1 /* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23 #include <linux/bsearch.h> 24 #include <linux/pci.h> 25 #include <linux/slab.h> 26 #include "kfd_priv.h" 27 #include "kfd_device_queue_manager.h" 28 #include "kfd_pm4_headers_vi.h" 29 #include "cwsr_trap_handler.h" 30 #include "kfd_iommu.h" 31 #include "amdgpu_amdkfd.h" 32 33 #define MQD_SIZE_ALIGNED 768 34 35 /* 36 * kfd_locked is used to lock the kfd driver during suspend or reset 37 * once locked, kfd driver will stop any further GPU execution. 38 * create process (open) will return -EAGAIN. 39 */ 40 static atomic_t kfd_locked = ATOMIC_INIT(0); 41 42 #ifdef CONFIG_DRM_AMDGPU_CIK 43 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd; 44 #endif 45 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd; 46 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd; 47 extern const struct kfd2kgd_calls arcturus_kfd2kgd; 48 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd; 49 50 static const struct kfd2kgd_calls *kfd2kgd_funcs[] = { 51 #ifdef KFD_SUPPORT_IOMMU_V2 52 #ifdef CONFIG_DRM_AMDGPU_CIK 53 [CHIP_KAVERI] = &gfx_v7_kfd2kgd, 54 #endif 55 [CHIP_CARRIZO] = &gfx_v8_kfd2kgd, 56 [CHIP_RAVEN] = &gfx_v9_kfd2kgd, 57 #endif 58 #ifdef CONFIG_DRM_AMDGPU_CIK 59 [CHIP_HAWAII] = &gfx_v7_kfd2kgd, 60 #endif 61 [CHIP_TONGA] = &gfx_v8_kfd2kgd, 62 [CHIP_FIJI] = &gfx_v8_kfd2kgd, 63 [CHIP_POLARIS10] = &gfx_v8_kfd2kgd, 64 [CHIP_POLARIS11] = &gfx_v8_kfd2kgd, 65 [CHIP_POLARIS12] = &gfx_v8_kfd2kgd, 66 [CHIP_VEGAM] = &gfx_v8_kfd2kgd, 67 [CHIP_VEGA10] = &gfx_v9_kfd2kgd, 68 [CHIP_VEGA12] = &gfx_v9_kfd2kgd, 69 [CHIP_VEGA20] = &gfx_v9_kfd2kgd, 70 [CHIP_RENOIR] = &gfx_v9_kfd2kgd, 71 [CHIP_ARCTURUS] = &arcturus_kfd2kgd, 72 [CHIP_NAVI10] = &gfx_v10_kfd2kgd, 73 [CHIP_NAVI12] = &gfx_v10_kfd2kgd, 74 [CHIP_NAVI14] = &gfx_v10_kfd2kgd, 75 }; 76 77 #ifdef KFD_SUPPORT_IOMMU_V2 78 static const struct kfd_device_info kaveri_device_info = { 79 .asic_family = CHIP_KAVERI, 80 .asic_name = "kaveri", 81 .max_pasid_bits = 16, 82 /* max num of queues for KV.TODO should be a dynamic value */ 83 .max_no_of_hqd = 24, 84 .doorbell_size = 4, 85 .ih_ring_entry_size = 4 * sizeof(uint32_t), 86 .event_interrupt_class = &event_interrupt_class_cik, 87 .num_of_watch_points = 4, 88 .mqd_size_aligned = MQD_SIZE_ALIGNED, 89 .supports_cwsr = false, 90 .needs_iommu_device = true, 91 .needs_pci_atomics = false, 92 .num_sdma_engines = 2, 93 .num_xgmi_sdma_engines = 0, 94 .num_sdma_queues_per_engine = 2, 95 }; 96 97 static const struct kfd_device_info carrizo_device_info = { 98 .asic_family = CHIP_CARRIZO, 99 .asic_name = "carrizo", 100 .max_pasid_bits = 16, 101 /* max num of queues for CZ.TODO should be a dynamic value */ 102 .max_no_of_hqd = 24, 103 .doorbell_size = 4, 104 .ih_ring_entry_size = 4 * sizeof(uint32_t), 105 .event_interrupt_class = &event_interrupt_class_cik, 106 .num_of_watch_points = 4, 107 .mqd_size_aligned = MQD_SIZE_ALIGNED, 108 .supports_cwsr = true, 109 .needs_iommu_device = true, 110 .needs_pci_atomics = false, 111 .num_sdma_engines = 2, 112 .num_xgmi_sdma_engines = 0, 113 .num_sdma_queues_per_engine = 2, 114 }; 115 116 static const struct kfd_device_info raven_device_info = { 117 .asic_family = CHIP_RAVEN, 118 .asic_name = "raven", 119 .max_pasid_bits = 16, 120 .max_no_of_hqd = 24, 121 .doorbell_size = 8, 122 .ih_ring_entry_size = 8 * sizeof(uint32_t), 123 .event_interrupt_class = &event_interrupt_class_v9, 124 .num_of_watch_points = 4, 125 .mqd_size_aligned = MQD_SIZE_ALIGNED, 126 .supports_cwsr = true, 127 .needs_iommu_device = true, 128 .needs_pci_atomics = true, 129 .num_sdma_engines = 1, 130 .num_xgmi_sdma_engines = 0, 131 .num_sdma_queues_per_engine = 2, 132 }; 133 #endif 134 135 static const struct kfd_device_info hawaii_device_info = { 136 .asic_family = CHIP_HAWAII, 137 .asic_name = "hawaii", 138 .max_pasid_bits = 16, 139 /* max num of queues for KV.TODO should be a dynamic value */ 140 .max_no_of_hqd = 24, 141 .doorbell_size = 4, 142 .ih_ring_entry_size = 4 * sizeof(uint32_t), 143 .event_interrupt_class = &event_interrupt_class_cik, 144 .num_of_watch_points = 4, 145 .mqd_size_aligned = MQD_SIZE_ALIGNED, 146 .supports_cwsr = false, 147 .needs_iommu_device = false, 148 .needs_pci_atomics = false, 149 .num_sdma_engines = 2, 150 .num_xgmi_sdma_engines = 0, 151 .num_sdma_queues_per_engine = 2, 152 }; 153 154 static const struct kfd_device_info tonga_device_info = { 155 .asic_family = CHIP_TONGA, 156 .asic_name = "tonga", 157 .max_pasid_bits = 16, 158 .max_no_of_hqd = 24, 159 .doorbell_size = 4, 160 .ih_ring_entry_size = 4 * sizeof(uint32_t), 161 .event_interrupt_class = &event_interrupt_class_cik, 162 .num_of_watch_points = 4, 163 .mqd_size_aligned = MQD_SIZE_ALIGNED, 164 .supports_cwsr = false, 165 .needs_iommu_device = false, 166 .needs_pci_atomics = true, 167 .num_sdma_engines = 2, 168 .num_xgmi_sdma_engines = 0, 169 .num_sdma_queues_per_engine = 2, 170 }; 171 172 static const struct kfd_device_info fiji_device_info = { 173 .asic_family = CHIP_FIJI, 174 .asic_name = "fiji", 175 .max_pasid_bits = 16, 176 .max_no_of_hqd = 24, 177 .doorbell_size = 4, 178 .ih_ring_entry_size = 4 * sizeof(uint32_t), 179 .event_interrupt_class = &event_interrupt_class_cik, 180 .num_of_watch_points = 4, 181 .mqd_size_aligned = MQD_SIZE_ALIGNED, 182 .supports_cwsr = true, 183 .needs_iommu_device = false, 184 .needs_pci_atomics = true, 185 .num_sdma_engines = 2, 186 .num_xgmi_sdma_engines = 0, 187 .num_sdma_queues_per_engine = 2, 188 }; 189 190 static const struct kfd_device_info fiji_vf_device_info = { 191 .asic_family = CHIP_FIJI, 192 .asic_name = "fiji", 193 .max_pasid_bits = 16, 194 .max_no_of_hqd = 24, 195 .doorbell_size = 4, 196 .ih_ring_entry_size = 4 * sizeof(uint32_t), 197 .event_interrupt_class = &event_interrupt_class_cik, 198 .num_of_watch_points = 4, 199 .mqd_size_aligned = MQD_SIZE_ALIGNED, 200 .supports_cwsr = true, 201 .needs_iommu_device = false, 202 .needs_pci_atomics = false, 203 .num_sdma_engines = 2, 204 .num_xgmi_sdma_engines = 0, 205 .num_sdma_queues_per_engine = 2, 206 }; 207 208 209 static const struct kfd_device_info polaris10_device_info = { 210 .asic_family = CHIP_POLARIS10, 211 .asic_name = "polaris10", 212 .max_pasid_bits = 16, 213 .max_no_of_hqd = 24, 214 .doorbell_size = 4, 215 .ih_ring_entry_size = 4 * sizeof(uint32_t), 216 .event_interrupt_class = &event_interrupt_class_cik, 217 .num_of_watch_points = 4, 218 .mqd_size_aligned = MQD_SIZE_ALIGNED, 219 .supports_cwsr = true, 220 .needs_iommu_device = false, 221 .needs_pci_atomics = true, 222 .num_sdma_engines = 2, 223 .num_xgmi_sdma_engines = 0, 224 .num_sdma_queues_per_engine = 2, 225 }; 226 227 static const struct kfd_device_info polaris10_vf_device_info = { 228 .asic_family = CHIP_POLARIS10, 229 .asic_name = "polaris10", 230 .max_pasid_bits = 16, 231 .max_no_of_hqd = 24, 232 .doorbell_size = 4, 233 .ih_ring_entry_size = 4 * sizeof(uint32_t), 234 .event_interrupt_class = &event_interrupt_class_cik, 235 .num_of_watch_points = 4, 236 .mqd_size_aligned = MQD_SIZE_ALIGNED, 237 .supports_cwsr = true, 238 .needs_iommu_device = false, 239 .needs_pci_atomics = false, 240 .num_sdma_engines = 2, 241 .num_xgmi_sdma_engines = 0, 242 .num_sdma_queues_per_engine = 2, 243 }; 244 245 static const struct kfd_device_info polaris11_device_info = { 246 .asic_family = CHIP_POLARIS11, 247 .asic_name = "polaris11", 248 .max_pasid_bits = 16, 249 .max_no_of_hqd = 24, 250 .doorbell_size = 4, 251 .ih_ring_entry_size = 4 * sizeof(uint32_t), 252 .event_interrupt_class = &event_interrupt_class_cik, 253 .num_of_watch_points = 4, 254 .mqd_size_aligned = MQD_SIZE_ALIGNED, 255 .supports_cwsr = true, 256 .needs_iommu_device = false, 257 .needs_pci_atomics = true, 258 .num_sdma_engines = 2, 259 .num_xgmi_sdma_engines = 0, 260 .num_sdma_queues_per_engine = 2, 261 }; 262 263 static const struct kfd_device_info polaris12_device_info = { 264 .asic_family = CHIP_POLARIS12, 265 .asic_name = "polaris12", 266 .max_pasid_bits = 16, 267 .max_no_of_hqd = 24, 268 .doorbell_size = 4, 269 .ih_ring_entry_size = 4 * sizeof(uint32_t), 270 .event_interrupt_class = &event_interrupt_class_cik, 271 .num_of_watch_points = 4, 272 .mqd_size_aligned = MQD_SIZE_ALIGNED, 273 .supports_cwsr = true, 274 .needs_iommu_device = false, 275 .needs_pci_atomics = true, 276 .num_sdma_engines = 2, 277 .num_xgmi_sdma_engines = 0, 278 .num_sdma_queues_per_engine = 2, 279 }; 280 281 static const struct kfd_device_info vegam_device_info = { 282 .asic_family = CHIP_VEGAM, 283 .asic_name = "vegam", 284 .max_pasid_bits = 16, 285 .max_no_of_hqd = 24, 286 .doorbell_size = 4, 287 .ih_ring_entry_size = 4 * sizeof(uint32_t), 288 .event_interrupt_class = &event_interrupt_class_cik, 289 .num_of_watch_points = 4, 290 .mqd_size_aligned = MQD_SIZE_ALIGNED, 291 .supports_cwsr = true, 292 .needs_iommu_device = false, 293 .needs_pci_atomics = true, 294 .num_sdma_engines = 2, 295 .num_xgmi_sdma_engines = 0, 