1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
32 
33 #define MQD_SIZE_ALIGNED 768
34 
35 /*
36  * kfd_locked is used to lock the kfd driver during suspend or reset
37  * once locked, kfd driver will stop any further GPU execution.
38  * create process (open) will return -EAGAIN.
39  */
40 static atomic_t kfd_locked = ATOMIC_INIT(0);
41 
42 #ifdef KFD_SUPPORT_IOMMU_V2
43 static const struct kfd_device_info kaveri_device_info = {
44 	.asic_family = CHIP_KAVERI,
45 	.max_pasid_bits = 16,
46 	/* max num of queues for KV.TODO should be a dynamic value */
47 	.max_no_of_hqd	= 24,
48 	.doorbell_size  = 4,
49 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
50 	.event_interrupt_class = &event_interrupt_class_cik,
51 	.num_of_watch_points = 4,
52 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
53 	.supports_cwsr = false,
54 	.needs_iommu_device = true,
55 	.needs_pci_atomics = false,
56 	.num_sdma_engines = 2,
57 	.num_sdma_queues_per_engine = 2,
58 };
59 
60 static const struct kfd_device_info carrizo_device_info = {
61 	.asic_family = CHIP_CARRIZO,
62 	.max_pasid_bits = 16,
63 	/* max num of queues for CZ.TODO should be a dynamic value */
64 	.max_no_of_hqd	= 24,
65 	.doorbell_size  = 4,
66 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
67 	.event_interrupt_class = &event_interrupt_class_cik,
68 	.num_of_watch_points = 4,
69 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
70 	.supports_cwsr = true,
71 	.needs_iommu_device = true,
72 	.needs_pci_atomics = false,
73 	.num_sdma_engines = 2,
74 	.num_sdma_queues_per_engine = 2,
75 };
76 
77 static const struct kfd_device_info raven_device_info = {
78 	.asic_family = CHIP_RAVEN,
79 	.max_pasid_bits = 16,
80 	.max_no_of_hqd  = 24,
81 	.doorbell_size  = 8,
82 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
83 	.event_interrupt_class = &event_interrupt_class_v9,
84 	.num_of_watch_points = 4,
85 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
86 	.supports_cwsr = true,
87 	.needs_iommu_device = true,
88 	.needs_pci_atomics = true,
89 	.num_sdma_engines = 1,
90 	.num_sdma_queues_per_engine = 2,
91 };
92 #endif
93 
94 static const struct kfd_device_info hawaii_device_info = {
95 	.asic_family = CHIP_HAWAII,
96 	.max_pasid_bits = 16,
97 	/* max num of queues for KV.TODO should be a dynamic value */
98 	.max_no_of_hqd	= 24,
99 	.doorbell_size  = 4,
100 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
101 	.event_interrupt_class = &event_interrupt_class_cik,
102 	.num_of_watch_points = 4,
103 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
104 	.supports_cwsr = false,
105 	.needs_iommu_device = false,
106 	.needs_pci_atomics = false,
107 	.num_sdma_engines = 2,
108 	.num_sdma_queues_per_engine = 2,
109 };
110 
111 static const struct kfd_device_info tonga_device_info = {
112 	.asic_family = CHIP_TONGA,
113 	.max_pasid_bits = 16,
114 	.max_no_of_hqd  = 24,
115 	.doorbell_size  = 4,
116 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
117 	.event_interrupt_class = &event_interrupt_class_cik,
118 	.num_of_watch_points = 4,
119 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
120 	.supports_cwsr = false,
121 	.needs_iommu_device = false,
122 	.needs_pci_atomics = true,
123 	.num_sdma_engines = 2,
124 	.num_sdma_queues_per_engine = 2,
125 };
126 
127 static const struct kfd_device_info fiji_device_info = {
128 	.asic_family = CHIP_FIJI,
129 	.max_pasid_bits = 16,
