xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_device.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "kfd_pm4_headers_aldebaran.h"
30 #include "cwsr_trap_handler.h"
31 #include "kfd_iommu.h"
32 #include "amdgpu_amdkfd.h"
33 #include "kfd_smi_events.h"
34 #include "kfd_migrate.h"
35 #include "amdgpu.h"
36 
37 #define MQD_SIZE_ALIGNED 768
38 
39 /*
40  * kfd_locked is used to lock the kfd driver during suspend or reset
41  * once locked, kfd driver will stop any further GPU execution.
42  * create process (open) will return -EAGAIN.
43  */
44 static atomic_t kfd_locked = ATOMIC_INIT(0);
45 
46 #ifdef CONFIG_DRM_AMDGPU_CIK
47 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
48 #endif
49 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
50 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
51 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
52 extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
53 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
54 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
55 
56 #ifdef KFD_SUPPORT_IOMMU_V2
57 static const struct kfd_device_info kaveri_device_info = {
58 	.asic_family = CHIP_KAVERI,
59 	.asic_name = "kaveri",
60 	.gfx_target_version = 70000,
61 	.max_pasid_bits = 16,
62 	/* max num of queues for KV.TODO should be a dynamic value */
63 	.max_no_of_hqd	= 24,
64 	.doorbell_size  = 4,
65 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
66 	.event_interrupt_class = &event_interrupt_class_cik,
67 	.num_of_watch_points = 4,
68 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
69 	.supports_cwsr = false,
70 	.needs_iommu_device = true,
71 	.needs_pci_atomics = false,
72 	.num_sdma_engines = 2,
73 	.num_xgmi_sdma_engines = 0,
74 	.num_sdma_queues_per_engine = 2,
75 };
76 
77 static const struct kfd_device_info carrizo_device_info = {
78 	.asic_family = CHIP_CARRIZO,
79 	.asic_name = "carrizo",
80 	.gfx_target_version = 80001,
81 	.max_pasid_bits = 16,
82 	/* max num of queues for CZ.TODO should be a dynamic value */
83 	.max_no_of_hqd	= 24,
84 	.doorbell_size  = 4,
85 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
86 	.event_interrupt_class = &event_interrupt_class_cik,
87 	.num_of_watch_points = 4,
88 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
89 	.supports_cwsr = true,
90 	.needs_iommu_device = true,
91 	.needs_pci_atomics = false,
92 	.num_sdma_engines = 2,
93 	.num_xgmi_sdma_engines = 0,
94 	.num_sdma_queues_per_engine = 2,
95 };
96 
97 static const struct kfd_device_info raven_device_info = {
98 	.asic_family = CHIP_RAVEN,
99 	.asic_name = "raven",
100 	.gfx_target_version = 90002,
101 	.max_pasid_bits = 16,
102 	.max_no_of_hqd  = 24,
103 	.doorbell_size  = 8,
104 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
105 	.event_interrupt_class = &event_interrupt_class_v9,
106 	.num_of_watch_points = 4,
107 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
108 	.supports_cwsr = true,
109 	.needs_iommu_device = true,
110 	.needs_pci_atomics = true,
111 	.num_sdma_engines = 1,
112 	.num_xgmi_sdma_engines = 0,
113 	.num_sdma_queues_per_engine = 2,
114 };
115 #endif
116 
117 #ifdef CONFIG_DRM_AMDGPU_CIK
118 static const struct kfd_device_info hawaii_device_info = {
119 	.asic_family = CHIP_HAWAII,
120 	.asic_name = "hawaii",
121 	.gfx_target_version = 70001,
122 	.max_pasid_bits = 16,
123 	/* max num of queues for KV.TODO should be a dynamic value */
124 	.max_no_of_hqd	= 24,
125 	.doorbell_size  = 4,
126 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
127 	.event_interrupt_class = &event_interrupt_class_cik,
128 	.num_of_watch_points = 4,
129 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
130 	.supports_cwsr = false,
131 	.needs_iommu_device = false,
132 	.needs_pci_atomics = false,
133 	.num_sdma_engines = 2,
134 	.num_xgmi_sdma_engines = 0,
135 	.num_sdma_queues_per_engine = 2,
136 };
137 #endif
138 
139 static const struct kfd_device_info tonga_device_info = {
140 	.asic_family = CHIP_TONGA,
141 	.asic_name = "tonga",
142 	.gfx_target_version = 80002,
143 	.max_pasid_bits = 16,
144 	.max_no_of_hqd  = 24,
145 	.doorbell_size  = 4,
146 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
147 	.event_interrupt_class = &event_interrupt_class_cik,
148 	.num_of_watch_points = 4,
149 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
150 	.supports_cwsr = false,
151 	.needs_iommu_device = false,
152 	.needs_pci_atomics = true,
153 	.num_sdma_engines = 2,
154 	.num_xgmi_sdma_engines = 0,
155 	.num_sdma_queues_per_engine = 2,
156 };
157 
158 static const struct kfd_device_info fiji_device_info = {
159 	.asic_family = CHIP_FIJI,
160 	.asic_name = "fiji",
161 	.gfx_target_version = 80003,
162 	.max_pasid_bits = 16,
163 	.max_no_of_hqd  = 24,
164 	.doorbell_size  = 4,
165 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
166 	.event_interrupt_class = &event_interrupt_class_cik,
167 	.num_of_watch_points = 4,
168 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
169 	.supports_cwsr = true,
170 	.needs_iommu_device = false,
171 	.needs_pci_atomics = true,
172 	.num_sdma_engines = 2,
173 	.num_xgmi_sdma_engines = 0,
174 	.num_sdma_queues_per_engine = 2,
175 };
176 
177 static const struct kfd_device_info fiji_vf_device_info = {
178 	.asic_family = CHIP_FIJI,
179 	.asic_name = "fiji",
180 	.gfx_target_version = 80003,
181 	.max_pasid_bits = 16,
182 	.max_no_of_hqd  = 24,
183 	.doorbell_size  = 4,
184 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
185 	.event_interrupt_class = &event_interrupt_class_cik,
186 	.num_of_watch_points = 4,
187 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
188 	.supports_cwsr = true,
189 	.needs_iommu_device = false,
190 	.needs_pci_atomics = false,
191 	.num_sdma_engines = 2,
192 	.num_xgmi_sdma_engines = 0,
193 	.num_sdma_queues_per_engine = 2,
194 };
195 
196 
197 static const struct kfd_device_info polaris10_device_info = {
198 	.asic_family = CHIP_POLARIS10,