296 .num_sdma_queues_per_engine = 2, 297 }; 298 299 static const struct kfd_device_info vega10_device_info = { 300 .asic_family = CHIP_VEGA10, 301 .asic_name = "vega10", 302 .max_pasid_bits = 16, 303 .max_no_of_hqd = 24, 304 .doorbell_size = 8, 305 .ih_ring_entry_size = 8 * sizeof(uint32_t), 306 .event_interrupt_class = &event_interrupt_class_v9, 307 .num_of_watch_points = 4, 308 .mqd_size_aligned = MQD_SIZE_ALIGNED, 309 .supports_cwsr = true, 310 .needs_iommu_device = false, 311 .needs_pci_atomics = false, 312 .num_sdma_engines = 2, 313 .num_xgmi_sdma_engines = 0, 314 .num_sdma_queues_per_engine = 2, 315 }; 316 317 static const struct kfd_device_info vega10_vf_device_info = { 318 .asic_family = CHIP_VEGA10, 319 .asic_name = "vega10", 320 .max_pasid_bits = 16, 321 .max_no_of_hqd = 24, 322 .doorbell_size = 8, 323 .ih_ring_entry_size = 8 * sizeof(uint32_t), 324 .event_interrupt_class = &event_interrupt_class_v9, 325 .num_of_watch_points = 4, 326 .mqd_size_aligned = MQD_SIZE_ALIGNED, 327 .supports_cwsr = true, 328 .needs_iommu_device = false, 329 .needs_pci_atomics = false, 330 .num_sdma_engines = 2, 331 .num_xgmi_sdma_engines = 0, 332 .num_sdma_queues_per_engine = 2, 333 }; 334 335 static const struct kfd_device_info vega12_device_info = { 336 .asic_family = CHIP_VEGA12, 337 .asic_name = "vega12", 338 .max_pasid_bits = 16, 339 .max_no_of_hqd = 24, 340 .doorbell_size = 8, 341 .ih_ring_entry_size = 8 * sizeof(uint32_t), 342 .event_interrupt_class = &event_interrupt_class_v9, 343 .num_of_watch_points = 4, 344 .mqd_size_aligned = MQD_SIZE_ALIGNED, 345 .supports_cwsr = true, 346 .needs_iommu_device = false, 347 .needs_pci_atomics = false, 348 .num_sdma_engines = 2, 349 .num_xgmi_sdma_engines = 0, 350 .num_sdma_queues_per_engine = 2, 351 }; 352 353 static const struct kfd_device_info vega20_device_info = { 354 .asic_family = CHIP_VEGA20, 355 .asic_name = "vega20", 356 .max_pasid_bits = 16, 357 .max_no_of_hqd = 24, 358 .doorbell_size = 8, 359 .ih_ring_entry_size = 8 * sizeof(uint32_t), 360 .event_interrupt_class = &event_interrupt_class_v9, 361 .num_of_watch_points = 4, 362 .mqd_size_aligned = MQD_SIZE_ALIGNED, 363 .supports_cwsr = true, 364 .needs_iommu_device = false, 365 .needs_pci_atomics = false, 366 .num_sdma_engines = 2, 367 .num_xgmi_sdma_engines = 0, 368 .num_sdma_queues_per_engine = 8, 369 }; 370 371 static const struct kfd_device_info arcturus_device_info = { 372 .asic_family = CHIP_ARCTURUS, 373 .asic_name = "arcturus", 374 .max_pasid_bits = 16, 375 .max_no_of_hqd = 24, 376 .doorbell_size = 8, 377 .ih_ring_entry_size = 8 * sizeof(uint32_t), 378 .event_interrupt_class = &event_interrupt_class_v9, 379 .num_of_watch_points = 4, 380 .mqd_size_aligned = MQD_SIZE_ALIGNED, 381 .supports_cwsr = true, 382 .needs_iommu_device = false, 383 .needs_pci_atomics = false, 384 .num_sdma_engines = 2, 385 .num_xgmi_sdma_engines = 6, 386 .num_sdma_queues_per_engine = 8, 387 }; 388 389 static const struct kfd_device_info renoir_device_info = { 390 .asic_family = CHIP_RENOIR, 391 .asic_name = "renoir", 392 .max_pasid_bits = 16, 393 .max_no_of_hqd = 24, 394 .doorbell_size = 8, 395 .ih_ring_entry_size = 8 * sizeof(uint32_t), 396 .event_interrupt_class = &event_interrupt_class_v9, 397 .num_of_watch_points = 4, 398 .mqd_size_aligned = MQD_SIZE_ALIGNED, 399 .supports_cwsr = true, 400 .needs_iommu_device = false, 401 .needs_pci_atomics = false, 402 .num_sdma_engines = 1, 403 .num_xgmi_sdma_engines = 0, 404 .num_sdma_queues_per_engine = 2, 405 }; 406 407 static const struct kfd_device_info navi10_device_info = { 408 .asic_family = CHIP_NAVI10, 409 .asic_name = "navi10", 410 .max_pasid_bits = 16, 411 .max_no_of_hqd = 24, 412 .doorbell_size = 8, 413 .ih_ring_entry_size = 8 * sizeof(uint32_t), 414 .event_interrupt_class = &event_interrupt_class_v9, 415 .num_of_watch_points = 4, 416 .mqd_size_aligned = MQD_SIZE_ALIGNED, 417 .needs_iommu_device = false, 418 .supports_cwsr = true, 419 .needs_pci_atomics = false, 420 .num_sdma_engines = 2, 421 .num_xgmi_sdma_engines = 0, 422 .num_sdma_queues_per_engine = 8, 423 }; 424 425 static const struct kfd_device_info navi12_device_info = { 426 .asic_family = CHIP_NAVI12, 427 .asic_name = "navi12", 428 .max_pasid_bits = 16, 429 .max_no_of_hqd = 24, 430 .doorbell_size = 8, 431 .ih_ring_entry_size = 8 * sizeof(uint32_t), 432 .event_interrupt_class = &event_interrupt_class_v9, 433 .num_of_watch_points = 4, 434 .mqd_size_aligned = MQD_SIZE_ALIGNED, 