130 	.max_no_of_hqd  = 24,
131 	.doorbell_size  = 4,
132 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
133 	.event_interrupt_class = &event_interrupt_class_cik,
134 	.num_of_watch_points = 4,
135 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
136 	.supports_cwsr = true,
137 	.needs_iommu_device = false,
138 	.needs_pci_atomics = true,
139 	.num_sdma_engines = 2,
140 	.num_sdma_queues_per_engine = 2,
141 };
142 
143 static const struct kfd_device_info fiji_vf_device_info = {
144 	.asic_family = CHIP_FIJI,
145 	.max_pasid_bits = 16,
146 	.max_no_of_hqd  = 24,
147 	.doorbell_size  = 4,
148 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
149 	.event_interrupt_class = &event_interrupt_class_cik,
150 	.num_of_watch_points = 4,
151 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
152 	.supports_cwsr = true,
153 	.needs_iommu_device = false,
154 	.needs_pci_atomics = false,
155 	.num_sdma_engines = 2,
156 	.num_sdma_queues_per_engine = 2,
157 };
158 
159 
160 static const struct kfd_device_info polaris10_device_info = {
161 	.asic_family = CHIP_POLARIS10,
162 	.max_pasid_bits = 16,
163 	.max_no_of_hqd  = 24,
164 	.doorbell_size  = 4,
165 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
166 	.event_interrupt_class = &event_interrupt_class_cik,
167 	.num_of_watch_points = 4,
168 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
169 	.supports_cwsr = true,
170 	.needs_iommu_device = false,
171 	.needs_pci_atomics = true,
172 	.num_sdma_engines = 2,
173 	.num_sdma_queues_per_engine = 2,
174 };
175 
176 static const struct kfd_device_info polaris10_vf_device_info = {
177 	.asic_family = CHIP_POLARIS10,
178 	.max_pasid_bits = 16,
179 	.max_no_of_hqd  = 24,
180 	.doorbell_size  = 4,
181 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
182 	.event_interrupt_class = &event_interrupt_class_cik,
183 	.num_of_watch_points = 4,
184 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
185 	.supports_cwsr = true,
186 	.needs_iommu_device = false,
187 	.needs_pci_atomics = false,
188 	.num_sdma_engines = 2,
189 	.num_sdma_queues_per_engine = 2,
190 };
191 
192 static const struct kfd_device_info polaris11_device_info = {
193 	.asic_family = CHIP_POLARIS11,
194 	.max_pasid_bits = 16,
195 	.max_no_of_hqd  = 24,
196 	.doorbell_size  = 4,
197 	.ih_ring_entry_size = 4 * sizeof(uint32_t),
198 	.event_interrupt_class = &event_interrupt_class_cik,
199 	.num_of_watch_points = 4,
200 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
201 	.supports_cwsr = true,
202 	.needs_iommu_device = false,
203 	.needs_pci_atomics = true,
204 	.num_sdma_engines = 2,
205 	.num_sdma_queues_per_engine = 2,
206 };
207 
208 static const struct kfd_device_info vega10_device_info = {
209 	.asic_family = CHIP_VEGA10,
210 	.max_pasid_bits = 16,
211 	.max_no_of_hqd  = 24,
212 	.doorbell_size  = 8,
213 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
214 	.event_interrupt_class = &event_interrupt_class_v9,
215 	.num_of_watch_points = 4,
216 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
217 	.supports_cwsr = true,
218 	.needs_iommu_device = false,
219 	.needs_pci_atomics = false,
220 	.num_sdma_engines = 2,
221 	.num_sdma_queues_per_engine = 2,
222 };
223 
224 static const struct kfd_device_info vega10_vf_device_info = {
225 	.asic_family = CHIP_VEGA10,
226 	.max_pasid_bits = 16,
227 	.max_no_of_hqd  = 24,
228 	.doorbell_size  = 8,