199 	.asic_name = "polaris10",
200 	.gfx_target_version = 80003,
201 	.max_pasid_bits = 16,
202 	.max_no_of_hqd  = 24,
203 	.doorbell_size  = 4,
204 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
205 	.event_interrupt_class = &event_interrupt_class_cik,
206 	.num_of_watch_points = 4,
207 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
208 	.supports_cwsr = true,
209 	.needs_iommu_device = false,
210 	.needs_pci_atomics = true,
211 	.num_sdma_engines = 2,
212 	.num_xgmi_sdma_engines = 0,
213 	.num_sdma_queues_per_engine = 2,
214 };
215 
216 static const struct kfd_device_info polaris10_vf_device_info = {
217 	.asic_family = CHIP_POLARIS10,
218 	.asic_name = "polaris10",
219 	.gfx_target_version = 80003,
220 	.max_pasid_bits = 16,
221 	.max_no_of_hqd  = 24,
222 	.doorbell_size  = 4,
223 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
224 	.event_interrupt_class = &event_interrupt_class_cik,
225 	.num_of_watch_points = 4,
226 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
227 	.supports_cwsr = true,
228 	.needs_iommu_device = false,
229 	.needs_pci_atomics = false,
230 	.num_sdma_engines = 2,
231 	.num_xgmi_sdma_engines = 0,
232 	.num_sdma_queues_per_engine = 2,
233 };
234 
235 static const struct kfd_device_info polaris11_device_info = {
236 	.asic_family = CHIP_POLARIS11,
237 	.asic_name = "polaris11",
238 	.gfx_target_version = 80003,
239 	.max_pasid_bits = 16,
240 	.max_no_of_hqd  = 24,
241 	.doorbell_size  = 4,
242 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
243 	.event_interrupt_class = &event_interrupt_class_cik,
244 	.num_of_watch_points = 4,
245 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
246 	.supports_cwsr = true,
247 	.needs_iommu_device = false,
248 	.needs_pci_atomics = true,
249 	.num_sdma_engines = 2,
250 	.num_xgmi_sdma_engines = 0,
251 	.num_sdma_queues_per_engine = 2,
252 };
253 
254 static const struct kfd_device_info polaris12_device_info = {
255 	.asic_family = CHIP_POLARIS12,
256 	.asic_name = "polaris12",
257 	.gfx_target_version = 80003,
258 	.max_pasid_bits = 16,
259 	.max_no_of_hqd  = 24,
260 	.doorbell_size  = 4,
261 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
262 	.event_interrupt_class = &event_interrupt_class_cik,
263 	.num_of_watch_points = 4,
264 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
265 	.supports_cwsr = true,
266 	.needs_iommu_device = false,
267 	.needs_pci_atomics = true,
268 	.num_sdma_engines = 2,
269 	.num_xgmi_sdma_engines = 0,
270 	.num_sdma_queues_per_engine = 2,
271 };
272 
273 static const struct kfd_device_info vegam_device_info = {
274 	.asic_family = CHIP_VEGAM,
275 	.asic_name = "vegam",
276 	.gfx_target_version = 80003,
277 	.max_pasid_bits = 16,
278 	.max_no_of_hqd  = 24,
279 	.doorbell_size  = 4,
280 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
281 	.event_interrupt_class = &event_interrupt_class_cik,
282 	.num_of_watch_points = 4,
283 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
284 	.supports_cwsr = true,
285 	.needs_iommu_device = false,
286 	.needs_pci_atomics = true,
287 	.num_sdma_engines = 2,
288 	.num_xgmi_sdma_engines = 0,
289 	.num_sdma_queues_per_engine = 2,
290 };
291 
292 static const struct kfd_device_info vega10_device_info = {
293 	.asic_family = CHIP_VEGA10,
294 	.asic_name = "vega10",
295 	.gfx_target_version = 90000,
296 	.max_pasid_bits = 16,
297 	.max_no_of_hqd  = 24,
298 	.doorbell_size  = 8,
299 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
300 	.event_interrupt_class = &event_interrupt_class_v9,
301 	.num_of_watch_points = 4,
302 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
303 	.supports_cwsr = true,
304 	.needs_iommu_device = false,
305 	.needs_pci_atomics = false,
306 	.num_sdma_engines = 2,
307 	.num_xgmi_sdma_engines = 0,
308 	.num_sdma_queues_per_engine = 2,
309 };
310 
311 static const struct kfd_device_info vega10_vf_device_info = {
312 	.asic_family = CHIP_VEGA10,
313 	.asic_name = "vega10",
314 	.gfx_target_version = 90000,
315 	.max_pasid_bits = 16,
316 	.max_no_of_hqd  = 24,
317 	.doorbell_size  = 8,
318 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
319 	.event_interrupt_class = &event_interrupt_class_v9,
320 	.num_of_watch_points = 4,
321 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
322 	.supports_cwsr = true,
323 	.needs_iommu_device = false,
324 	.needs_pci_atomics = false,
325 	.num_sdma_engines = 2,
326 	.num_xgmi_sdma_engines = 0,
327 	.num_sdma_queues_per_engine = 2,
328 };
329 
330 static const struct kfd_device_info vega12_device_info = {
331 	.asic_family = CHIP_VEGA12,
332 	.asic_name = "vega12",
333 	.gfx_target_version = 90004,
334 	.max_pasid_bits = 16,
335 	.max_no_of_hqd  = 24,
336 	.doorbell_size  = 8,
337 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
338 	.event_interrupt_class = &event_interrupt_class_v9,
339 	.num_of_watch_points = 4,
340 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
341 	.supports_cwsr = true,
342 	.needs_iommu_device = false,
343 	.needs_pci_atomics = false,
344 	.num_sdma_engines = 2,
345 	.num_xgmi_sdma_engines = 0,
346 	.num_sdma_queues_per_engine = 2,
347 };
348 
349 static const struct kfd_device_info vega20_device_info = {
350 	.asic_family = CHIP_VEGA20,
351 	.asic_name = "vega20",
352 	.gfx_target_version = 90006,
353 	.max_pasid_bits = 16,
354 	.max_no_of_hqd	= 24,
355 	.doorbell_size	= 8,
356 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
357 	.event_interrupt_class = &event_interrupt_class_v9,
358 	.num_of_watch_points = 4,
359 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
360 	.supports_cwsr = true,
361 	.needs_iommu_device = false,
362 	.needs_pci_atomics = false,
363 	.num_sdma_engines = 2,
364 	.num_xgmi_sdma_engines = 0,
365 	.num_sdma_queues_per_engine = 8,
366 };
367 
368 static const struct kfd_device_info arcturus_device_info = {
369 	.asic_family = CHIP_ARCTURUS,
370 	.asic_name = "arcturus",
371 	.gfx_target_version = 90008,
372 	.max_pasid_bits = 16,