435 .needs_iommu_device = false, 436 .supports_cwsr = true, 437 .needs_pci_atomics = false, 438 .num_sdma_engines = 2, 439 .num_xgmi_sdma_engines = 0, 440 .num_sdma_queues_per_engine = 8, 441 }; 442 443 static const struct kfd_device_info navi14_device_info = { 444 .asic_family = CHIP_NAVI14, 445 .asic_name = "navi14", 446 .max_pasid_bits = 16, 447 .max_no_of_hqd = 24, 448 .doorbell_size = 8, 449 .ih_ring_entry_size = 8 * sizeof(uint32_t), 450 .event_interrupt_class = &event_interrupt_class_v9, 451 .num_of_watch_points = 4, 452 .mqd_size_aligned = MQD_SIZE_ALIGNED, 453 .needs_iommu_device = false, 454 .supports_cwsr = true, 455 .needs_pci_atomics = false, 456 .num_sdma_engines = 2, 457 .num_xgmi_sdma_engines = 0, 458 .num_sdma_queues_per_engine = 8, 459 }; 460 461 /* For each entry, [0] is regular and [1] is virtualisation device. */ 462 static const struct kfd_device_info *kfd_supported_devices[][2] = { 463 #ifdef KFD_SUPPORT_IOMMU_V2 464 [CHIP_KAVERI] = {&kaveri_device_info, NULL}, 465 [CHIP_CARRIZO] = {&carrizo_device_info, NULL}, 466 [CHIP_RAVEN] = {&raven_device_info, NULL}, 467 #endif 468 [CHIP_HAWAII] = {&hawaii_device_info, NULL}, 469 [CHIP_TONGA] = {&tonga_device_info, NULL}, 470 [CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info}, 471 [CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info}, 472 [CHIP_POLARIS11] = {&polaris11_device_info, NULL}, 473 [CHIP_POLARIS12] = {&polaris12_device_info, NULL}, 474 [CHIP_VEGAM] = {&vegam_device_info, NULL}, 475 [CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info}, 476 [CHIP_VEGA12] = {&vega12_device_info, NULL}, 477 [CHIP_VEGA20] = {&vega20_device_info, NULL}, 478 [CHIP_RENOIR] = {&renoir_device_info, NULL}, 479 [CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info}, 480 [CHIP_NAVI10] = {&navi10_device_info, NULL}, 481 [CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info}, 482 [CHIP_NAVI14] = {&navi14_device_info, NULL}, 483 }; 484 485 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, 486 unsigned int chunk_size); 487 static void kfd_gtt_sa_fini(struct kfd_dev *kfd); 488 489 static int kfd_resume(struct kfd_dev *kfd); 490 491 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd, 492 struct pci_dev *pdev, unsigned int asic_type, bool vf) 493 { 494 struct kfd_dev *kfd; 495 const struct kfd_device_info *device_info; 496 const struct kfd2kgd_calls *f2g; 497 498 if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2) 499 || asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) { 500 dev_err(kfd_device, "asic_type %d out of range\n", asic_type); 501 return NULL; /* asic_type out of range */ 502 } 503 504 device_info = kfd_supported_devices[asic_type][vf]; 505 f2g = kfd2kgd_funcs[asic_type]; 506 507 if (!device_info || !f2g) { 508 dev_err(kfd_device, "%s %s not supported in kfd\n", 509 amdgpu_asic_name[asic_type], vf ? "VF" : ""); 510 return NULL; 511 } 512 513 kfd = kzalloc(sizeof(*kfd), GFP_KERNEL); 514 if (!kfd) 515 return NULL; 516 517 /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps. 518 * 32 and 64-bit requests are possible and must be 519 * supported. 520 */ 521 kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd); 522 if (device_info->needs_pci_atomics && 523 !kfd->pci_atomic_requested) { 524 dev_info(kfd_device, 525 "skipped device %x:%x, PCI rejects atomics\n", 526 pdev->vendor, pdev->device); 527 kfree(kfd); 528 return NULL; 529 } 530 531 kfd->kgd = kgd; 532 kfd->device_info = device_info; 533 kfd->pdev = pdev; 534 kfd->init_complete = false; 535 kfd->kfd2kgd = f2g; 536 atomic_set(&kfd->compute_profile, 0); 537 538 mutex_init(&kfd->doorbell_mutex); 539 memset(&kfd->doorbell_available_index, 0, 540 sizeof(kfd->doorbell_available_index)); 541 542 atomic_set(&kfd->sram_ecc_flag, 0); 543 544 return kfd; 545 } 546 547 static void kfd_cwsr_init(struct kfd_dev *kfd) 548 { 549 if (cwsr_enable && kfd->device_info->supports_cwsr) { 550 if (kfd->device_info->asic_family < CHIP_VEGA10) { 551 BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE); 552 kfd->cwsr_isa = cwsr_trap_gfx8_hex; 553 kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex); 554 } else if (kfd->device_info->asic_family == CHIP_ARCTURUS) { 555 BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE); 556 kfd->cwsr_isa = cwsr_trap_arcturus_hex; 557 kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex); 558 } else if (kfd->device_info->asic_family < CHIP_NAVI10) { 559 BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE); 560 kfd->cwsr_isa = cwsr_trap_gfx9_hex; 561 kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex); 562 } else { 563 BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE); 564 kfd->cwsr_isa = cwsr_trap_gfx10_hex; 565 kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex); 566 } 567 568 kfd->cwsr_enabled = true; 569 } 570 } 571 572 static int kfd_gws_init(struct kfd_dev *kfd) 573 { 574 int ret = 0; 575 576 if (kfd->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) 577 return 0; 578 579 if (hws_gws_support 580 || (kfd->device_info->asic_family >= CHIP_VEGA10 581 && kfd->device_info->asic_family <= CHIP_RAVEN 582 && kfd->mec2_fw_version >= 0x1b3)) 583 ret = amdgpu_amdkfd_alloc_gws(kfd->kgd, 584 amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws); 585 586 return ret; 587 } 588 589 bool kgd2kfd_device_init(struct kfd_dev *kfd, 590 struct drm_device *ddev, 591 const struct kgd2kfd_shared_resources *gpu_resources) 592 { 593 unsigned int size; 594 595 kfd->ddev = ddev; 596 kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd, 597 KGD_ENGINE_MEC1); 598 kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd, 599 KGD_ENGINE_MEC2); 600 kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd, 601 KGD_ENGINE_SDMA1); 602 kfd->shared_resources = *gpu_resources; 603 604 kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1; 605 kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1; 606 kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd 607 - kfd->vm_info.first_vmid_kfd + 1; 608 609 /* Verify module parameters regarding mapped process number*/ 610 if ((hws_max_conc_proc < 0) 611 || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) { 612 dev_err(kfd_device, 613 "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n", 614 hws_max_conc_proc, kfd->vm_info.vmid_num_kfd, 615 kfd->vm_info.vmid_num_kfd); 616 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd; 617 } else 618 kfd->max_proc_per_quantum = hws_max_conc_proc; 619 620 /* calculate max size of mqds needed for queues */ 621 size = max_num_of_queues_per_device * 622 kfd->device_info->mqd_size_aligned; 623 624 /* 625 * calculate max size of runlist packet. 626 * There can be only 2 packets at once 627 */ 628 size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) + 629 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues) 630 + sizeof(struct pm4_mes_runlist)) * 2; 631 632 /* Add size of HIQ & DIQ */ 633 size += KFD_KERNEL_QUEUE_SIZE * 2; 634 635 /* add another 512KB for all other allocations on gart (HPD, fences) */ 636 size += 512 * 1024; 637 638 if (amdgpu_amdkfd_alloc_gtt_mem( 639 kfd->kgd, size, &kfd->gtt_mem, 640 &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr, 641 false)) { 642 dev_err(kfd_device, "Could not allocate %d bytes\n", size); 643 goto alloc_gtt_mem_failure; 644 } 645 646 dev_info(kfd_device, "Allocated %d bytes on gart\n", size); 647 648 /* Initialize GTT sa with 512 byte chunk size */ 649 if (kfd_gtt_sa_init(kfd, size, 512) != 0) { 650 dev_err(kfd_device, "Error initializing gtt sub-allocator\n"); 651 goto kfd_gtt_sa_init_error; 652 } 653 654 if (kfd_doorbell_init(kfd)) { 655 dev_err(kfd_device, 656 "Error initializing doorbell aperture\n"); 657 goto kfd_doorbell_error; 658 } 659 660 if (kfd->kfd2kgd->get_hive_id) 661 kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd); 662 663 if (kfd->kfd2kgd->get_unique_id) 664 kfd->unique_id = kfd->kfd2kgd->get_unique_id(kfd->kgd); 665 666 if (kfd_interrupt_init(kfd)) { 667 dev_err(kfd_device, "Error initializing interrupts\n"); 668 goto kfd_interrupt_error; 669 } 670 671 kfd->dqm = device_queue_manager_init(kfd); 672 if (!kfd->dqm) { 673 dev_err(kfd_device, "Error initializing queue manager\n"); 674 goto device_queue_manager_error; 675 } 676 677 /* If supported on this device, allocate global GWS that is shared 678 * by all KFD processes 679 */ 680 if (kfd_gws_init(kfd)) { 681 dev_err(kfd_device, "Could not allocate %d gws\n", 682 amdgpu_amdkfd_get_num_gws(kfd->kgd)); 683 goto gws_error; 684 } 685 686 if (kfd_iommu_device_init(kfd)) { 687 dev_err(kfd_device, "Error initializing iommuv2\n"); 688 goto device_iommu_error; 689 } 690 691 kfd_cwsr_init(kfd); 692 693 if (kfd_resume(kfd)) 694 goto kfd_resume_error; 695 696 kfd->dbgmgr = NULL; 697 698 if (kfd_topology_add_device(kfd)) { 699 dev_err(kfd_device, "Error adding device to topology\n"); 700 goto