229 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
230 	.event_interrupt_class = &event_interrupt_class_v9,
231 	.num_of_watch_points = 4,
232 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
233 	.supports_cwsr = true,
234 	.needs_iommu_device = false,
235 	.needs_pci_atomics = false,
236 	.num_sdma_engines = 2,
237 	.num_sdma_queues_per_engine = 2,
238 };
239 
240 static const struct kfd_device_info vega20_device_info = {
241 	.asic_family = CHIP_VEGA20,
242 	.max_pasid_bits = 16,
243 	.max_no_of_hqd	= 24,
244 	.doorbell_size	= 8,
245 	.ih_ring_entry_size = 8 * sizeof(uint32_t),
246 	.event_interrupt_class = &event_interrupt_class_v9,
247 	.num_of_watch_points = 4,
248 	.mqd_size_aligned = MQD_SIZE_ALIGNED,
249 	.supports_cwsr = true,
250 	.needs_iommu_device = false,
251 	.needs_pci_atomics = false,
252 	.num_sdma_engines = 2,
253 	.num_sdma_queues_per_engine = 8,
254 };
255 
256 struct kfd_deviceid {
257 	unsigned short did;
258 	const struct kfd_device_info *device_info;
259 };
260 
261 static const struct kfd_deviceid supported_devices[] = {
262 #ifdef KFD_SUPPORT_IOMMU_V2
263 	{ 0x1304, &kaveri_device_info },	/* Kaveri */
264 	{ 0x1305, &kaveri_device_info },	/* Kaveri */
265 	{ 0x1306, &kaveri_device_info },	/* Kaveri */
266 	{ 0x1307, &kaveri_device_info },	/* Kaveri */
267 	{ 0x1309, &kaveri_device_info },	/* Kaveri */
268 	{ 0x130A, &kaveri_device_info },	/* Kaveri */
269 	{ 0x130B, &kaveri_device_info },	/* Kaveri */
270 	{ 0x130C, &kaveri_device_info },	/* Kaveri */
271 	{ 0x130D, &kaveri_device_info },	/* Kaveri */
272 	{ 0x130E, &kaveri_device_info },	/* Kaveri */
273 	{ 0x130F, &kaveri_device_info },	/* Kaveri */
274 	{ 0x1310, &kaveri_device_info },	/* Kaveri */
275 	{ 0x1311, &kaveri_device_info },	/* Kaveri */
276 	{ 0x1312, &kaveri_device_info },	/* Kaveri */
277 	{ 0x1313, &kaveri_device_info },	/* Kaveri */
278 	{ 0x1315, &kaveri_device_info },	/* Kaveri */
279 	{ 0x1316, &kaveri_device_info },	/* Kaveri */
280 	{ 0x1317, &kaveri_device_info },	/* Kaveri */
281 	{ 0x1318, &kaveri_device_info },	/* Kaveri */
282 	{ 0x131B, &kaveri_device_info },	/* Kaveri */
283 	{ 0x131C, &kaveri_device_info },	/* Kaveri */
284 	{ 0x131D, &kaveri_device_info },	/* Kaveri */
285 	{ 0x9870, &carrizo_device_info },	/* Carrizo */
286 	{ 0x9874, &carrizo_device_info },	/* Carrizo */
287 	{ 0x9875, &carrizo_device_info },	/* Carrizo */
288 	{ 0x9876, &carrizo_device_info },	/* Carrizo */
289 	{ 0x9877, &carrizo_device_info },	/* Carrizo */
290 	{ 0x15DD, &raven_device_info },		/* Raven */
291 #endif
292 	{ 0x67A0, &hawaii_device_info },	/* Hawaii */
293 	{ 0x67A1, &hawaii_device_info },	/* Hawaii */
294 	{ 0x67A2, &hawaii_device_info },	/* Hawaii */
295 	{ 0x67A8, &hawaii_device_info },	/* Hawaii */
296 	{ 0x67A9, &hawaii_device_info },	/* Hawaii */
297 	{ 0x67AA, &hawaii_device_info },	/* Hawaii */
298 	{ 0x67B0, &hawaii_device_info },	/* Hawaii */
299 	{ 0x67B1, &hawaii_device_info },	/* Hawaii */
300 	{ 0x67B8, &hawaii_device_info },	/* Hawaii */
301 	{ 0x67B9, &hawaii_device_info },	/* Hawaii */
302 	{ 0x67BA, &hawaii_device_info },	/* Hawaii */
303 	{ 0x67BE, &hawaii_device_info },	/* Hawaii */
304 	{ 0x6920, &tonga_device_info },		/* Tonga */
305 	{ 0x6921, &tonga_device_info },		/* Tonga */
306 	{ 0x6928, &tonga_device_info },		/* Tonga */
307 	{ 0x6929, &tonga_device_info },		/* Tonga */
308 	{ 0x692B, &tonga_device_info },		/* Tonga */