373 	.max_no_of_hqd	= 24,
374 	.doorbell_size	= 8,
375 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
376 	.event_interrupt_class = &event_interrupt_class_v9,
377 	.num_of_watch_points = 4,
378 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
379 	.supports_cwsr = true,
380 	.needs_iommu_device = false,
381 	.needs_pci_atomics = false,
382 	.num_sdma_engines = 2,
383 	.num_xgmi_sdma_engines = 6,
384 	.num_sdma_queues_per_engine = 8,
385 };
386 
387 static const struct kfd_device_info aldebaran_device_info = {
388 	.asic_family = CHIP_ALDEBARAN,
389 	.asic_name = "aldebaran",
390 	.gfx_target_version = 90010,
391 	.max_pasid_bits = 16,
392 	.max_no_of_hqd	= 24,
393 	.doorbell_size	= 8,
394 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
395 	.event_interrupt_class = &event_interrupt_class_v9,
396 	.num_of_watch_points = 4,
397 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
398 	.supports_cwsr = true,
399 	.needs_iommu_device = false,
400 	.needs_pci_atomics = false,
401 	.num_sdma_engines = 2,
402 	.num_xgmi_sdma_engines = 3,
403 	.num_sdma_queues_per_engine = 8,
404 };
405 
406 static const struct kfd_device_info renoir_device_info = {
407 	.asic_family = CHIP_RENOIR,
408 	.asic_name = "renoir",
409 	.gfx_target_version = 90012,
410 	.max_pasid_bits = 16,
411 	.max_no_of_hqd  = 24,
412 	.doorbell_size  = 8,
413 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
414 	.event_interrupt_class = &event_interrupt_class_v9,
415 	.num_of_watch_points = 4,
416 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
417 	.supports_cwsr = true,
418 	.needs_iommu_device = false,
419 	.needs_pci_atomics = false,
420 	.num_sdma_engines = 1,
421 	.num_xgmi_sdma_engines = 0,
422 	.num_sdma_queues_per_engine = 2,
423 };
424 
425 static const struct kfd_device_info navi10_device_info = {
426 	.asic_family = CHIP_NAVI10,
427 	.asic_name = "navi10",
428 	.gfx_target_version = 100100,
429 	.max_pasid_bits = 16,
430 	.max_no_of_hqd  = 24,
431 	.doorbell_size  = 8,
432 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
433 	.event_interrupt_class = &event_interrupt_class_v9,
434 	.num_of_watch_points = 4,
435 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
436 	.needs_iommu_device = false,
437 	.supports_cwsr = true,
438 	.needs_pci_atomics = true,
439 	.no_atomic_fw_version = 145,
440 	.num_sdma_engines = 2,
441 	.num_xgmi_sdma_engines = 0,
442 	.num_sdma_queues_per_engine = 8,
443 };
444 
445 static const struct kfd_device_info navi12_device_info = {
446 	.asic_family = CHIP_NAVI12,
447 	.asic_name = "navi12",
448 	.gfx_target_version = 100101,
449 	.max_pasid_bits = 16,
450 	.max_no_of_hqd  = 24,
451 	.doorbell_size  = 8,
452 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
453 	.event_interrupt_class = &event_interrupt_class_v9,
454 	.num_of_watch_points = 4,
455 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
456 	.needs_iommu_device = false,
457 	.supports_cwsr = true,
458 	.needs_pci_atomics = true,
459 	.no_atomic_fw_version = 145,
460 	.num_sdma_engines = 2,
461 	.num_xgmi_sdma_engines = 0,
462 	.num_sdma_queues_per_engine = 8,
463 };
464 
465 static const struct kfd_device_info navi14_device_info = {
466 	.asic_family = CHIP_NAVI14,
467 	.asic_name = "navi14",
468 	.gfx_target_version = 100102,
469 	.max_pasid_bits = 16,
470 	.max_no_of_hqd  = 24,
471 	.doorbell_size  = 8,
472 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
473 	.event_interrupt_class = &event_interrupt_class_v9,
474 	.num_of_watch_points = 4,
475 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
476 	.needs_iommu_device = false,
477 	.supports_cwsr = true,
478 	.needs_pci_atomics = true,
479 	.no_atomic_fw_version = 145,
480 	.num_sdma_engines = 2,
481 	.num_xgmi_sdma_engines = 0,
482 	.num_sdma_queues_per_engine = 8,
483 };
484 
485 static const struct kfd_device_info sienna_cichlid_device_info = {
486 	.asic_family = CHIP_SIENNA_CICHLID,
487 	.asic_name = "sienna_cichlid",
488 	.gfx_target_version = 100300,
489 	.max_pasid_bits = 16,
490 	.max_no_of_hqd  = 24,
491 	.doorbell_size  = 8,
492 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
493 	.event_interrupt_class = &event_interrupt_class_v9,
494 	.num_of_watch_points = 4,
495 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
496 	.needs_iommu_device = false,
497 	.supports_cwsr = true,
498 	.needs_pci_atomics = true,
499 	.no_atomic_fw_version = 92,
500 	.num_sdma_engines = 4,
501 	.num_xgmi_sdma_engines = 0,
502 	.num_sdma_queues_per_engine = 8,
503 };
504 
505 static const struct kfd_device_info navy_flounder_device_info = {
506 	.asic_family = CHIP_NAVY_FLOUNDER,
507 	.asic_name = "navy_flounder",
508 	.gfx_target_version = 100301,
509 	.max_pasid_bits = 16,
510 	.max_no_of_hqd  = 24,
511 	.doorbell_size  = 8,
512 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
513 	.event_interrupt_class = &event_interrupt_class_v9,
514 	.num_of_watch_points = 4,
515 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
516 	.needs_iommu_device = false,
517 	.supports_cwsr = true,
518 	.needs_pci_atomics = true,
519 	.no_atomic_fw_version = 92,
520 	.num_sdma_engines = 2,
521 	.num_xgmi_sdma_engines = 0,
522 	.num_sdma_queues_per_engine = 8,
523 };
524 
525 static const struct kfd_device_info vangogh_device_info = {
526 	.asic_family = CHIP_VANGOGH,
527 	.asic_name = "vangogh",
528 	.gfx_target_version = 100303,
529 	.max_pasid_bits = 16,
530 	.max_no_of_hqd  = 24,
531 	.doorbell_size  = 8,
532 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
533 	.event_interrupt_class = &event_interrupt_class_v9,
534 	.num_of_watch_points = 4,
535 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
536 	.needs_iommu_device = false,
537 	.supports_cwsr = true,
538 	.needs_pci_atomics = true,
539 	.no_atomic_fw_version = 92,
540 	.num_sdma_engines = 1,
541 	.num_xgmi_sdma_engines = 0,
542 	.num_sdma_queues_per_engine = 2,
543 };
544 