kfd_topology_add_device_error; 701 } 702 703 kfd->init_complete = true; 704 dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor, 705 kfd->pdev->device); 706 707 pr_debug("Starting kfd with the following scheduling policy %d\n", 708 kfd->dqm->sched_policy); 709 710 goto out; 711 712 kfd_topology_add_device_error: 713 kfd_resume_error: 714 device_iommu_error: 715 gws_error: 716 device_queue_manager_uninit(kfd->dqm); 717 device_queue_manager_error: 718 kfd_interrupt_exit(kfd); 719 kfd_interrupt_error: 720 kfd_doorbell_fini(kfd); 721 kfd_doorbell_error: 722 kfd_gtt_sa_fini(kfd); 723 kfd_gtt_sa_init_error: 724 amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem); 725 alloc_gtt_mem_failure: 726 if (kfd->gws) 727 amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws); 728 dev_err(kfd_device, 729 "device %x:%x NOT added due to errors\n", 730 kfd->pdev->vendor, kfd->pdev->device); 731 out: 732 return kfd->init_complete; 733 } 734 735 void kgd2kfd_device_exit(struct kfd_dev *kfd) 736 { 737 if (kfd->init_complete) { 738 kgd2kfd_suspend(kfd, false); 739 device_queue_manager_uninit(kfd->dqm); 740 kfd_interrupt_exit(kfd); 741 kfd_topology_remove_device(kfd); 742 kfd_doorbell_fini(kfd); 743 kfd_gtt_sa_fini(kfd); 744 amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem); 745 if (kfd->gws) 746 amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws); 747 } 748 749 kfree(kfd); 750 } 751 752 int kgd2kfd_pre_reset(struct kfd_dev *kfd) 753 { 754 if (!kfd->init_complete) 755 return 0; 756 757 kfd->dqm->ops.pre_reset(kfd->dqm); 758 759 kgd2kfd_suspend(kfd, false); 760 761 kfd_signal_reset_event(kfd); 762 return 0; 763 } 764 765 /* 766 * Fix me. KFD won't be able to resume existing process for now. 767 * We will keep all existing process in a evicted state and 768 * wait the process to be terminated. 769 */ 770 771 int kgd2kfd_post_reset(struct kfd_dev *kfd) 772 { 773 int ret; 774 775 if (!kfd->init_complete) 776 return 0; 777 778 ret = kfd_resume(kfd); 779 if (ret) 780 return ret; 781 atomic_dec(&kfd_locked); 782 783 atomic_set(&kfd->sram_ecc_flag, 0); 784 785 return 0; 786 } 787 788 bool kfd_is_locked(void) 789 { 790 return (atomic_read(&kfd_locked) > 0); 791 } 792 793 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm) 794 { 795 if (!kfd->init_complete) 796 return; 797 798 /* for runtime suspend, skip locking kfd */ 799 if (!run_pm) { 800 /* For first KFD device suspend all the KFD processes */ 801 if (atomic_inc_return(&kfd_locked) == 1) 802 kfd_suspend_all_processes(); 803 } 804 805 kfd->dqm->ops.stop(kfd->dqm); 806 kfd_iommu_suspend(kfd); 807 } 808 809 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm) 810 { 811 int ret, count; 812 813 if (!kfd->init_complete) 814 return 0; 815 816 ret = kfd_resume(kfd); 817 if (ret) 818 return ret; 819 820 /* for runtime resume, skip unlocking kfd */ 821 if (!run_pm) { 822 count = atomic_dec_return(&kfd_locked); 823 WARN_ONCE(count < 0, "KFD suspend / resume ref. error"); 824 if (count == 0) 825 ret = kfd_resume_all_processes(); 826 } 827 828 return ret; 829 } 830 831 static int kfd_resume(struct kfd_dev *kfd) 832 { 833 int err = 0; 834 835 err = kfd_iommu_resume(kfd); 836 if (err) { 837 dev_err(kfd_device, 838 "Failed to resume IOMMU for device %x:%x\n", 839 kfd->pdev->vendor, kfd->pdev->device); 840 return err; 841 } 842 843 err = kfd->dqm->ops.start(kfd->dqm); 844 if (err) { 845 dev_err(kfd_device, 846 "Error starting queue manager for device %x:%x\n", 847 kfd->pdev->vendor, kfd->pdev->device); 848 goto dqm_start_error; 849 } 850 851 return err; 852 853 dqm_start_error: 854 kfd_iommu_suspend(kfd); 855 return err; 856 } 857 858 static inline void kfd_queue_work(struct workqueue_struct *wq, 859 struct work_struct *work) 860 { 861 int cpu, new_cpu; 862 863 cpu = new_cpu = smp_processor_id(); 864 do { 865 new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids; 866 if (cpu_to_node(new_cpu) == numa_node_id()) 867 break; 868 } while (cpu != new_cpu); 869 870 queue_work_on(new_cpu, wq, work); 871 } 872 873 /* This is called directly from KGD at ISR. */ 874 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry) 875 { 876 uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE]; 877 bool is_patched = false; 878 unsigned long flags; 879 880 if (!kfd->init_complete) 881 return; 882 883 if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) { 884 dev_err_once(kfd_device, "Ring entry too small\n"); 885 return; 886 } 887 