309 	{ 0x6938, &tonga_device_info },		/* Tonga */
310 	{ 0x6939, &tonga_device_info },		/* Tonga */
311 	{ 0x7300, &fiji_device_info },		/* Fiji */
312 	{ 0x730F, &fiji_vf_device_info },	/* Fiji vf*/
313 	{ 0x67C0, &polaris10_device_info },	/* Polaris10 */
314 	{ 0x67C1, &polaris10_device_info },	/* Polaris10 */
315 	{ 0x67C2, &polaris10_device_info },	/* Polaris10 */
316 	{ 0x67C4, &polaris10_device_info },	/* Polaris10 */
317 	{ 0x67C7, &polaris10_device_info },	/* Polaris10 */
318 	{ 0x67C8, &polaris10_device_info },	/* Polaris10 */
319 	{ 0x67C9, &polaris10_device_info },	/* Polaris10 */
320 	{ 0x67CA, &polaris10_device_info },	/* Polaris10 */
321 	{ 0x67CC, &polaris10_device_info },	/* Polaris10 */
322 	{ 0x67CF, &polaris10_device_info },	/* Polaris10 */
323 	{ 0x67D0, &polaris10_vf_device_info },	/* Polaris10 vf*/
324 	{ 0x67DF, &polaris10_device_info },	/* Polaris10 */
325 	{ 0x67E0, &polaris11_device_info },	/* Polaris11 */
326 	{ 0x67E1, &polaris11_device_info },	/* Polaris11 */
327 	{ 0x67E3, &polaris11_device_info },	/* Polaris11 */
328 	{ 0x67E7, &polaris11_device_info },	/* Polaris11 */
329 	{ 0x67E8, &polaris11_device_info },	/* Polaris11 */
330 	{ 0x67E9, &polaris11_device_info },	/* Polaris11 */
331 	{ 0x67EB, &polaris11_device_info },	/* Polaris11 */
332 	{ 0x67EF, &polaris11_device_info },	/* Polaris11 */
333 	{ 0x67FF, &polaris11_device_info },	/* Polaris11 */
334 	{ 0x6860, &vega10_device_info },	/* Vega10 */
335 	{ 0x6861, &vega10_device_info },	/* Vega10 */
336 	{ 0x6862, &vega10_device_info },	/* Vega10 */
337 	{ 0x6863, &vega10_device_info },	/* Vega10 */
338 	{ 0x6864, &vega10_device_info },	/* Vega10 */
339 	{ 0x6867, &vega10_device_info },	/* Vega10 */
340 	{ 0x6868, &vega10_device_info },	/* Vega10 */
341 	{ 0x686C, &vega10_vf_device_info },	/* Vega10  vf*/
342 	{ 0x687F, &vega10_device_info },	/* Vega10 */
343 	{ 0x66a0, &vega20_device_info },	/* Vega20 */
344 	{ 0x66a1, &vega20_device_info },	/* Vega20 */
345 	{ 0x66a2, &vega20_device_info },	/* Vega20 */
346 	{ 0x66a3, &vega20_device_info },	/* Vega20 */
347 	{ 0x66a7, &vega20_device_info },	/* Vega20 */
348 	{ 0x66af, &vega20_device_info }		/* Vega20 */
349 };
350 
351 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
352 				unsigned int chunk_size);
353 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
354 
355 static int kfd_resume(struct kfd_dev *kfd);
356 
357 static const struct kfd_device_info *lookup_device_info(unsigned short did)
358 {
359 	size_t i;
360 
361 	for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
362 		if (supported_devices[i].did == did) {
363 			WARN_ON(!supported_devices[i].device_info);
364 			return supported_devices[i].device_info;
365 		}
366 	}
367 
368 	dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
369 		 did);
370 
371 	return NULL;
372 }
373 
374 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
375 	struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
376 {
377 	struct kfd_dev *kfd;
378 	int ret;
379 	const struct kfd_device_info *device_info =
380 					lookup_device_info(pdev->device);
381 
382 	if (!device_info) {
383 		dev_err(kfd_device, "kgd2kfd_probe failed\n");
384 		return NULL;
385 	}
386 
387 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
388 	if (!kfd)
389 		return NULL;
390 
391 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
392 	 * 32 and 64-bit requests are possible and must be
393 	 * supported.
