
420 		goto kfd_resume_error;
421 
422 	kfd->dbgmgr = NULL;
423 
424 	kfd->init_complete = true;
425 	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
426 		 kfd->pdev->device);
427 
428 	pr_debug("Starting kfd with the following scheduling policy %d\n",
429 		kfd->dqm->sched_policy);
430 
431 	goto out;
432 
433 kfd_resume_error:
434 device_iommu_error:
435 	device_queue_manager_uninit(kfd->dqm);
436 device_queue_manager_error:
437 	kfd_interrupt_exit(kfd);
438 kfd_interrupt_error:
439 	kfd_topology_remove_device(kfd);
440 kfd_topology_add_device_error:
441 	kfd_doorbell_fini(kfd);
442 kfd_doorbell_error:
443 	kfd_gtt_sa_fini(kfd);
444 kfd_gtt_sa_init_error:
445 	kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
446 	dev_err(kfd_device,
447 		"device %x:%x NOT added due to errors\n",
448 		kfd->pdev->vendor, kfd->pdev->device);
449 out:
450 	return kfd->init_complete;
451 }
452 
453 void kgd2kfd_device_exit(struct kfd_dev *kfd)
454 {
455 	if (kfd->init_complete) {
456 		kgd2kfd_suspend(kfd);
457 		device_queue_manager_uninit(kfd->dqm);
458 		kfd_interrupt_exit(kfd);
459 		kfd_topology_remove_device(kfd);
460 		kfd_doorbell_fini(kfd);
461 		kfd_gtt_sa_fini(kfd);
462 		kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
463 	}
464 
465 	kfree(kfd);
466 }
467 
468 void kgd2kfd_suspend(struct kfd_dev *kfd)
469 {
470 	if (!kfd->init_complete)
471 		return;
472 
473 	/* For first KFD device suspend all the KFD processes */
474 	if (atomic_inc_return(&kfd_device_suspended) == 1)
475 		kfd_suspend_all_processes();
476 
477 	kfd->dqm->ops.stop(kfd->dqm);
478 
479 	kfd_iommu_suspend(kfd);
480 }
481 
482 int kgd2kfd_resume(struct kfd_dev *kfd)
483 {
484 	int ret, count;
485 
486 	if (!kfd->init_complete)
487 		return 0;
488 
489 	ret = kfd_resume(kfd);
490 	if (ret)
491 		return ret;
492 
493 	count = atomic_dec_return(&kfd_device_suspended);
494 	WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
495 	if (count == 0)
496 		ret = kfd_resume_all_processes();
497 
498 	return ret;
499 }
500 
501 static int kfd_resume(struct kfd_dev *kfd)
502 {
503 	int err = 0;
504 
505 	err = kfd_iommu_resume(kfd);
506 	if (err) {
507 		dev_err(kfd_device,
508 			"Failed to resume IOMMU for device %x:%x\n",
509 			kfd->pdev->vendor, kfd->pdev->device);
510 		return err;
511 	}
512 
513 	err = kfd->dqm->ops.start(kfd->dqm);
514 	if (err) {
515 		dev_err(kfd_device,
516 			"Error starting queue manager for device %x:%x\n",
517 			kfd->pdev->vendor, kfd->pdev->device);
518 		goto dqm_start_error;
519 	}
520 
521 	return err;
522 
523 dqm_start_error:
524 	kfd_iommu_suspend(kfd);
525 	return err;
526 }
527 
528 /* This is called directly from KGD at ISR. */
529 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
530 {
531 	if (!kfd->init_complete)
532 		return;
533 
534 	spin_lock(&kfd->interrupt_lock);
535 
536 	if (kfd->interrupts_active
537 	    && interrupt_is_wanted(kfd, ih_ring_entry)
538 	    && enqueue_ih_ring_entry(kfd, ih_ring_entry))
539 		queue_work(kfd->ih_wq, &kfd->interrupt_work);
540 
541 	spin_unlock(&kfd->interrupt_lock);
542 }
543 
544 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
545  *   prepare for safe eviction of KFD BOs that belong to the specified
546  *   process.