545 static const struct kfd_device_info dimgrey_cavefish_device_info = {
546 	.asic_family = CHIP_DIMGREY_CAVEFISH,
547 	.asic_name = "dimgrey_cavefish",
548 	.gfx_target_version = 100302,
549 	.max_pasid_bits = 16,
550 	.max_no_of_hqd  = 24,
551 	.doorbell_size  = 8,
552 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
553 	.event_interrupt_class = &event_interrupt_class_v9,
554 	.num_of_watch_points = 4,
555 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
556 	.needs_iommu_device = false,
557 	.supports_cwsr = true,
558 	.needs_pci_atomics = true,
559 	.no_atomic_fw_version = 92,
560 	.num_sdma_engines = 2,
561 	.num_xgmi_sdma_engines = 0,
562 	.num_sdma_queues_per_engine = 8,
563 };
564 
565 static const struct kfd_device_info beige_goby_device_info = {
566 	.asic_family = CHIP_BEIGE_GOBY,
567 	.asic_name = "beige_goby",
568 	.gfx_target_version = 100304,
569 	.max_pasid_bits = 16,
570 	.max_no_of_hqd  = 24,
571 	.doorbell_size  = 8,
572 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
573 	.event_interrupt_class = &event_interrupt_class_v9,
574 	.num_of_watch_points = 4,
575 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
576 	.needs_iommu_device = false,
577 	.supports_cwsr = true,
578 	.needs_pci_atomics = true,
579 	.no_atomic_fw_version = 92,
580 	.num_sdma_engines = 1,
581 	.num_xgmi_sdma_engines = 0,
582 	.num_sdma_queues_per_engine = 8,
583 };
584 
585 static const struct kfd_device_info yellow_carp_device_info = {
586 	.asic_family = CHIP_YELLOW_CARP,
587 	.asic_name = "yellow_carp",
588 	.gfx_target_version = 100305,
589 	.max_pasid_bits = 16,
590 	.max_no_of_hqd  = 24,
591 	.doorbell_size  = 8,
592 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
593 	.event_interrupt_class = &event_interrupt_class_v9,
594 	.num_of_watch_points = 4,
595 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
596 	.needs_iommu_device = false,
597 	.supports_cwsr = true,
598 	.needs_pci_atomics = true,
599 	.no_atomic_fw_version = 92,
600 	.num_sdma_engines = 1,
601 	.num_xgmi_sdma_engines = 0,
602 	.num_sdma_queues_per_engine = 2,
603 };
604 
605 static const struct kfd_device_info cyan_skillfish_device_info = {
606 	.asic_family = CHIP_CYAN_SKILLFISH,
607 	.asic_name = "cyan_skillfish",
608 	.gfx_target_version = 100103,
609 	.max_pasid_bits = 16,
610 	.max_no_of_hqd  = 24,
611 	.doorbell_size  = 8,
612 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
613 	.event_interrupt_class = &event_interrupt_class_v9,
614 	.num_of_watch_points = 4,
615 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
616 	.needs_iommu_device = false,
617 	.supports_cwsr = true,
618 	.needs_pci_atomics = true,
619 	.num_sdma_engines = 2,
620 	.num_xgmi_sdma_engines = 0,
621 	.num_sdma_queues_per_engine = 8,
622 };
623 
624 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
625 				unsigned int chunk_size);
626 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
627 
628 static int kfd_resume(struct kfd_dev *kfd);
629 
630 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd, bool vf)
631 {
632 	struct kfd_dev *kfd;
633 	const struct kfd_device_info *device_info;
634 	const struct kfd2kgd_calls *f2g;
635 	struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
636 	struct pci_dev *pdev = adev->pdev;
637 
638 	switch (adev->asic_type) {
639 #ifdef KFD_SUPPORT_IOMMU_V2
640 #ifdef CONFIG_DRM_AMDGPU_CIK
641 	case CHIP_KAVERI:
642 		if (vf)
643 			device_info = NULL;
644 		else
645 			device_info = &kaveri_device_info;
646 		f2g = &gfx_v7_kfd2kgd;
647 		break;
648 #endif
649 	case CHIP_CARRIZO:
650 		if (vf)
651 			device_info = NULL;
652 		else
653 			device_info = &carrizo_device_info;
654 		f2g = &gfx_v8_kfd2kgd;
655 		break;
656 #endif
657 #ifdef CONFIG_DRM_AMDGPU_CIK
658 	case CHIP_HAWAII:
659 		if (vf)
660 			device_info = NULL;
661 		else
662 			device_info = &hawaii_device_info;
663 		f2g = &gfx_v7_kfd2kgd;
664 		break;
665 #endif
666 	case CHIP_TONGA:
667 		if (vf)
668 			device_info = NULL;
669 		else
670 			device_info = &tonga_device_info;
671 		f2g = &gfx_v8_kfd2kgd;
672 		break;
673 	case CHIP_FIJI:
674 		if (vf)
675 			device_info = &fiji_vf_device_info;
676 		else
677 			device_info = &fiji_device_info;
678 		f2g = &gfx_v8_kfd2kgd;
679 		break;
680 	case CHIP_POLARIS10:
681 		if (vf)
682 			device_info = &polaris10_vf_device_info;
683 		else
684 			device_info = &polaris10_device_info;
685 		f2g = &gfx_v8_kfd2kgd;
686 		break;
687 	case CHIP_POLARIS11:
688 		if (vf)
689 			device_info = NULL;
690 		else
691 			device_info = &polaris11_device_info;
692 		f2g = &gfx_v8_kfd2kgd;
693 		break;
694 	case CHIP_POLARIS12:
695 		if (vf)
696 			device_info = NULL;
697 		else
698 			device_info = &polaris12_device_info;
699 		f2g = &gfx_v8_kfd2kgd;
700 		break;
701 	case CHIP_VEGAM:
702 		if (vf)
703 			device_info = NULL;
704 		else
705 			device_info = &vegam_device_info;
706 		f2g = &gfx_v8_kfd2kgd;
707 		break;
708 	default:
709 		switch (adev->ip_versions[GC_HWIP][0]) {
710 		case IP_VERSION(9, 0, 1):
711 			if (vf)
712 				device_info = &vega10_vf_device_info;
713 			else
714 				device_info = &vega10_device_info;
715 			f2g = &gfx_v9_kfd2kgd;
716 			break;
717 #ifdef KFD_SUPPORT_IOMMU_V2
718 		case IP_VERSION(9, 1, 0):
719 		case IP_VERSION(9, 2, 2):
720 			if (vf)
721 				device_info = NULL;
722 			else
723 				device_info = &raven_device_info;
724 			f2g = &gfx_v9_kfd2kgd;
725 			break;
726 #endif
727 		case IP_VERSION(9, 2, 1):
728 			if (vf)
729 				device_info = NULL;
730 			else
731 				device_info = &vega12_device_info;
732 			f2g = &gfx_v9_kfd2kgd;
733 			break;
734 		case IP_VERSION(9, 3, 0):
735 			if (vf)
736 				device_info = NULL;
737 			else
738 				device_info = &renoir_device_info;
739 			f2g = &gfx_v9_kfd2kgd;
740 			break;
741 		case IP_VERSION(9, 4, 0):
742 			if (vf)
743 				device_info = NULL;
744 			else
745 				device_info = &vega20_device_info;
746 			f2g = &gfx_v9_kfd2kgd;
747 			break;
748 		case IP_VERSION(9, 4, 1):