394 	 */
395 	ret = pci_enable_atomic_ops_to_root(pdev,
396 			PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
397 			PCI_EXP_DEVCAP2_ATOMIC_COMP64);
398 	if (device_info->needs_pci_atomics && ret < 0) {
399 		dev_info(kfd_device,
400 			 "skipped device %x:%x, PCI rejects atomics\n",
401 			 pdev->vendor, pdev->device);
402 		kfree(kfd);
403 		return NULL;
404 	} else if (!ret)
405 		kfd->pci_atomic_requested = true;
406 
407 	kfd->kgd = kgd;
408 	kfd->device_info = device_info;
409 	kfd->pdev = pdev;
410 	kfd->init_complete = false;
411 	kfd->kfd2kgd = f2g;
412 
413 	mutex_init(&kfd->doorbell_mutex);
414 	memset(&kfd->doorbell_available_index, 0,
415 		sizeof(kfd->doorbell_available_index));
416 
417 	return kfd;
418 }
419 
420 static void kfd_cwsr_init(struct kfd_dev *kfd)
421 {
422 	if (cwsr_enable && kfd->device_info->supports_cwsr) {
423 		if (kfd->device_info->asic_family < CHIP_VEGA10) {
424 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
425 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
426 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
427 		} else {
428 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
429 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
430 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
431 		}
432 
433 		kfd->cwsr_enabled = true;
434 	}
435 }
436 
437 bool kgd2kfd_device_init(struct kfd_dev *kfd,
438 			 const struct kgd2kfd_shared_resources *gpu_resources)
439 {
440 	unsigned int size;
441 
442 	kfd->mec_fw_version = kfd->kfd2kgd->get_fw_version(kfd->kgd,
443 			KGD_ENGINE_MEC1);
444 	kfd->sdma_fw_version = kfd->kfd2kgd->get_fw_version(kfd->kgd,
445 			KGD_ENGINE_SDMA1);
446 	kfd->shared_resources = *gpu_resources;
447 
448 	kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
449 	kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
450 	kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
451 			- kfd->vm_info.first_vmid_kfd + 1;
452 
453 	/* Verify module parameters regarding mapped process number*/
454 	if ((hws_max_conc_proc < 0)
455 			|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
456 		dev_err(kfd_device,
457 			"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
458 			hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
459 			kfd->vm_info.vmid_num_kfd);
460 		kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
461 	} else
462 		kfd->max_proc_per_quantum = hws_max_conc_proc;
463 
464 	/* calculate max size of mqds needed for queues */
465 	size = max_num_of_queues_per_device *
466 			kfd->device_info->mqd_size_aligned;
467 
468 	/*
469 	 * calculate max size of runlist packet.
470 	 * There can be only 2 packets at once
471 	 */
472 	size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
473 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
474 		+ sizeof(struct pm4_mes_runlist)) * 2;
475 
476 	/* Add size of HIQ & DIQ */
477 	size += KFD_KERNEL_QUEUE_SIZE * 2;
478 
479 	/* add another 512KB for all other allocations on gart (HPD, fences) */
480 	size += 512 * 1024;
481 
482 	if (amdgpu_amdkfd_alloc_gtt_mem(
483 			kfd->kgd, size, &kfd->gtt_mem,
484 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
485 			false)) {
486 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
487 		goto out;
488 	}
489 
490 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
491 
492 	/* Initialize GTT sa with 512 byte chunk size */
493 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
494 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
495 		goto kfd_gtt_sa_init_error;
496 	}
497 
498 	if (kfd_doorbell_init(kfd)) {
499 		dev_err(kfd_device,
500 			"Error initializing doorbell aperture\n");
501 		goto kfd_doorbell_error;
502 	}
503 
504 	if (kfd->kfd2kgd->get_hive_id)
505 		kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
506 
507 	if (kfd_topology_add_device(kfd)) {
508 		dev_err(kfd_device, "Error adding device to topology\n");
509 		goto kfd_topology_add_device_error;
510 	}
511 
512 	if (kfd_interrupt_init(kfd)) {
513 		dev_err(kfd_device, "Error initializing interrupts\n");
514 		goto kfd_interrupt_error;
515 	}
516 
517 	kfd->dqm = device_queue_manager_init(kfd);
518 	if (!kfd->dqm) {
519 		dev_err(kfd_device, "Error initializing queue manager\n");
520 		goto device_queue_manager_error;
521 	}
522 
523 	if (kfd_iommu_device_init(kfd)) {
524 		dev_err(kfd_device, "Error initializing iommuv2\n");
525 		goto device_iommu_error;
526 	}
527 
528 	kfd_cwsr_init(kfd);
529 
530 	if (kfd_resume(kfd))
531 		goto kfd_resume_error;
532 
533 	kfd->dbgmgr = NULL;
534 
535 	kfd->init_complete = true;