888 spin_lock_irqsave(&kfd->interrupt_lock, flags); 889 890 if (kfd->interrupts_active 891 && interrupt_is_wanted(kfd, ih_ring_entry, 892 patched_ihre, &is_patched) 893 && enqueue_ih_ring_entry(kfd, 894 is_patched ? patched_ihre : ih_ring_entry)) 895 kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work); 896 897 spin_unlock_irqrestore(&kfd->interrupt_lock, flags); 898 } 899 900 int kgd2kfd_quiesce_mm(struct mm_struct *mm) 901 { 902 struct kfd_process *p; 903 int r; 904 905 /* Because we are called from arbitrary context (workqueue) as opposed 906 * to process context, kfd_process could attempt to exit while we are 907 * running so the lookup function increments the process ref count. 908 */ 909 p = kfd_lookup_process_by_mm(mm); 910 if (!p) 911 return -ESRCH; 912 913 r = kfd_process_evict_queues(p); 914 915 kfd_unref_process(p); 916 return r; 917 } 918 919 int kgd2kfd_resume_mm(struct mm_struct *mm) 920 { 921 struct kfd_process *p; 922 int r; 923 924 /* Because we are called from arbitrary context (workqueue) as opposed 925 * to process context, kfd_process could attempt to exit while we are 926 * running so the lookup function increments the process ref count. 927 */ 928 p = kfd_lookup_process_by_mm(mm); 929 if (!p) 930 return -ESRCH; 931 932 r = kfd_process_restore_queues(p); 933 934 kfd_unref_process(p); 935 return r; 936 } 937 938 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will 939 * prepare for safe eviction of KFD BOs that belong to the specified 940 * process. 941 * 942 * @mm: mm_struct that identifies the specified KFD process 943 * @fence: eviction fence attached to KFD process BOs 944 * 945 */ 946 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm, 947 struct dma_fence *fence) 948 { 949 struct kfd_process *p; 950 unsigned long active_time; 951 unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS); 952 953 if (!fence) 954 return -EINVAL; 955 956 if (dma_fence_is_signaled(fence)) 957 return 0; 958 959 p = kfd_lookup_process_by_mm(mm); 960 if (!p) 961 return -ENODEV; 962 963 if (fence->seqno == p->last_eviction_seqno) 964 goto out; 965 966 p->last_eviction_seqno = fence->seqno; 967 968 /* Avoid KFD process starvation. Wait for at least 969 * PROCESS_ACTIVE_TIME_MS before evicting the process again 970 */ 971 active_time = get_jiffies_64() - p->last_restore_timestamp; 972 if (delay_jiffies > active_time) 973 delay_jiffies -= active_time; 974 else 975 delay_jiffies = 0; 976 977 /* During process initialization eviction_work.dwork is initialized 978 * to kfd_evict_bo_worker 979 */ 980 schedule_delayed_work(&p->eviction_work, delay_jiffies); 981 out: 982 kfd_unref_process(p); 983 return 0; 984 } 985 986 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, 987 unsigned int chunk_size) 988 { 989 unsigned int num_of_longs; 990 991 if (WARN_ON(buf_size < chunk_size)) 992 return -EINVAL; 993 if (WARN_ON(buf_size == 0)) 994 return -EINVAL; 995 if (WARN_ON(chunk_size == 0)) 996 return -EINVAL; 997 998 kfd->gtt_sa_chunk_size = chunk_size; 999 kfd->gtt_sa_num_of_chunks = buf_size / chunk_size; 1000 1001 num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) / 1002 BITS_PER_LONG; 1003 1004 kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL); 1005 1006 if (!kfd->gtt_sa_bitmap) 1007 return -ENOMEM; 1008 1009 pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n", 1010 kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap); 1011 1012 mutex_init(&kfd->gtt_sa_lock); 1013 1014 return 0; 1015 1016 } 1017 1018 static void kfd_gtt_sa_fini(struct kfd_dev *kfd) 1019 { 1020 mutex_destroy(&kfd->gtt_sa_lock); 1021 kfree(kfd->gtt_sa_bitmap); 1022 } 1023 1024 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr, 1025 unsigned int bit_num, 1026 unsigned int chunk_size) 1027 { 1028 return start_addr + bit_num * chunk_size; 1029 } 1030 1031 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr, 1032 unsigned int bit_num, 1033 unsigned int chunk_size) 1034 { 1035 return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size); 1036 } 1037 1038 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, 1039 struct kfd_mem_obj **mem_obj) 1040 { 1041 unsigned int found, start_search, cur_size; 1042 1043 if (size == 0) 1044 return -EINVAL; 1045 1046 if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size) 1047 return -ENOMEM; 1048 1049 *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL); 1050 if (!