749 			device_info = &arcturus_device_info;
750 			f2g = &arcturus_kfd2kgd;
751 			break;
752 		case IP_VERSION(9, 4, 2):
753 			device_info = &aldebaran_device_info;
754 			f2g = &aldebaran_kfd2kgd;
755 			break;
756 		case IP_VERSION(10, 1, 10):
757 			if (vf)
758 				device_info = NULL;
759 			else
760 				device_info = &navi10_device_info;
761 			f2g = &gfx_v10_kfd2kgd;
762 			break;
763 		case IP_VERSION(10, 1, 2):
764 			device_info = &navi12_device_info;
765 			f2g = &gfx_v10_kfd2kgd;
766 			break;
767 		case IP_VERSION(10, 1, 1):
768 			if (vf)
769 				device_info = NULL;
770 			else
771 				device_info = &navi14_device_info;
772 			f2g = &gfx_v10_kfd2kgd;
773 			break;
774 		case IP_VERSION(10, 1, 3):
775 			if (vf)
776 				device_info = NULL;
777 			else
778 				device_info = &cyan_skillfish_device_info;
779 			f2g = &gfx_v10_kfd2kgd;
780 			break;
781 		case IP_VERSION(10, 3, 0):
782 			device_info = &sienna_cichlid_device_info;
783 			f2g = &gfx_v10_3_kfd2kgd;
784 			break;
785 		case IP_VERSION(10, 3, 2):
786 			device_info = &navy_flounder_device_info;
787 			f2g = &gfx_v10_3_kfd2kgd;
788 			break;
789 		case IP_VERSION(10, 3, 1):
790 			if (vf)
791 				device_info = NULL;
792 			else
793 				device_info = &vangogh_device_info;
794 			f2g = &gfx_v10_3_kfd2kgd;
795 			break;
796 		case IP_VERSION(10, 3, 4):
797 			device_info = &dimgrey_cavefish_device_info;
798 			f2g = &gfx_v10_3_kfd2kgd;
799 			break;
800 		case IP_VERSION(10, 3, 5):
801 			device_info = &beige_goby_device_info;
802 			f2g = &gfx_v10_3_kfd2kgd;
803 			break;
804 		case IP_VERSION(10, 3, 3):
805 			if (vf)
806 				device_info = NULL;
807 			else
808 				device_info = &yellow_carp_device_info;
809 			f2g = &gfx_v10_3_kfd2kgd;
810 			break;
811 		default:
812 			return NULL;
813 		}
814 		break;
815 	}
816 
817 	if (!device_info || !f2g) {
818 		dev_err(kfd_device, "%s %s not supported in kfd\n",
819 			amdgpu_asic_name[adev->asic_type], vf ? "VF" : "");
820 		return NULL;
821 	}
822 
823 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
824 	if (!kfd)
825 		return NULL;
826 
827 	kfd->kgd = kgd;
828 	kfd->device_info = device_info;
829 	kfd->pdev = pdev;
830 	kfd->init_complete = false;
831 	kfd->kfd2kgd = f2g;
832 	atomic_set(&kfd->compute_profile, 0);
833 
834 	mutex_init(&kfd->doorbell_mutex);
835 	memset(&kfd->doorbell_available_index, 0,
836 		sizeof(kfd->doorbell_available_index));
837 
838 	atomic_set(&kfd->sram_ecc_flag, 0);
839 
840 	ida_init(&kfd->doorbell_ida);
841 
842 	return kfd;
843 }
844 
845 static void kfd_cwsr_init(struct kfd_dev *kfd)
846 {
847 	if (cwsr_enable && kfd->device_info->supports_cwsr) {
848 		if (kfd->device_info->asic_family < CHIP_VEGA10) {
849 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
850 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
851 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
852 		} else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
853 			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
854 			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
855 			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
856 		} else if (kfd->device_info->asic_family == CHIP_ALDEBARAN) {
857 			BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex) > PAGE_SIZE);
858 			kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
859 			kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
860 		} else if (kfd->device_info->asic_family < CHIP_NAVI10) {
861 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
862 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
863 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
864 		} else if (kfd->device_info->asic_family < CHIP_SIENNA_CICHLID) {
865 			BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE);
866 			kfd->cwsr_isa = cwsr_trap_nv1x_hex;
867 			kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
868 		} else {
869 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
870 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
871 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
872 		}
873 
874 		kfd->cwsr_enabled = true;
875 	}
876 }
877 
878 static int kfd_gws_init(struct kfd_dev *kfd)
879 {
880 	int ret = 0;
881 
882 	if (kfd->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
883 		return 0;
884 
885 	if (hws_gws_support
886 		|| (kfd->device_info->asic_family == CHIP_VEGA10
887 			&& kfd->mec2_fw_version >= 0x81b3)
888 		|| (kfd->device_info->asic_family >= CHIP_VEGA12
889 			&& kfd->device_info->asic_family <= CHIP_RAVEN
890 			&& kfd->mec2_fw_version >= 0x1b3)
891 		|| (kfd->device_info->asic_family == CHIP_ARCTURUS
892 			&& kfd->mec2_fw_version >= 0x30)
893 		|| (kfd->device_info->asic_family == CHIP_ALDEBARAN
894 			&& kfd->mec2_fw_version >= 0x28))
895 		ret = amdgpu_amdkfd_alloc_gws(kfd->kgd,
896 				amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws);
897 
898 	return ret;
899 }
900 
901 static void kfd_smi_init(struct kfd_dev *dev) {
902 	INIT_LIST_HEAD(&dev->smi_clients);
903 	spin_lock_init(&dev->smi_lock);
904 }
905 
906 bool kgd2kfd_device_init(struct kfd_dev *kfd,
907 			 struct drm_device *ddev,
908 			 const struct kgd2kfd_shared_resources *gpu_resources)
909 {
910 	unsigned int size, map_process_packet_size;
911 
912 	kfd->ddev = ddev;
913 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
914 			KGD_ENGINE_MEC1);
915 	kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
916 			KGD_ENGINE_MEC2);
917 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
918 			KGD_ENGINE_SDMA1);
919 	kfd->shared_resources = *gpu_resources;
920 
921 	kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
922 	kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
923 	kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
924 			- kfd->vm_info.first_vmid_kfd + 1;
925 
926 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
927 	 * 32 and 64-bit requests are possible and must be
928 	 * supported.