536 	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
537 		 kfd->pdev->device);
538 
539 	pr_debug("Starting kfd with the following scheduling policy %d\n",
540 		kfd->dqm->sched_policy);
541 
542 	goto out;
543 
544 kfd_resume_error:
545 device_iommu_error:
546 	device_queue_manager_uninit(kfd->dqm);
547 device_queue_manager_error:
548 	kfd_interrupt_exit(kfd);
549 kfd_interrupt_error:
550 	kfd_topology_remove_device(kfd);
551 kfd_topology_add_device_error:
552 	kfd_doorbell_fini(kfd);
553 kfd_doorbell_error:
554 	kfd_gtt_sa_fini(kfd);
555 kfd_gtt_sa_init_error:
556 	amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
557 	dev_err(kfd_device,
558 		"device %x:%x NOT added due to errors\n",
559 		kfd->pdev->vendor, kfd->pdev->device);
560 out:
561 	return kfd->init_complete;
562 }
563 
564 void kgd2kfd_device_exit(struct kfd_dev *kfd)
565 {
566 	if (kfd->init_complete) {
567 		kgd2kfd_suspend(kfd);
568 		device_queue_manager_uninit(kfd->dqm);
569 		kfd_interrupt_exit(kfd);
570 		kfd_topology_remove_device(kfd);
571 		kfd_doorbell_fini(kfd);
572 		kfd_gtt_sa_fini(kfd);
573 		amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
574 	}
575 
576 	kfree(kfd);
577 }
578 
579 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
580 {
581 	if (!kfd->init_complete)
582 		return 0;
583 	kgd2kfd_suspend(kfd);
584 
585 	/* hold dqm->lock to prevent further execution*/
586 	dqm_lock(kfd->dqm);
587 
588 	kfd_signal_reset_event(kfd);
589 	return 0;
590 }
591 
592 /*
593  * Fix me. KFD won't be able to resume existing process for now.
594  * We will keep all existing process in a evicted state and
595  * wait the process to be terminated.
596  */
597 
598 int kgd2kfd_post_reset(struct kfd_dev *kfd)
599 {
600 	int ret, count;
601 
602 	if (!kfd->init_complete)
603 		return 0;
604 
605 	dqm_unlock(kfd->dqm);
606 
607 	ret = kfd_resume(kfd);
608 	if (ret)
609 		return ret;
610 	count = atomic_dec_return(&kfd_locked);
611 	WARN_ONCE(count != 0, "KFD reset ref. error");
612 	return 0;
613 }
614 
615 bool kfd_is_locked(void)
616 {
617 	return  (atomic_read(&kfd_locked) > 0);
618 }
619 
620 void kgd2kfd_suspend(struct kfd_dev *kfd)
621 {
622 	if (!kfd->init_complete)
623 		return;
624 
625 	/* For first KFD device suspend all the KFD processes */
626 	if (atomic_inc_return(&kfd_locked) == 1)
627 		kfd_suspend_all_processes();
628 
629 	kfd->dqm->ops.stop(kfd->dqm);
630 
631 	kfd_iommu_suspend(kfd);
632 }
633 
634 int kgd2kfd_resume(struct kfd_dev *kfd)
635 {
636 	int ret, count;
637 
638 	if (!kfd->init_complete)
639 		return 0;
640 
641 	ret = kfd_resume(kfd);
642 	if (ret)
643 		return ret;
644 
645 	count = atomic_dec_return(&kfd_locked);
646 	WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
647 	if (count == 0)
648 		ret = kfd_resume_all_processes();
649 
650 	return ret;
651 }
652 
653 static int kfd_resume(struct kfd_dev *kfd)
654 {
655 	int err = 0;
656 
657 	err = kfd_iommu_resume(kfd);
658 	if (err) {
659 		dev_err(kfd_device,
660 			"Failed to resume IOMMU for device %x:%x\n",
661 			kfd->pdev->vendor, kfd->pdev->device);
662 		return err;
663 	}
664 
665 	err = kfd->dqm->ops.start(kfd->dqm);
666 	if (err) {
667 		dev_err(kfd_device,
668 			"Error starting queue manager for device %x:%x\n",
669 			kfd->pdev->vendor, kfd->pdev->device);
670 		goto dqm_start_error;
671 	}
672 
673 	return err;
674 
675 dqm_start_error:
676 	kfd_iommu_suspend(kfd);
677 	return err;
678 }
679 
680 /* This is called directly from KGD at ISR. */
681 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
682 {
683 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
684 	bool is_patched = false;
685 	unsigned long flags;
686 
687 	if (!kfd->init_complete)
688 		return;
689 
690 	if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
691 		dev_err_once(kfd_device, "Ring entry too small\n");
692 		return;
693 	}
694 
695 	spin_lock_irqsave(&kfd->interrupt_lock, flags);
696 
697 	if (kfd->interrupts_active
698 	    && interrupt_is_wanted(kfd, ih_ring_entry,
699 				   patched_ihre, &is_patched)
700 	    && enqueue_ih_ring_entry(kfd,
701 				     is_patched ? patched_ihre : ih_ring_entry))
702 		queue_work(kfd->ih_wq, &kfd->interrupt_work);
703 
704 	spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
705 }
706 
707 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
708 {
709 	struct kfd_process *p;
710 	int r;
711 
712 	/* Because we are called from arbitrary context (workqueue) as opposed
713 	 * to process context, kfd_process could attempt to exit while we are
714 	 * running so the lookup function increments the process ref count.