(*mem_obj)) 1051 return -ENOMEM; 1052 1053 pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size); 1054 1055 start_search = 0; 1056 1057 mutex_lock(&kfd->gtt_sa_lock); 1058 1059 kfd_gtt_restart_search: 1060 /* Find the first chunk that is free */ 1061 found = find_next_zero_bit(kfd->gtt_sa_bitmap, 1062 kfd->gtt_sa_num_of_chunks, 1063 start_search); 1064 1065 pr_debug("Found = %d\n", found); 1066 1067 /* If there wasn't any free chunk, bail out */ 1068 if (found == kfd->gtt_sa_num_of_chunks) 1069 goto kfd_gtt_no_free_chunk; 1070 1071 /* Update fields of mem_obj */ 1072 (*mem_obj)->range_start = found; 1073 (*mem_obj)->range_end = found; 1074 (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr( 1075 kfd->gtt_start_gpu_addr, 1076 found, 1077 kfd->gtt_sa_chunk_size); 1078 (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr( 1079 kfd->gtt_start_cpu_ptr, 1080 found, 1081 kfd->gtt_sa_chunk_size); 1082 1083 pr_debug("gpu_addr = %p, cpu_addr = %p\n", 1084 (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr); 1085 1086 /* If we need only one chunk, mark it as allocated and get out */ 1087 if (size <= kfd->gtt_sa_chunk_size) { 1088 pr_debug("Single bit\n"); 1089 set_bit(found, kfd->gtt_sa_bitmap); 1090 goto kfd_gtt_out; 1091 } 1092 1093 /* Otherwise, try to see if we have enough contiguous chunks */ 1094 cur_size = size - kfd->gtt_sa_chunk_size; 1095 do { 1096 (*mem_obj)->range_end = 1097 find_next_zero_bit(kfd->gtt_sa_bitmap, 1098 kfd->gtt_sa_num_of_chunks, ++found); 1099 /* 1100 * If next free chunk is not contiguous than we need to 1101 * restart our search from the last free chunk we found (which 1102 * wasn't contiguous to the previous ones 1103 */ 1104 if ((*mem_obj)->range_end != found) { 1105 start_search = found; 1106 goto kfd_gtt_restart_search; 1107 } 1108 1109 /* 1110 * If we reached end of buffer, bail out with error 1111 */ 1112 if (found == kfd->gtt_sa_num_of_chunks) 1113 goto kfd_gtt_no_free_chunk; 1114 1115 /* Check if we don't need another chunk */ 1116 if (cur_size <= kfd->gtt_sa_chunk_size) 1117 cur_size = 0; 1118 else 1119 cur_size -= kfd->gtt_sa_chunk_size; 1120 1121 } while (cur_size > 0); 1122 1123 pr_debug("range_start = %d, range_end = %d\n", 1124 (*mem_obj)->range_start, (*mem_obj)->range_end); 1125 1126 /* Mark the chunks as allocated */ 1127 for (found = (*mem_obj)->range_start; 1128 found <= (*mem_obj)->range_end; 1129 found++) 1130 set_bit(found, kfd->gtt_sa_bitmap); 1131 1132 kfd_gtt_out: 1133 mutex_unlock(&kfd->gtt_sa_lock); 1134 return 0; 1135 1136 kfd_gtt_no_free_chunk: 1137 pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj); 1138 mutex_unlock(&kfd->gtt_sa_lock); 1139 kfree(*mem_obj); 1140 return -ENOMEM; 1141 } 1142 1143 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj) 1144 { 1145 unsigned int bit; 1146 1147 /* Act like kfree when trying to free a NULL object */ 1148 if (!mem_obj) 1149 return 0; 1150 1151 pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n", 1152 mem_obj, mem_obj->range_start, mem_obj->range_end); 1153 1154 mutex_lock(&kfd->gtt_sa_lock); 1155 1156 /* Mark the chunks as free */ 1157 for (bit = mem_obj->range_start; 1158 bit <= mem_obj->range_end; 1159 bit++) 1160 clear_bit(bit, kfd->gtt_sa_bitmap); 1161 1162 mutex_unlock(&kfd->gtt_sa_lock); 1163 1164 kfree(mem_obj); 1165 return 0; 1166 } 1167 1168 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd) 1169 { 1170 if (kfd) 1171 atomic_inc(&kfd->sram_ecc_flag); 1172 } 1173 1174 void kfd_inc_compute_active(struct kfd_dev *kfd) 1175 { 1176 if (atomic_inc_return(&kfd->compute_profile) == 1) 1177 amdgpu_amdkfd_set_compute_idle(kfd->kgd, false); 1178 } 1179 1180 void kfd_dec_compute_active(struct kfd_dev *kfd) 1181 { 1182 int count = atomic_dec_return(&kfd->compute_profile); 1183 1184 if (count == 0) 1185 amdgpu_amdkfd_set_compute_idle(kfd->kgd, true); 1186 WARN_ONCE(count < 0, "Compute profile ref. count error"); 1187 } 1188 1189 #if defined(CONFIG_DEBUG_FS) 1190 1191 /* This function will send a package to HIQ to hang the HWS 1192 * which will trigger a GPU reset and bring the HWS back to normal state 1193 */ 1194 int kfd_debugfs_hang_hws(struct kfd_dev *dev) 1195 { 1196 int r = 0; 1197 1198 if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) { 1199 pr_err("HWS is not enabled"); 1200 return -EINVAL; 1201 } 1202 1203 r = pm_debugfs_hang_hws(&dev->dqm->packets); 1204 if (!r) 1205 r = dqm_debugfs_execute_queues(dev->dqm); 1206 1207 return r; 1208 } 1209 1210 #endif 1211