929 	 */
930 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->kgd);
931 	if (!kfd->pci_atomic_requested &&
932 	    kfd->device_info->needs_pci_atomics &&
933 	    (!kfd->device_info->no_atomic_fw_version ||
934 	     kfd->mec_fw_version < kfd->device_info->no_atomic_fw_version)) {
935 		dev_info(kfd_device,
936 			 "skipped device %x:%x, PCI rejects atomics %d<%d\n",
937 			 kfd->pdev->vendor, kfd->pdev->device,
938 			 kfd->mec_fw_version,
939 			 kfd->device_info->no_atomic_fw_version);
940 		return false;
941 	}
942 
943 	/* Verify module parameters regarding mapped process number*/
944 	if ((hws_max_conc_proc < 0)
945 			|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
946 		dev_err(kfd_device,
947 			"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
948 			hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
949 			kfd->vm_info.vmid_num_kfd);
950 		kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
951 	} else
952 		kfd->max_proc_per_quantum = hws_max_conc_proc;
953 
954 	/* calculate max size of mqds needed for queues */
955 	size = max_num_of_queues_per_device *
956 			kfd->device_info->mqd_size_aligned;
957 
958 	/*
959 	 * calculate max size of runlist packet.
960 	 * There can be only 2 packets at once
961 	 */
962 	map_process_packet_size =
963 			kfd->device_info->asic_family == CHIP_ALDEBARAN ?
964 				sizeof(struct pm4_mes_map_process_aldebaran) :
965 					sizeof(struct pm4_mes_map_process);
966 	size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
967 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
968 		+ sizeof(struct pm4_mes_runlist)) * 2;
969 
970 	/* Add size of HIQ & DIQ */
971 	size += KFD_KERNEL_QUEUE_SIZE * 2;
972 
973 	/* add another 512KB for all other allocations on gart (HPD, fences) */
974 	size += 512 * 1024;
975 
976 	if (amdgpu_amdkfd_alloc_gtt_mem(
977 			kfd->kgd, size, &kfd->gtt_mem,
978 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
979 			false)) {
980 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
981 		goto alloc_gtt_mem_failure;
982 	}
983 
984 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
985 
986 	/* Initialize GTT sa with 512 byte chunk size */
987 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
988 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
989 		goto kfd_gtt_sa_init_error;
990 	}
991 
992 	if (kfd_doorbell_init(kfd)) {
993 		dev_err(kfd_device,
994 			"Error initializing doorbell aperture\n");
995 		goto kfd_doorbell_error;
996 	}
997 
998 	kfd->hive_id = amdgpu_amdkfd_get_hive_id(kfd->kgd);
999 
1000 	kfd->noretry = amdgpu_amdkfd_get_noretry(kfd->kgd);
1001 
1002 	if (kfd_interrupt_init(kfd)) {
1003 		dev_err(kfd_device, "Error initializing interrupts\n");
1004 		goto kfd_interrupt_error;
1005 	}
1006 
1007 	kfd->dqm = device_queue_manager_init(kfd);
1008 	if (!kfd->dqm) {
1009 		dev_err(kfd_device, "Error initializing queue manager\n");
1010 		goto device_queue_manager_error;
1011 	}
1012 
1013 	/* If supported on this device, allocate global GWS that is shared
1014 	 * by all KFD processes
1015 	 */
1016 	if (kfd_gws_init(kfd)) {
1017 		dev_err(kfd_device, "Could not allocate %d gws\n",
1018 			amdgpu_amdkfd_get_num_gws(kfd->kgd));
1019 		goto gws_error;
1020 	}
1021 
1022 	/* If CRAT is broken, won't set iommu enabled */
1023 	kfd_double_confirm_iommu_support(kfd);
1024 
1025 	if (kfd_iommu_device_init(kfd)) {
1026 		kfd->use_iommu_v2 = false;
1027 		dev_err(kfd_device, "Error initializing iommuv2\n");
1028 		goto device_iommu_error;
1029 	}
1030 
1031 	kfd_cwsr_init(kfd);
1032 
1033 	svm_migrate_init((struct amdgpu_device *)kfd->kgd);
1034 
1035 	if(kgd2kfd_resume_iommu(kfd))
1036 		goto device_iommu_error;
1037 
1038 	if (kfd_resume(kfd))
1039 		goto kfd_resume_error;
1040 
1041 	kfd->dbgmgr = NULL;
1042 
1043 	if (kfd_topology_add_device(kfd)) {
1044 		dev_err(kfd_device, "Error adding device to topology\n");
1045 		goto kfd_topology_add_device_error;
1046 	}
1047 
1048 	kfd_smi_init(kfd);
1049 
1050 	kfd->init_complete = true;
1051 	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
1052 		 kfd->pdev->device);
1053 
1054 	pr_debug("Starting kfd with the following scheduling policy %d\n",
1055 		kfd->dqm->sched_policy);
1056 
1057 	goto out;
1058 
1059 kfd_topology_add_device_error:
1060 kfd_resume_error:
1061 device_iommu_error:
1062 gws_error:
1063 	device_queue_manager_uninit(kfd->dqm);
1064 device_queue_manager_error:
1065 	kfd_interrupt_exit(kfd);
1066 kfd_interrupt_error:
1067 	kfd_doorbell_fini(kfd);
1068 kfd_doorbell_error:
1069 	kfd_gtt_sa_fini(kfd);
1070 kfd_gtt_sa_init_error:
1071 	amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
1072 alloc_gtt_mem_failure:
1073 	if (kfd->gws)
1074 		amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
1075 	dev_err(kfd_device,
1076 		"device %x:%x NOT added due to errors\n",
1077 		kfd->pdev->vendor, kfd->pdev->device);
1078 out:
1079 	return kfd->init_complete;
1080 }
1081 
1082 void kgd2kfd_device_exit(struct kfd_dev *kfd)
1083 {
1084 	if (kfd->init_complete) {
1085 		device_queue_manager_uninit(kfd->dqm);
1086 		kfd_interrupt_exit(kfd);
1087 		kfd_topology_remove_device(kfd);
1088 		kfd_doorbell_fini(kfd);
1089 		ida_destroy(&kfd->doorbell_ida);
1090 		kfd_gtt_sa_fini(kfd);
1091 		amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
1092 		if (kfd->gws)
1093 			amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
1094 	}
1095 
1096 	kfree(kfd);
1097 }
1098 
1099 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
1100 {
1101 	if (!kfd->init_complete)
1102 		return 0;
1103 
1104 	kfd_smi_event_update_gpu_reset(kfd, false);
1105 
1106 	kfd->dqm->ops.pre_reset(kfd->dqm);
1107 
1108 	kgd2kfd_suspend(kfd, false);
1109 
1110 	kfd_signal_reset_event(kfd);
1111 	return 0;
1112 }
1113 
1114 /*
1115  * Fix me. KFD won't be able to resume existing process for now.
1116  * We will keep all existing process in a evicted state and
1117  * wait the process to be terminated.