715 	 */
716 	p = kfd_lookup_process_by_mm(mm);
717 	if (!p)
718 		return -ESRCH;
719 
720 	r = kfd_process_evict_queues(p);
721 
722 	kfd_unref_process(p);
723 	return r;
724 }
725 
726 int kgd2kfd_resume_mm(struct mm_struct *mm)
727 {
728 	struct kfd_process *p;
729 	int r;
730 
731 	/* Because we are called from arbitrary context (workqueue) as opposed
732 	 * to process context, kfd_process could attempt to exit while we are
733 	 * running so the lookup function increments the process ref count.
734 	 */
735 	p = kfd_lookup_process_by_mm(mm);
736 	if (!p)
737 		return -ESRCH;
738 
739 	r = kfd_process_restore_queues(p);
740 
741 	kfd_unref_process(p);
742 	return r;
743 }
744 
745 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
746  *   prepare for safe eviction of KFD BOs that belong to the specified
747  *   process.
748  *
749  * @mm: mm_struct that identifies the specified KFD process
750  * @fence: eviction fence attached to KFD process BOs
751  *
752  */
753 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
754 					       struct dma_fence *fence)
755 {
756 	struct kfd_process *p;
757 	unsigned long active_time;
758 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
759 
760 	if (!fence)
761 		return -EINVAL;
762 
763 	if (dma_fence_is_signaled(fence))
764 		return 0;
765 
766 	p = kfd_lookup_process_by_mm(mm);
767 	if (!p)
768 		return -ENODEV;
769 
770 	if (fence->seqno == p->last_eviction_seqno)
771 		goto out;
772 
773 	p->last_eviction_seqno = fence->seqno;
774 
775 	/* Avoid KFD process starvation. Wait for at least
776 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
777 	 */
778 	active_time = get_jiffies_64() - p->last_restore_timestamp;
779 	if (delay_jiffies > active_time)
780 		delay_jiffies -= active_time;
781 	else
782 		delay_jiffies = 0;
783 
784 	/* During process initialization eviction_work.dwork is initialized
785 	 * to kfd_evict_bo_worker
786 	 */
787 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
788 out:
789 	kfd_unref_process(p);
790 	return 0;
791 }
792 
793 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
794 				unsigned int chunk_size)
795 {
796 	unsigned int num_of_longs;
797 
798 	if (WARN_ON(buf_size < chunk_size))
799 		return -EINVAL;
800 	if (WARN_ON(buf_size == 0))
801 		return -EINVAL;
802 	if (WARN_ON(chunk_size == 0))
803 		return -EINVAL;
804 
805 	kfd->gtt_sa_chunk_size = chunk_size;
806 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
807 
808 	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
809 		BITS_PER_LONG;
810 
811 	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
812 
813 	if (!kfd->gtt_sa_bitmap)
814 		return -ENOMEM;
815 
816 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
817 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
818 
819 	mutex_init(&kfd->gtt_sa_lock);
820 
821 	return 0;
822 
823 }
824 
825 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
826 {
827 	mutex_destroy(&kfd->gtt_sa_lock);
828 	kfree(kfd->gtt_sa_bitmap);
829 }
830 
831 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
832 						unsigned int bit_num,
833 						unsigned int chunk_size)
834 {
835 	return start_addr + bit_num * chunk_size;
836 }
837 
838 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
839 						unsigned int bit_num,
840 						unsigned int chunk_size)
841 {
842 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
843 }
844 
845 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
846 			struct kfd_mem_obj **mem_obj)
847 {
848 	unsigned int found, start_search, cur_size;
849 
850 	if (size == 0)
851 		return -EINVAL;
852 
853 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
854 		return -ENOMEM;
855 
856 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
857 	if (!(*mem_obj))
858 		return -ENOMEM;
859 
860 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