547  *
548  * @mm: mm_struct that identifies the specified KFD process
549  * @fence: eviction fence attached to KFD process BOs
550  *
551  */
552 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
553 					       struct dma_fence *fence)
554 {
555 	struct kfd_process *p;
556 	unsigned long active_time;
557 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
558 
559 	if (!fence)
560 		return -EINVAL;
561 
562 	if (dma_fence_is_signaled(fence))
563 		return 0;
564 
565 	p = kfd_lookup_process_by_mm(mm);
566 	if (!p)
567 		return -ENODEV;
568 
569 	if (fence->seqno == p->last_eviction_seqno)
570 		goto out;
571 
572 	p->last_eviction_seqno = fence->seqno;
573 
574 	/* Avoid KFD process starvation. Wait for at least
575 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
576 	 */
577 	active_time = get_jiffies_64() - p->last_restore_timestamp;
578 	if (delay_jiffies > active_time)
579 		delay_jiffies -= active_time;
580 	else
581 		delay_jiffies = 0;
582 
583 	/* During process initialization eviction_work.dwork is initialized
584 	 * to kfd_evict_bo_worker
585 	 */
586 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
587 out:
588 	kfd_unref_process(p);
589 	return 0;
590 }
591 
592 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
593 				unsigned int chunk_size)
594 {
595 	unsigned int num_of_longs;
596 
597 	if (WARN_ON(buf_size < chunk_size))
598 		return -EINVAL;
599 	if (WARN_ON(buf_size == 0))
600 		return -EINVAL;
601 	if (WARN_ON(chunk_size == 0))
602 		return -EINVAL;
603 
604 	kfd->gtt_sa_chunk_size = chunk_size;
605 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
606 
607 	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
608 		BITS_PER_LONG;
609 
610 	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
611 
612 	if (!kfd->gtt_sa_bitmap)
613 		return -ENOMEM;
614 
615 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
616 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
617 
618 	mutex_init(&kfd->gtt_sa_lock);
619 
620 	return 0;
621 
622 }
623 
624 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
625 {
626 	mutex_destroy(&kfd->gtt_sa_lock);
627 	kfree(kfd->gtt_sa_bitmap);
628 }
629 
630 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
631 						unsigned int bit_num,
632 						unsigned int chunk_size)
633 {
634 	return start_addr + bit_num * chunk_size;
635 }
636 
637 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
638 						unsigned int bit_num,
639 						unsigned int chunk_size)
640 {
641 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
642 }
643 
644 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
645 			struct kfd_mem_obj **mem_obj)
646 {
647 	unsigned int found, start_search, cur_size;
648 
649 	if (size == 0)
650 		return -EINVAL;
651 
652 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
653 		return -ENOMEM;
654 
655 	*mem_obj = kmalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
656 	if ((*mem_obj) == NULL)
657 		return -ENOMEM;
658 
659 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
660 
661 	start_search = 0;
662 
663 	mutex_lock(&kfd->gtt_sa_lock);
664 
665 kfd_gtt_restart_search:
666 	/* Find the first chunk that is free */
667 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
668 					kfd->gtt_sa_num_of_chunks,
669 					start_search);
670 
671 	pr_debug("Found = %d\n", found);
672 
673 	/* If there wasn't any free chunk, bail out */
674 	if (found == kfd->gtt_sa_num_of_chunks)
675 		goto kfd_gtt_no_free_chunk;
676 
677 	/* Update fields of mem_obj */
678 	(*mem_obj)->range_start = found;
679 	(*mem_obj)->range_end = found;
680 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
681 					kfd->gtt_start_gpu_addr,
682 					found,
683 					kfd->gtt_sa_chunk_size);
684 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
685 					kfd->gtt_start_cpu_ptr,
686 					found,
687 					kfd->gtt_sa_chunk_size);
688 
689 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
690 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
691 
692 	/* If we need only one chunk, mark it as allocated and get out */
693 	if (size <= kfd->gtt_sa_chunk_size) {
694 		pr_debug("Single bit\n");
695 		set_bit(found, kfd->gtt_sa_bitmap);
696 		goto kfd_gtt_out;
697 	}
698 
699 	/* Otherwise, try to see if we have enough contiguous chunks */
700 	cur_size = size - kfd->gtt_sa_chunk_size;
701 	do {
702 		(*mem_obj)->range_end =
703 			find_next_zero_bit(kfd->gtt_sa_bitmap,
704 					kfd->gtt_sa_num_of_chunks, ++found);
705 		/*
706 		 * If next free chunk is not contiguous than we need to
707 		 * restart our search from the last free chunk we found (which
708 		 * wasn't contiguous to the previous ones
709 		 */
710 		if ((*mem_obj)->range_end != found) {
711 			start_search = found;
712 			goto kfd_gtt_restart_search;
713 		}
714 
715 		/*
716 		 * If we reached end of buffer, bail out with error
717 		 */
718 		if (found == kfd->gtt_sa_num_of_chunks)
719 			goto kfd_gtt_no_free_chunk;
720 
721 		/* Check if we don't need another chunk */
722 		if (cur_size <= kfd->gtt_sa_chunk_size)
723 			cur_size = 0;
724 		else
725 			cur_size -= kfd->gtt_sa_chunk_size;
726 
727 	} while (cur_size > 0);
728 
729 	pr_debug("range_start = %d, range_end = %d\n",
730 		(*mem_obj)->range_start, (*mem_obj)->range_end);
731 
732 	/* Mark the chunks as allocated */
733 	for (found = (*mem_obj)->range_start;
734 		found <= (*mem_obj)->range_end;
735 		found++)
736 		set_bit(found, kfd->gtt_sa_bitmap);
737 
738 kfd_gtt_out:
739 	mutex_unlock(&kfd->gtt_sa_lock);
740 	return 0;
741 
742 kfd_gtt_no_free_chunk:
743 	pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
744 	mutex_unlock(&kfd->gtt_sa_lock);
745 	kfree(mem_obj);
746 	return -ENOMEM;
747 }
748 
749 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
750 {
751 	unsigned int bit;
752 
753 	/* Act like kfree when trying to free a NULL object */
754 	if (!mem_obj)
755 		return 0;
756 
757 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
758 			mem_obj, mem_obj->range_start, mem_obj->range_end);
759 
760 	mutex_lock(&kfd->gtt_sa_lock);
761 
762 	/* Mark the chunks as free */
763 	for (bit = mem_obj->range_start;
764 		bit <= mem_obj->range_end;
765 		bit++)
766 		clear_bit(bit, kfd->gtt_sa_bitmap);
767 
768 	mutex_unlock(&kfd->gtt_sa_lock);
769 
770 	kfree(mem_obj);
771 	return 0;
772 }
773