1118  */
1119 
1120 int kgd2kfd_post_reset(struct kfd_dev *kfd)
1121 {
1122 	int ret;
1123 
1124 	if (!kfd->init_complete)
1125 		return 0;
1126 
1127 	ret = kfd_resume(kfd);
1128 	if (ret)
1129 		return ret;
1130 	atomic_dec(&kfd_locked);
1131 
1132 	atomic_set(&kfd->sram_ecc_flag, 0);
1133 
1134 	kfd_smi_event_update_gpu_reset(kfd, true);
1135 
1136 	return 0;
1137 }
1138 
1139 bool kfd_is_locked(void)
1140 {
1141 	return  (atomic_read(&kfd_locked) > 0);
1142 }
1143 
1144 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
1145 {
1146 	if (!kfd->init_complete)
1147 		return;
1148 
1149 	/* for runtime suspend, skip locking kfd */
1150 	if (!run_pm) {
1151 		/* For first KFD device suspend all the KFD processes */
1152 		if (atomic_inc_return(&kfd_locked) == 1)
1153 			kfd_suspend_all_processes();
1154 	}
1155 
1156 	kfd->dqm->ops.stop(kfd->dqm);
1157 	kfd_iommu_suspend(kfd);
1158 }
1159 
1160 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
1161 {
1162 	int ret, count;
1163 
1164 	if (!kfd->init_complete)
1165 		return 0;
1166 
1167 	ret = kfd_resume(kfd);
1168 	if (ret)
1169 		return ret;
1170 
1171 	/* for runtime resume, skip unlocking kfd */
1172 	if (!run_pm) {
1173 		count = atomic_dec_return(&kfd_locked);
1174 		WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
1175 		if (count == 0)
1176 			ret = kfd_resume_all_processes();
1177 	}
1178 
1179 	return ret;
1180 }
1181 
1182 int kgd2kfd_resume_iommu(struct kfd_dev *kfd)
1183 {
1184 	int err = 0;
1185 
1186 	err = kfd_iommu_resume(kfd);
1187 	if (err)
1188 		dev_err(kfd_device,
1189 			"Failed to resume IOMMU for device %x:%x\n",
1190 			kfd->pdev->vendor, kfd->pdev->device);
1191 	return err;
1192 }
1193 
1194 static int kfd_resume(struct kfd_dev *kfd)
1195 {
1196 	int err = 0;
1197 
1198 	err = kfd->dqm->ops.start(kfd->dqm);
1199 	if (err)
1200 		dev_err(kfd_device,
1201 			"Error starting queue manager for device %x:%x\n",
1202 			kfd->pdev->vendor, kfd->pdev->device);
1203 
1204 	return err;
1205 }
1206 
1207 static inline void kfd_queue_work(struct workqueue_struct *wq,
1208 				  struct work_struct *work)
1209 {
1210 	int cpu, new_cpu;
1211 
1212 	cpu = new_cpu = smp_processor_id();
1213 	do {
1214 		new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
1215 		if (cpu_to_node(new_cpu) == numa_node_id())
1216 			break;
1217 	} while (cpu != new_cpu);
1218 
1219 	queue_work_on(new_cpu, wq, work);
1220 }
1221 
1222 /* This is called directly from KGD at ISR. */
1223 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1224 {
1225 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
1226 	bool is_patched = false;
1227 	unsigned long flags;
1228 
1229 	if (!kfd->init_complete)
1230 		return;
1231 
1232 	if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
1233 		dev_err_once(kfd_device, "Ring entry too small\n");
1234 		return;
1235 	}
1236 
1237 	spin_lock_irqsave(&kfd->interrupt_lock, flags);
1238 
1239 	if (kfd->interrupts_active
1240 	    && interrupt_is_wanted(kfd, ih_ring_entry,
1241 				   patched_ihre, &is_patched)
1242 	    && enqueue_ih_ring_entry(kfd,
1243 				     is_patched ? patched_ihre : ih_ring_entry))
1244 		kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work);
1245 
1246 	spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
1247 }
1248 
1249 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
1250 {
1251 	struct kfd_process *p;
1252 	int r;
1253 
1254 	/* Because we are called from arbitrary context (workqueue) as opposed
1255 	 * to process context, kfd_process could attempt to exit while we are
1256 	 * running so the lookup function increments the process ref count.
1257 	 */
1258 	p = kfd_lookup_process_by_mm(mm);
1259 	if (!p)
1260 		return -ESRCH;
1261 
1262 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1263 	r = kfd_process_evict_queues(p);
1264 
1265 	kfd_unref_process(p);
1266 	return r;
1267 }
1268 
1269 int kgd2kfd_resume_mm(struct mm_struct *mm)
1270 {
1271 	struct kfd_process *p;
1272 	int r;
1273 
1274 	/* Because we are called from arbitrary context (workqueue) as opposed
1275 	 * to process context, kfd_process could attempt to exit while we are
1276 	 * running so the lookup function increments the process ref count.
1277 	 */
1278 	p = kfd_lookup_process_by_mm(mm);
1279 	if (!p)
1280 		return -ESRCH;
1281 
1282 	r = kfd_process_restore_queues(p);
1283 
1284 	kfd_unref_process(p);
1285 	return r;
1286 }
1287 
1288 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1289  *   prepare for safe eviction of KFD BOs that belong to the specified
1290  *   process.