861 
862 	start_search = 0;
863 
864 	mutex_lock(&kfd->gtt_sa_lock);
865 
866 kfd_gtt_restart_search:
867 	/* Find the first chunk that is free */
868 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
869 					kfd->gtt_sa_num_of_chunks,
870 					start_search);
871 
872 	pr_debug("Found = %d\n", found);
873 
874 	/* If there wasn't any free chunk, bail out */
875 	if (found == kfd->gtt_sa_num_of_chunks)
876 		goto kfd_gtt_no_free_chunk;
877 
878 	/* Update fields of mem_obj */
879 	(*mem_obj)->range_start = found;
880 	(*mem_obj)->range_end = found;
881 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
882 					kfd->gtt_start_gpu_addr,
883 					found,
884 					kfd->gtt_sa_chunk_size);
885 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
886 					kfd->gtt_start_cpu_ptr,
887 					found,
888 					kfd->gtt_sa_chunk_size);
889 
890 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
891 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
892 
893 	/* If we need only one chunk, mark it as allocated and get out */
894 	if (size <= kfd->gtt_sa_chunk_size) {
895 		pr_debug("Single bit\n");
896 		set_bit(found, kfd->gtt_sa_bitmap);
897 		goto kfd_gtt_out;
898 	}
899 
900 	/* Otherwise, try to see if we have enough contiguous chunks */
901 	cur_size = size - kfd->gtt_sa_chunk_size;
902 	do {
903 		(*mem_obj)->range_end =
904 			find_next_zero_bit(kfd->gtt_sa_bitmap,
905 					kfd->gtt_sa_num_of_chunks, ++found);
906 		/*
907 		 * If next free chunk is not contiguous than we need to
908 		 * restart our search from the last free chunk we found (which
909 		 * wasn't contiguous to the previous ones
910 		 */
911 		if ((*mem_obj)->range_end != found) {
912 			start_search = found;
913 			goto kfd_gtt_restart_search;
914 		}
915 
916 		/*
917 		 * If we reached end of buffer, bail out with error
918 		 */
919 		if (found == kfd->gtt_sa_num_of_chunks)
920 			goto kfd_gtt_no_free_chunk;
921 
922 		/* Check if we don't need another chunk */
923 		if (cur_size <= kfd->gtt_sa_chunk_size)
924 			cur_size = 0;
925 		else
926 			cur_size -= kfd->gtt_sa_chunk_size;
927 
928 	} while (cur_size > 0);
929 
930 	pr_debug("range_start = %d, range_end = %d\n",
931 		(*mem_obj)->range_start, (*mem_obj)->range_end);
932 
933 	/* Mark the chunks as allocated */
934 	for (found = (*mem_obj)->range_start;
935 		found <= (*mem_obj)->range_end;
936 		found++)
937 		set_bit(found, kfd->gtt_sa_bitmap);
938 
939 kfd_gtt_out:
940 	mutex_unlock(&kfd->gtt_sa_lock);
941 	return 0;
942 
943 kfd_gtt_no_free_chunk:
944 	pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
945 	mutex_unlock(&kfd->gtt_sa_lock);
946 	kfree(mem_obj);
947 	return -ENOMEM;
948 }
949 
950 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
951 {
952 	unsigned int bit;
953 
954 	/* Act like kfree when trying to free a NULL object */
955 	if (!mem_obj)
956 		return 0;
957 
958 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
959 			mem_obj, mem_obj->range_start, mem_obj->range_end);
960 
961 	mutex_lock(&kfd->gtt_sa_lock);
962 
963 	/* Mark the chunks as free */
964 	for (bit = mem_obj->range_start;
965 		bit <= mem_obj->range_end;
966 		bit++)
967 		clear_bit(bit, kfd->gtt_sa_bitmap);
968 
969 	mutex_unlock(&kfd->gtt_sa_lock);
970 
971 	kfree(mem_obj);
972 	return 0;
973 }
974 
975 #if defined(CONFIG_DEBUG_FS)
976 
977 /* This function will send a package to HIQ to hang the HWS
978  * which will trigger a GPU reset and bring the HWS back to normal state
979  */
980 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
981 {
982 	int r = 0;
983 
984 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
985 		pr_err("HWS is not enabled");
986 		return -EINVAL;
987 	}
988 
989 	r = pm_debugfs_hang_hws(&dev->dqm->packets);
990 	if (!r)
991 		r = dqm_debugfs_execute_queues(dev->dqm);
992 
993 	return r;
994 }
995 
996 #endif
997