1291  *
1292  * @mm: mm_struct that identifies the specified KFD process
1293  * @fence: eviction fence attached to KFD process BOs
1294  *
1295  */
1296 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1297 					       struct dma_fence *fence)
1298 {
1299 	struct kfd_process *p;
1300 	unsigned long active_time;
1301 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1302 
1303 	if (!fence)
1304 		return -EINVAL;
1305 
1306 	if (dma_fence_is_signaled(fence))
1307 		return 0;
1308 
1309 	p = kfd_lookup_process_by_mm(mm);
1310 	if (!p)
1311 		return -ENODEV;
1312 
1313 	if (fence->seqno == p->last_eviction_seqno)
1314 		goto out;
1315 
1316 	p->last_eviction_seqno = fence->seqno;
1317 
1318 	/* Avoid KFD process starvation. Wait for at least
1319 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
1320 	 */
1321 	active_time = get_jiffies_64() - p->last_restore_timestamp;
1322 	if (delay_jiffies > active_time)
1323 		delay_jiffies -= active_time;
1324 	else
1325 		delay_jiffies = 0;
1326 
1327 	/* During process initialization eviction_work.dwork is initialized
1328 	 * to kfd_evict_bo_worker
1329 	 */
1330 	WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1331 	     p->lead_thread->pid, delay_jiffies);
1332 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
1333 out:
1334 	kfd_unref_process(p);
1335 	return 0;
1336 }
1337 
1338 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1339 				unsigned int chunk_size)
1340 {
1341 	unsigned int num_of_longs;
1342 
1343 	if (WARN_ON(buf_size < chunk_size))
1344 		return -EINVAL;
1345 	if (WARN_ON(buf_size == 0))
1346 		return -EINVAL;
1347 	if (WARN_ON(chunk_size == 0))
1348 		return -EINVAL;
1349 
1350 	kfd->gtt_sa_chunk_size = chunk_size;
1351 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1352 
1353 	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
1354 		BITS_PER_LONG;
1355 
1356 	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
1357 
1358 	if (!kfd->gtt_sa_bitmap)
1359 		return -ENOMEM;
1360 
1361 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1362 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1363 
1364 	mutex_init(&kfd->gtt_sa_lock);
1365 
1366 	return 0;
1367 
1368 }
1369 
1370 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1371 {
1372 	mutex_destroy(&kfd->gtt_sa_lock);
1373 	kfree(kfd->gtt_sa_bitmap);
1374 }
1375 
1376 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1377 						unsigned int bit_num,
1378 						unsigned int chunk_size)
1379 {
1380 	return start_addr + bit_num * chunk_size;
1381 }
1382 
1383 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1384 						unsigned int bit_num,
1385 						unsigned int chunk_size)
1386 {
1387 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1388 }
1389 
1390 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1391 			struct kfd_mem_obj **mem_obj)
1392 {
1393 	unsigned int found, start_search, cur_size;
1394 
1395 	if (size == 0)
1396 		return -EINVAL;
1397 
1398 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1399 		return -ENOMEM;
1400 
1401 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1402 	if (!(*mem_obj))
1403 		return -ENOMEM;
1404 
1405 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1406 
1407 	start_search = 0;
1408 
1409 	mutex_lock(&kfd->gtt_sa_lock);
1410 
1411 kfd_gtt_restart_search:
1412 	/* Find the first chunk that is free */
1413 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1414 					kfd->gtt_sa_num_of_chunks,
1415 					start_search);
1416 
1417 	pr_debug("Found = %d\n", found);
1418 
1419 	/* If there wasn't any free chunk, bail out */
1420 	if (found == kfd->gtt_sa_num_of_chunks)
1421 		goto kfd_gtt_no_free_chunk;
1422 
1423 	/* Update fields of mem_obj */
1424 	(*mem_obj)->range_start = found;
1425 	(*mem_obj)->range_end = found;
1426 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1427 					kfd->gtt_start_gpu_addr,
1428 					found,
1429 					kfd->gtt_sa_chunk_size);
1430 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1431 					kfd->gtt_start_cpu_ptr,
1432 					found,
1433 					kfd->gtt_sa_chunk_size);
1434 
1435 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1436 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1437 
1438 	/* If we need only one chunk, mark it as allocated and get out */
1439 	if (size <= kfd->gtt_sa_chunk_size) {
1440 		pr_debug("Single bit\n");
1441 		set_bit(found, kfd->gtt_sa_bitmap);
1442 		goto kfd_gtt_out;
1443 	}
1444 
1445 	/* Otherwise, try to see if we have enough contiguous chunks */
1446 	cur_size = size - kfd->gtt_sa_chunk_size;
1447 	do {
1448 		(*mem_obj)->range_end =
1449 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1450 					kfd->gtt_sa_num_of_chunks, ++found);
1451 		/*
1452 		 * If next free chunk is not contiguous than we need to
1453 		 * restart our search from the last free chunk we found (which
1454 		 * wasn't contiguous to the previous ones
1455 		 */
1456 		if ((*mem_obj)->range_end != found) {
1457 			start_search = found;
1458 			goto kfd_gtt_restart_search;
1459 		}
1460 
1461 		/*
1462 		 * If we reached end of buffer, bail out with error
1463 		 */
1464 		if (found == kfd->gtt_sa_num_of_chunks)
1465 			goto kfd_gtt_no_free_chunk;
1466 
1467 		/* Check if we don't need another chunk */
1468 		if (cur_size <= kfd->gtt_sa_chunk_size)
1469 			cur_size = 0;
1470 		else
1471 			cur_size -= kfd->gtt_sa_chunk_size;
1472 
1473 	} while (cur_size > 0);
1474 
1475 	pr_debug("range_start = %d, range_end = %d\n",
1476 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1477 
1478 	/* Mark the chunks as allocated */
1479 	for (found = (*mem_obj)->range_start;
1480 		found <= (*mem_obj)->range_end;
1481 		found++)
1482 		set_bit(found, kfd->gtt_sa_bitmap);
1483 
1484 kfd_gtt_out:
1485 	mutex_unlock(&kfd->gtt_sa_lock);
1486 	return 0;
1487 
1488 kfd_gtt_no_free_chunk:
1489 	pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1490 	mutex_unlock(&kfd->gtt_sa_lock);
1491 	kfree(*mem_obj);
1492 	return -ENOMEM;
1493 }
1494 
1495 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1496 {
1497 	unsigned int bit;
1498 
1499 	/* Act like kfree when trying to free a NULL object */
1500 	if (!mem_obj)
1501 		return 0;
1502 
1503 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1504 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1505 
1506 	mutex_lock(&kfd->gtt_sa_lock);
1507 
1508 	/* Mark the chunks as free */
1509 	for (bit = mem_obj->range_start;
1510 		bit <= mem_obj->range_end;
1511 		bit++)
1512 		clear_bit(bit, kfd->gtt_sa_bitmap);
1513 
1514 	mutex_unlock(&kfd->gtt_sa_lock);
1515 
1516 	kfree(mem_obj);
1517 	return 0;
1518 }
1519 
1520 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1521 {
1522 	if (kfd)
1523 		atomic_inc(&kfd->sram_ecc_flag);
1524 }
1525 
1526 void kfd_inc_compute_active(struct kfd_dev *kfd)
1527 {
1528 	if (atomic_inc_return(&kfd->compute_profile) == 1)
1529 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1530 }
1531 
1532 void kfd_dec_compute_active(struct kfd_dev *kfd)
1533 {
1534 	int count = atomic_dec_return(&kfd->compute_profile);
1535 
1536 	if (count == 0)
1537 		amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1538 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1539 }
1540 
1541 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
1542 {
1543 	if (kfd && kfd->init_complete)
1544 		kfd_smi_event_update_thermal_throttling(kfd, throttle_bitmask);
1545 }
1546 
1547 #if defined(CONFIG_DEBUG_FS)
1548 
1549 /* This function will send a package to HIQ to hang the HWS
1550  * which will trigger a GPU reset and bring the HWS back to normal state
1551  */
1552 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1553 {
1554 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1555 		pr_err("HWS is not enabled");
1556 		return -EINVAL;
1557 	}
1558 
1559 	return dqm_debugfs_hang_hws(dev->dqm);
1560 }
1561 
1562 #endif
1563